«INFORMATICS AND APPLICATIONS»
Scientific journal
Volume 8, Issue 1, 2014

Content | Abstract | About  Authors

Bibliography

ANALYSIS AND MODELING OF DISTRIBUTIONS IN HEREDITARY STOCHASTIC SYSTEMS.

  • I.N. Sinitsyn  Institute of Informatics Problems, Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation

literature

  1. Kolmanovskij, V. B., and V.R. Nosov. 1981. Ustoychivost i periodicheskie rezhimy sistem s posledeystviem [Stability of hereditary systems]. Moscow: Nauka. 386 p.
  2. Sinitsyn, I.N. 1986. Stochstic hereditary control systems. Problems Control Infrom. Theory 15(4):287298.
  3. Sinitsyn, I.N. 1986. Finite-dimenstional distributions in stochastic integral and integraldifferential systems. 2nd Symposium (International) IFAC on Stochastic Control Proceeding: Preprints. Vilnius: Pergamon Press. Pt. 1. P. 144 153.
  4. Pugachev, V. S., and I.N. Sinitsyn. 1987. Stochastic differential systems. Analysis and filtering. Chichester, New York: Jonh Wiley. 549 p.
  5. Pugachev, V. S., and I.N. Sinitsyn. 2001. Stochastic systems. Theory and applications. Singapore: World Scientific. 908 p.
  6. Sinitsyn, I.N. 2009. Kanonicheskie predstavleniya sluchaynykh funktsiy i ikh primenenie v zadachakh kompyuternoy podderzhki nauchnykh issledovaniy [Canonical expansions of random functions and its application to scientific computeraided support]. Moscow: TORUS PRESS. 768 p.
  7. Sinitsyn, I.N. 2013. Parametricheskoe statisticheskoe i analiticheskoe modelirovanie raspredeleniy v nelineynykh stochasticheskikh sistemakh na mnogoobraziyakh [Parametrical statistical and analytical modeling of distributions in stochastic systems on manifolds]. Informatika i ee Primemeniya Inform. Appl. 7(2):416.
  8. Sinitsyn, I.N., and V. I. Sinitsyn. 2013. Lektsii po normalnoy i ellipsoidalnoy approksimatsii raspredeleniy v stokhasticheskikh sistemakh [Lectures on normal and ellipsoidal distributions approximations]. Moscow: TORUS PRESS. 480 p.
  9. Sinitsyn, I.N. 2013. Analiticheskoe modelirovanie raspredeleniy s invariantnoymeroy v stokhasticheskikh sistemakh s razryvnymi kharakteristikami [Analyticalmodeling of distributions in stochastic systems with discontinuous characteristics]. Informatika i ee Primemeniya Inform. Appl.

ANALYSIS OF DELAYS IN SCHEDULING HOMOGENEOUS TASKS UNDER UNCERTAINTY.

  • Yu.E. Malashenko  Dorodnicyn Computing Center, Russian Academy of Sciences, 40 Vavilov Str., Moscow 119333, Russian Federation
  • I.A. Nazarova  Dorodnicyn Computing Center, Russian Academy of Sciences, 40 Vavilov Str., Moscow 119333, Russian Federation

literature

  1. Kupalov-Yaropolk, I.K., Yu. E.Malashenko, I.A.Nazarova, and A. F. Ronzhin. 2013. Metody otsenki effektivnosti i direktivnykh srokov vypolneniya resursoemkikh vychislitelnykh zadaniy [Methods of estimating efficiency and directive deadlines for resource-intensive computational tasks]. Informatika i ee primenenijaInform. Appl. 7(2):4 12.
  2. Malashenko, Yu. E., and I. A. Nazarova. 2012. Control model for heterogeneous computational tasks based on guaranteed estimates of execution times. J. Comput. Syst. Sci. Int. 51:526534.
  3. Kupalov-Yaropolk, I.K., Yu. E.Malashenko, I.A.Nazarova, andA. F.Ronzhin. 2013.Modeli i programmy dlya sistemy upravleniya resursoemkimi vychisleniyami [Models and programs for intensive computing management].Moscow: Vychisl. Tsentr Ross. Akad. Nauk Publ. 72 p. Available at: http://www.ccas.ru/depart/malashen/papper/ronzhin 2012 preprint.pdf.
  4. Germeier, Yu. B. 1971. Vvedenie v teoriyu issledovaniya operatsiy [An introduction to operations research theory]. Moscow: Nauka Publ. 384 p.
  5. Sukharev, A.G., A. V. Timokhov, and V. V. Fedorov. 1986. Kurs metodov optimizatsii [A course in optimization methods]. Moscow: Nauka Publ. 368 p.
  6. Golosov, P. E., M. V. Kozlov, Yu. E. Malashenko, I.A. Nazarova, and A. F. Ronzhin. 2010. Model sistemy upravleniya spetsializirovannym vychislitelnym kompleksom [Control model for a special computer system]. Moscow: Vychisl. Tsentr Ross. Akad. Nauk Publ. 48 p. Available at: http://www.ccas.ru/depart/malashen/ papper/golosov 2010 preprint.pdf.
  7. Kozlov, M. V., Yu. E. Malashenko, I.A. Nazarova, and A. F. Ronzhin. 2011. Analiz rezhimov upravleniya vychislitelnym kompleksomv usloviyakh neopredelennosti [Analysis of a computer system control modes under uncertainty]. Moscow: Vychisl. Tsentr Ross. Akad. Nauk Publ. 60 p. Available at: http://www.ccas.ru/depart/malashen/ papper/ronzhin 2011 preprint.pdf.
  8. Golosov, P. E., M. V. Kozlov, Yu. E. Malashenko, I.A. Nazarova, and A. F. Ronzhin. 2012. Analysis of computer job control under uncertainty. J. Comput. Syst. Sci. Int. 51:4964.
  9. Dantzig, G. Linear programming and extensions. New Jersey: Princeton University Press, 1963. 589 p.

ESTIMATION OF RELIABILITY OF COMPLEX SYSTEMS WITH RENEWAL BASED ON ELEMENT TEST RESULTS .

  • I. V. Pavlov   Bauman Moscow State Technical University, 5, 2nd Baumanskaya Str.,Moscow 105005, Russian Federation

literature

  1. Gnedenko, B. V., Ju.K. Beljaev, and A.D. Solovev. 1965. Matematicheskiemetody v teorii nadezhnosti [Mathematical methods in reliability theory].Moscow: Nauka. 524 p.
  2. Barlow, R., and F. Proschan. 1965.Mathematical theory of reliability. N.Y.: John Wiley&Sons. 497 p.
  3. Vasilev, N. S. 1985. Ob odnoy modeli razvitiya seti svyazi [On one model of network development] Izvestiya Rossiyskoy Akademii Nauk. Teoriya i Sistemy Upravleniya [Bulletin of the Russian Academy of Sciences. Theory and Control Systems] 6:227234.
  4. Pavlov, I. V. 1988. Priblizhenno optimalnye doveritelnye granitsy dlya pokazateley nadezhnosti sistem s vosstanovleniem [Approximately optimum confidence limits for system reliability indicators with recovery]. Izvestiya Rossiyskoy Akademii Nauk. Teoriya i Sistemy Upravleniya [Bulletin of the Russian Academy of Sciences. Theory and Control Systems] 3:109116.
  5. Pavlov, I. V., and I.A. Ushakov. 1989. Vychislenie pokazateley nadezhnosti dlya slozhnykh sistem s vosstanavlivaemymi elementami [Calculation of reliability indices for complex systems with recoverable elements]. Izvestiya Rossiyskoy Akademii Nauk. Teoriya i Sistemy Upravleniya [Bulletin of the Russian Academy of Sciences. Theory and Control Systems] 6:170176.
  6. Gnedenko, B. V., I. V. Pavlov, and I.A. Ushakov. 1999. Statistical reliability engineering. N.Y.: John Wiley&Sons. 517 p.
  7. Konovalov, M.G. 2012. Organizatsiya raboty vychislitelnogo kompleksa s pomoshchyu imitatsionnoy modeli i adaptivnykh algoritmov [Organization of work of computer complex using a simulation model and adaptive algorithms]. Informatika i ee Primeneniya Inform. Appl. 6(1):3748.
  8. Pavlov, I. V. 2012. Raschet i optimizatsiya nekotorykh kharakteristik dlya modeli vychislitelnogo kompleksa [Calculation and optimization of some characteristics of the model computer complex]. Informatika i ee Primeneniya Inform. Appl. 6(2):5962.
  9. Barlow, R., and F. Proschan. 1966. Tolerance and confidence limits for classes of distributions based on failure rate. Ann.Math. Stat. 37(6):11841195.
  10. Pavlov, I. V. 1977. Doveritelnye granitsy v klasse raspredeleniy s vozrastayushchey funktsiey intensivnosti otkazov [Confidence limits in the class of distributions with increasing failure rate function]. Izvestiya Rossiyskoy Akademii Nauk. Teoriya i Sistemy Upravleniya [Bulletin of the Russian Academy of Sciences. Theory and Control Systems] 6:7284.
  11. Lloyd, D., and M. Lipow. 1962. Reliability management, methods andmathematics.N.J.: Prentice-Hall, Englewood Cliffs. 684 p.
  12. Beljaev, Ju.K. 1967. Doveritelnye intervaly dlya funktsiy ot mnogikh neizvestnykh parametrov [Confidence intervals for functions of many unknown parameters]. Dokl. AN SSSR 196(4):755758.
  13. Beljaev, Ju.K., T.N. Dugina, and E. V. Chepurin. 1967. Vychislenie nizhney doveritelnoy otsenki dlya veroyatnosti bezotkaznoy raboty slozhnykh sistem [Calculation of the lower confidence estimates for the probability of failure-free operation of complex systems]. Izvestiya Rossiyskoy Akademii Nauk. Teoriya i Sistemy Upravleniya [Bulletin of the Russian Academy of Sciences. Theory and Control Systems] 2:5259.
  14. Pavlov, I. V. 1981. O korrektnosti fidutsialnogo podkhoda pri postroenii doveritelnykh granits dlya pokazateley nadezhnosti slozhnykh sistem [On the correctness of the fiducial approach when constructing confidence limits for the indicators of reliability of complex systems]. Izvestiya Rossiyskoy Akademii Nauk. Teoriya i Sistemy Upravleniya [Bulletin of the Russian Academy of Sciences. Theory and Control Systems] 5:4652.
  15. Pavlov, I. V. 1981. O fidutsialnompodhode pri vychislenii doveritelnykh granits dlya funktsiymnogikh neizvestnykh parametrov [On fiducial approach in calculating confidence limits for functions of many unknown parameters]. Dokl. RAN 258(6):13141317.

EQUILIBRIUM PRINCIPLE APPLICATION TO ROUTING CONTROL IN PACKET DATA TRANSMISSION NETWORKS .

  • N. S. Vasilyev  Bauman Moscow State Technical University, 5, 2nd Baumanskaya Str., Moscow 105005, Russian Federation

literature

  1. Bertsecas, D. P., and R. Gallager. 1987. Data networks. Englewood Cliffs: Prentice Hall. 544 p.
  2. Vasilyev, N. S., and V. V. Fedorov. 1996. O ravnovesnoy marshrutizatsii v setyakh peredachi dannykh [Equilibrium routing in data-transmission networks]. Vestn. Mosk. Univ. Ser. 15: Vychisl. Mat. Kibern. [Bulletin of Moscow State University. Ser. 15: Comput. Math., Cybern.] 4:47 52.
  3. Korilis, Y. A., A.A. Lazar, and A. Orda. 1997. Capacity allocation under noncooperative routing. IEEE Trans. Automat. Contr. 42(3):309325.
  4. Vasilyev, N. S. 1998. Nash equilibrious routing in ring networks. Int. J. Math. Game Theory Algebra 7(4):221 234.
  5. Vasilyev, N. S. 1997. O svoystvakh resheniy zadachi marshrutizatsii seti s virtualnymi kanalami [Properties of the solutions to the problemof routing in network with virtual channels]. Zh. Vychisl. Mat. Mat. Fiz. [Computational Mathematics and Mathematical Physics] 37(7):785793.
  6. Vasilyev, N. S. 1998. O svoystvakh resheniy zadachi dinamicheskoy marshrutizatsii seti [Properties of the solutions to the problem of dynamic routing in networks]. Zh. Vychisl. Mat. Mat. Fiz. [Computational Mathematics and Mathematical Physics] 38(1):4252.
  7. Sokolov, I.A., and S. Ya. Shorgin. 2001. Model i matematicheskie metody rascheta kharakteristik seti, ispolzuyushchey tekhnologii X.25 i Frame relay [Models and mathematical methods of characteristics calculation for X.25 and Frame relay network]. Sistemy i Sredstva Informatiki. Spec. vyp. Matematicheskie metody informatiki [Systems andMeans of Informatics. Spec. ed. Math.Meth. of Informatics]. Moscow: Nauka, Fizmatlit. 4366.
  8. Vasilyev, N. S., and V. V. Fedorov. 2005. O postroenii algoritmov marshrutizatsii paketnykh setey na osnove vektornykh kriteriev [On routing algorithms in packet networks on the base of vector criterias]. IzvestijaRAN.Teorija i sistemy upravlenija [Bulletin of RAS. Theory and Control Systems] 3:3647.
  9. Vasilyev, N. S. 2008. Zadacha o kratchayshikh marshrutakh v setyakh s peremennoymetrikoy [The shortest paths problem in networks with changeable metric]. Vestnik MGTU im. N. E. Baumana, Ser. Estestv. Nauki [Bulletin of Bauman MSTU. Ser. Natural Sciences] 1:7075.
  10. Konovalov, M.G. 2012. Optimizatsiya raboty vychislitelnogo kompleksa s pomoshchyu imitatsionnoy modeli i adaptivnykh algoritmov [Optimization of computational complexwork on the base of imitationalmodels and adaptive algorithms]. Informatika i Ee Primeneniya Inform. Appl. 6(1):3748.
  11. Vasilyev, F. P. 1980. Chislennye metody resheniya ekstremalnykh zadach [Numerical methods for extremum problems].Moscow: Nauka. 520 p.
  12. Ioffe, A.D., and V.M. Tihomirov. 1974. Teoriya ekstremalnykh zadach [Theory of extremum problems]. Moscow: Nauka. 481 p.
  13. Podinovskij, V. V., and V.D. Nogin. 1982. Paretooptimalnye resheniya mnogokriterialnykh zadach [Pareto optimal solutions in multicriteria problems]. Moscow: Nauka. 256 p.
  14. Cristofides, N. 1975. Graph theory: An algorithmic approach. London: Academic. 430 p.
  15. Fedorov, V. V. 1979. Chislennye metody maksimina [Numerical methods of maximin]. Moscow: Nauka. 280 p.

ASYMPTOTIC PROPERTIES OF WAVELET THRESHOLDING RISK ESTIMATE IN THE MODEL OF DATA WITH CORRELATED NOISE .

  • A.A. Eroshenko   M.V. Lomonosov Moscow State University, Faculty of Computational Mathematics and Cibernetics, 1-52 Leninskiye Gory, GSP-1, Moscow 119991, Russian Federation
  • O.V. Shestakov  M.V. Lomonosov Moscow State University, Faculty of Computational Mathematics and Cibernetics, 1-52 Leninskiye Gory, GSP-1, Moscow 119991, Institute of Informatics Problems, Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation

literature

  1. Donoho, D., and I.M. Johnstone. 1994. Ideal spatial adaptation via wavelet shrinkage. Biometrika 81(3):425 455.
  2. Donoho, D., and I.M. Johnstone. 1995. Adapting to unknown smoothness via wavelet shrinkage. J. Amer. Stat. Assoc. 90:12001224.
  3. Donoho, D. L., I.M. Johnstone, G. Kerkyacharian, and D. Picard. 1995. Wavelet shrinkage: Asymptopia? J. R. Statist. Soc. Ser. B. 57(2):301369.
  4. Marron, J. S., S. Adak, I.M. Johnstone, M.H. Neumann, and P. Patil. 1998. Exact risk analysis of wavelet regression. J. Comput. Graph. Stat. 7:278309.
  5. Antoniadis,A., and J.Fan. 2001. Regularization of wavelet approximations. J. Amer. Statist. Assoc. 96(455):939967.
  6. Markin,A. V. 2009. Predelnoe raspredelenie otsenki riska pri porogovoy obrabotke veyvlet-koeffitsientov [Limit distribution of risk estimate of wavelet coefficient thresholding]. Informatika i ee Primeneniya Inform. Appl. 3(4):5763.
  7. Markin, A. V., and O. V. Shestakov 2010. O sostoyatelnosti otsenki riska pri porogovoy obrabotke veyvletkoeffitsientov [Consistency of risk estimation with thresholding of wavelet coefficients]. Vestn. Mosk. Un-ta. Ser. 15. Vychisl. Matem. i Kibern. [Herald of Moscow University, Computational Mathematics and Cybernetics] 1:2634.
  8. Shestakov, O. V. 2010. Approksimatsiya raspredeleniya otsenki riska porogovoy obrabotki veyvlet-koeffitsientov normalnym raspredeleniem pri ispolzovanii vyborochnoy dispersii [Normal approximation for distribution of risk estimate for wavelet coefficients thresholding when using sample variance]. Informatika i ee Primeneniya Inform. Appl. 4(4):7381.
  9. Shestakov, O. V. 2012. O tochnosti priblizheniya raspredeleniya otsenki riska porogovoy obrabotki veyvletkoeffitsientov signala normalnym zakonom pri neizvestnom urovne shuma [On the accuracy of normal approximation for risk estimate distribution when thresholding signal wavelet coefficients in case of unknown noise level]. Sistemy i Sredstva Informatiki Systems and Means of Informatics 22(1):142152.
  10. Shestakov, O. V. 2012. Asimptoticheskaya normalnost otsenki riska porogovoy obrabotki veyvlet-koeffitsientov pri vybore adaptivnogo poroga [Asymptotic normality of adaptive wavelet thresholding risk estimation]. Doklady RAN [Doklady Mathematics] 445(5):513515.
  11. Shestakov, O. V. 2012. Zavisimost predelnogo raspredeleniya otsenki riska porogovoy obrabotki veyvlet-koeffitsientov signala ot vida otsenki dispersii shuma pri vybore adaptivnogo poroga [The dependence of the limiting distribution of the risk assessment thresholding wavelet coefficients of the signal on the type of noise variance estimation when selecting an adaptive threshold]. T-Comm Telekommunikacii i Transport [T-Comm Telecommunications and Transport] 1:4651.
  12. Shestakov, O. V. 2013. Tsentralnaya predelnaya teorema dlya funktsii obobshchennoy kross-validatsii pri porogovoy obrabotke veyvlet-koeffitsientov [Central limit theorem for generalized cross-validation function in wavelet thresholding method]. Informatika i ee Primeneniya Inform. Appl. 7(2):4049.
  13. Daubechies, I. 1992. Ten lectures on wavelets. SIAM. 357 p.
  14. Mallat, S. 1999. A wavelet tour of signal processing. Academic Press. 851 p.
  15. Boggess, A., and F. Narkowich. 2001. A first course in wavelets with Fourier analysis. Prentice Hall. 283 p.
  16. Johnstone, I.M., and B.W. Silverman. 1997. Wavelet threshold estimates for data with correlated noise. J. Roy. Statist. Soc. Ser. B. 59:319351.
  17. Johnstone, I.M. 1999. Wavelet shrinkage for correlated data and inverse problems: Adaptivity results. Statistica Sinica 9(1):5183.
  18. Taqqu, M. S. 1975. Weak convergence to fractional Brownian motion and to the Rosenblatt process. Z.Wahrscheinlichkeitsth. verw. Geb. 31:287302.
  19. Bradley, R.C. 2005. Basic properties of strong mixing conditions. A survey and some open questions. Probab. Surveys 2:107144.
  20. Peligrad, M. 1996. On the asymptotic normality of sequences of weak dependent random variables. J. Theoret. Prob. 9(3):703715.

IMPLEMENTATION BASIS OF EXAFLOPS CLASS SUPERCOMPUTER .

  • I. Sokolov  Institute of Informatics Problems, Russian Academy of Sciences, Moscow 119333, 44-2 Vavilov Str., Russian Federation
  • Y. Stepchenkov  Institute of Informatics Problems, Russian Academy of Sciences, Moscow 119333, 44-2 Vavilov Str., Russian Federation
  • S. Bobkov  Scientific Research Institute for System Studies, Russian Academy of Sciences, 36 bld. 1, Nakhimovsky Prosp., Moscow 117218, Russian Federation
  • V. Zakharov  Institute of Informatics Problems, Russian Academy of Sciences, Moscow 119333, 44-2 Vavilov Str., Russian Federation
  • Y. Diachenko  Institute of Informatics Problems, Russian Academy of Sciences, Moscow 119333, 44-2 Vavilov Str., Russian Federation
  • Y. Rogdestvenski  Institute of Informatics Problems, Russian Academy of Sciences, Moscow 119333, 44-2 Vavilov Str., Russian Federation
  • A. Surkov   Scientific Research Institute for System Studies, Russian Academy of Sciences, 36 bld. 1, Nakhimovsky Prosp., Moscow 117218, Russian Federation

literature

  1. Varshavsky, V. 1998. Time, timing and clock in massively parallel computing systems. Conference (International) on Massively Parallel Computing Systems Proceedings. Colorado Springs. 100106.
  2. Beere l, P., J. Cortadella, and A. Kondratyev. 2004. Bridging the gap between asynchronous design and designers (Tutorial). VLSI Design Conference Proceedings.Mumbai. 1820.
  3. Muller, D., and W.Bartky. 1959. A theory of asynchronous circuits. Annals of Computation Laboratory ofHarvardUniversity. 29:204243.
  4. Muller, D. E. 1963. Asynchronous logics and application to information processing. Switching theory in space technology. Stanford, CA: Stanford University Press. 289297.
  5. Seitz, C.L. 1980. System timing. Introduction to VLSI Systems. Addison-Wesley. 218262.
  6. Singh, N. P. 1981. A design methodology for self-timed systems. Cambridge: MIT Laboratory for Computer Science, MIT.M.Sc. Thesis. 98 p.
  7. Martin, A. J. 1986. Compiling communicating processes into delay-insensitive VLSI circuits. Distrib. Comput. 1(4):226234.
  8. Anantharaman, T. S. 1986. A delay insensitive regular expression recognizer. IEEE VLSI Technical Bulletin 1(2):4.
  9. Martin, A. J. 1990. Programming in VLSI. Development in concurrency and communication. Reading, MA: Addison- Wesley. 164.
  10. Van Berkel, K. 1992. Beware the isochronic fork. Integration, VLSI J. 13(2):103128.
  11. David, I., R. Ginosar, and M. Yoeli. 1992. An efficient implementation of Boolean functions as self-timed circuits. IEEE Trans. Comput. 41(1):211.
  12. Sparso, J., J. Staunstrup, and M. Dantzer-Sorensen. 1992. Design of delay insensitive circuits using multi-ring structures. European Design Automation Conference Proceedings. Hamburg. 1520.
  13. Hauck, S. 1995. Asynchronous design methodologies: An overview. Proc. IEEE 83(1):6993.
  14. Fant, K.M., and S.A. Brandt. 1996. NULL convention logic: A complete and consistent logic for asynchronous digital circuit synthesis. Conference (International) on Application Specific Systems, Architectures, and Processors Proceedings. Chicago. 261273.
  15. Paver, N.C., P. Day, C. Farnsworth, D. L. Jackson, W.A. Lien, and J. Liu. 1998. A low-power, low-noise, configurable self-timed DSP. 4th Symposium (International) on Advanced Research in Asynchronous Circuits and Systems Proceedings. San-Diego. 3242.
  16. Laiho, M., and O. Vianio. 1997. A full-custom self-timed DSP processor implementation. European Solid-State Circuits Conference Proceedings. Available at: http://www.imec.be/esscirc/papers-97/172.pdf (accessed August 18, 2013).
  17. Matsubara, G., N. Ide, H. Tago, S. Suzuki, and N. Goto. 1995. 30-ns 55-b shared Radix 2 Division and square root using a self-timed circuit. 12th Symposium on Computer Arithmetic Proceedings. 98105.
  18. Garside, J.D., W. J. Bainbridge, A. Bardsley, et al. 2000. AMULET3i an asynchronous system-on-chip. 6th IEEE Symposium (International) on Asynchronous Circuits and Systems Proceedings. Eilat. 162175.
  19. Bink, A., and R. York. 2007. ARM996HS: The first licensable, clockless 32-bit processor core. IEEE Micro 27(2):5868.
  20. Martin, A. J., M. Nystrom, and C.G. Wong. 2003. Three generations of asynchronous microprocessors. IEEE Des. Test Comput. 20(6):917.
  21. Handshake solutions. HT80C51 User Manual. Available at: http://www.keil.com/dd/docs/datashts/ hand- shake/ht80c51 um.pdf (accessed August 27, 2013).
  22. TIMA Laboratory Annual Report 2006. 2007. Available at: http:// tima.imag.fr/publications/les reports/ann-rep- 06.pdf (accessed August 18, 2013).
  23. Jin, G., L. Wang, and Z. Wang. 2009. The design of asynchronous microprocessor based on optimized NCL X design-flow. IEEE Conference (International) on Networking, Architecture and Storage Proceedings. 357364.
  24. Ramaswamy, S., L. Rockett, D. Patel, S. Danziger, R. Manohar, C.W. Kelly, J. L. Holt, V. Ekanayake, and D. Elftmann. 2009. A radiation hardened reconfigurable FPGA. IEEE Aerospace Conference Proceedings. 110.
  25. Varshavsky, V. I., ed. 1976. Aperiodicheskie avtomaty [Aperiodic machines].Moscow: Nauka Publ. 424 p.
  26. Varshavsky, V. I., ed. 1986. Avtomatnoe upravlenie asinkhronnymi processami v EVM i diskretnykh sistemakh [Automata control of concurrent processes in computers and discrete systems].Moscow: Nauka Publ. 400 p.
  27. Varshavsky, V., M. Kishinevsky, V. Marakhovsky, et al. 1990. Self-timed control of concurrent processes. Kluver Acad. Publs. 245 p.
  28. Kishinevsky, M., A. Kondratyev, A. Taubin, and V. Varshavsky. 1994. Concurrent hardware:The theory and practice of self-timed design. New York: John Wiley&Sons. 368 p.
  29. Filin, A. V., and Y. A. Stepchenkov. 1999. Kompyutery bez sinkhronizatsii [Clockless computers]. Sistemy i Sredstva Informatiki Systems and Means of Informatics 9:247261.
  30. Stepchenkov, Y.A., Y.G. Diachenko, V. S. Petruhin, and A. V. Filin. 1999. Tsena realizatsii unikalnykh svoystv samosinkhronnykh skhem [The penalty of self-timed circuits unique features implementation]. Sistemy i Sredstva Informatiki Systems and Means of Informatics 9:261 292.
  31. Stepchenkov, Y. A., Y.G. Diachenko, V. S. Petruhin, and A. V. Filin. 1999. Samosinkhronnaya skhemotekhnika alternativa sinkhronnoy [Self-timed circuitry as an alternative of synchronous one]. Available at: http://samosinhron.ru/les/articles/native/sss alternative 1999.DOC (accessed August 18, 2013).
  32. Plehanov, L.P., and Y.A. Stepchenkov. 2006. Eksperimentalnaya proverka nekotorykh svoystv strogo samosinkhronnykh elektronnykh skhem [Experimental test of some features of strictly self-timed electronic circuits]. Sistemy i Sredstva Informatiki Systems andMeans of Informatics 16:476485.
  33. Stepchenkov, Y. A., V. S. Petruhin, and Y.G. Diachenko. 2006. Opyt razrabotki samosinkhronnogo yadra mikrokontrollera na bazovom matrichnom kristalle [The experience in microcontrollers self-timed core design on FPGA]. Nano- i Mikrosistemnaya Tekhnika [Nano- and Microsystem Technology] 5:2936.
  34. Stepchenkov, Y. A., Y.G. Diachenko, and V. S. Petruhin. 2007. Samosinkhronnye posledovatelnostnye skhemy: Opyt razrabotki i rekomendatsii po proektirovaniyu [Selftimed sequential logic: An experience and design guidelines]. Sistemy i Sredstva Informatiki Systems andMeans of Informatics 17:503529.
  35. Sokolov, I.A., Y.A. Stepchenkov, V. S. Petruhin, Y.G. Diachenko, and V.N. Zakharov. 2007. Samosinkhronnaya skhemotekhnika perspektivnyy put realizatsii apparatury [Timed circuitryperspectivemethod of hardware development]. Sistemy Vysokoy Dostupnosti [High Availability Systems] 3(1-2):6172.
  36. Stepchenkov, Y.A., Y.G. Diachenko, V. S. Petruhin, and L. P. Plehanov. 2007. Samosinkhronnye skhemyklyuch k postroeniyu effektivnoy i nadezhnoy apparatury dolgovremennogo deystviya [Self-timed circuits are a key for designing the efficient and reliable hardware with permanent operation]. Sistemy Vysokoy Dostupnosti [High Availability Systems] 3(1-2):7388.
  37. Diachenko, Y.G., Y.A. Stepchenkov, and S.G. Bobkov. 2008. Kvazisamosinkhronnyy vychislitel: Metodologicheskie i algoritmicheskie aspekty [Quasi-self-timed coprocessor: The methodological aspects]. Trudy Mezhdunarodnoy Konferentsii Problemy Razrabotki Perspektivnykh Mikro- i Nanoelektronnykh Sistem [Problems of the Perspective Micro- and Nanoelectronic Systems Development 2008 Proceedings].Moscow. 441446.
  38. Stepchenkov, Y., Y. Diachenko, V. Zakharov, Y. Rogdestvenski,N.Morozov, andD. Stepchenkov. 2009. Quasi-delay-insensitive computing device: Methodological aspects and practical implementation. The Workshop (International) on Power and Timing Modeling, Optimization and Simulation Proceedings. Delft. 276285.
  39. Stepchenkov, Y. A., Y.G. Diachenko, L. P. Plehanov, F. I. Grinfeld, and D. Y. Stepchenkov. 2009. Samosinkhronnyy dvukhtaktnyy D-trigger s vysokim aktivnym urovnem signala upravleniya [Self-timed D flip-flop with high level control signal]. Patent RF No. 2365031. Byulleten Izobreteniy [Bulletin of Inventions] 23. 9 p.
  40. Stepchenkov, Y.A., Y.G. Diachenko, A. V. Rozhdestvenskene, N. V. Morozov, and V. S. Petruhin. 2009. Samosinkhronnyy dvukhtaktnyy D-trigger s nizkim aktivnym urovnem signala upravleniya [Self-timed D flipflopwith lowlevel control signal].PatentRFNo. 2366080. Byulleten Izobreteniy [Bulletin of Inventions] 24. 9 p.
  41. Diachenko, Y.G., Y. A. Stepchenkov, and F. I. Grinfeld. 2009. G-trigger s parafaznymi vkhodami s nulevym speyserom[ G-trigger with null spacer dual-rail inputs]. Patent RF No. 2366081. Byulleten Izobreteniy [Bulletin of Inventions] 24. 7 p.
  42. Stepchenkov, Y. A., Y.G. Diachenko, L. P. Plehanov, A.N. Denisov, and O. P. Filimonenko. 2010. Samosinkhronnyy trigger dlya svyazi s udalennym priemnikom [Self-timed trigger for connection to remote receiver]. Patent RF No. 2382487. Byulleten Izobreteniy [Bulletin of Inve Stepchenkov, Y.A., Y.G. Diachenko, Y.G. Rogdestvenski, andntions] 5. 7 p.
  43. V. S. Petruhin. 2010. Odnotaktnyy samosinkhronnyy RS-trigger s predustanovkoy [Self-timed RS-latch with preset]. Patent RF No. 2390092. Byulleten Izobreteniy [Bulletin of Inventions] 14. 18 p.
  44. Stepchenkov, Y.A., Y.G. Diachenko, V.N. Zakharov, and F. I. Grinfeld. 2010. Dvukhtaktnyy samosinkhronnyy RS-trigger s predustanovkoy i vkhodom upravleniya [Self-timed RS flip-flop with preset and control input]. Patent RF No. 2390093. Byulleten Izobreteniy [Bulletin of Inventions] 14. 20 p.
  45. Stepchenkov, Y. A., Y.G. Diachenko, D. Y. Stepchenkov, and L.P.Plehanov. 2010.Dvukhtaktnyy samosinkhronnyy RS-trigger s predustanovkoy [Self-timed RS flip-flopwith preset]. Patent RF No. 2390923. Byulleten Izobreteniy [Bulletin of Inventions] 15. 20 p.
  46. Stepchenkov, Y.A., Y.G. Diachenko, N. V. Morozov, and A. V. Filin. 2010. Odnotaktnyy samosinkhronnyy RStrigger s predustanovkoy i vkhodom upravleniya [Selftimed RS-latch with preset and control input]. Patent RF No. 2391772. Byulleten Izobreteniy [Bulletin of inventions] 16. 18 p.
  47. Stepchenkov, Y. A., Y.G. Diachenko, and L.P. Plehanov. 2010. Dvoichnyy samosinkhronnyy schetchik s predustanovkoy [Self-timed binary counterwith preset].PatentRF No. 2392735. Byulleten Izobreteniy [Bulletin of Inventions] 17. 11 p.
  48. Sokolov, I. A., Y. A. Stepchenkov, and Y.G. Diachenko. 2010. Samosinkhronnyy trigger s odnofaznym informatsionnym vkhodom [Self-timed trigger with single-phase data input]. PatentRFNo. 2405246.Byulleten Izobreteniy [Bulletin of Inventions] 33. 32 p.
  49. Stepchenkov, Y. A., Y.G. Diachenko, Y. V. Rogdestvenski, N. V. Morozov, and D. Y. Stepchenkov. 2010. Razrabotka vychislitelya, nezavisyashchego ot zaderzhek elementov [The design of a cell delay-insensitive coprocessor]. Sistemy i Sredstva Informatiki Systems and Means of Informatics 20:523.
  50. Rogdestvenski, Y. V., N. V. Morozov, and A. V. Rozhdestvenskene. 2010. ASPEKT: Podsistema sobytijnogo analiza samosinkhronnyh skhem [ASPECT: A suite of self-timed event-driven analysis]. Trudy Mezhdunarodnoj Konferentsii Problemy Razrabotki Perspektivnykh Mikro- i Nanoelektronnykh Sistem [Problems of the Perspective Micro- and Nanoelectronic Systems Development 2010 Proceedings]. Moscow. 2631.
  51. Stepchenkov, Y. A., Y.G. Diachenko, Y. V. Rogdestvenski, N. V. Morozov, and D. Y. Stepchenkov. 2010. Samosinkhronnyy vychislitel dlya vysokonadezhnykh primeneniy [Self-timed coprocessor for high-reliable applications]. Trudy Mezhdunarodnoy Konferentsii Problemy Razrabotki Perspektivnykh Mikro- i Nanoelektronnykh Sistem [Problems of the Perspective Micro- and Nanoelectronic Systems Development 2010 Proceedings]. Moscow. 418423.
  52. Plehanov, L. P. 2010. Razrabotka samosinkhronnykh skhem: Funktsionalnyy podkhod [Self-timed circuits design: A functional approach]. Trudy Mezhdunarodnoy Konferentsii Problemy Razrabotki Perspektivnykh Mikroi Nanoelektronnykh Sistem [Problems of the Perspective Micro- and Nanoelectronic Systems Development 2010 Proceedings].Moscow. 424429.
  53. Sokolov, I.A., Y.A. Stepchenkov, and Y.G. Diachenko. 2011. Samosinkhronnyy RS-trigger s povyshennoy pomekhoustoychivostyu (varianty) [Self-timed RStrigger with the enhanced noise immunity]. Patent RF No. 2427955. Byulleten Izobreteniy [Bulletin of Inventions] 24. 42 p.
  54. Stepchenkov, Y. A., Y.G. Diachenko, L. P. Plehanov, V. S. Petruhin, and D. Y. Stepchenkov. 2011. Kombinirovannyy G-trigger s edinichnym speyserom [Composite G-trigger with the unit spacer]. Patent RF No. 2434318.Byulleten Izobreteniy [Bulletin of Inventions] 32. 10 p.
  55. Stepchenkov, Y. A., Y.G.Diachenko, andG.A.Gorelkin. 2011. Samosinkhronnye skhemy budushchee mikroelektroniki [Self-timed circuits are the future ofmicroelectronics]. Voprosy Radioelektroniki [The Problems of Radio Electronics] 2:153184.
  56. Stepchenkov, Y.A., Y.G.Diachenko, Y. V.Rogdestvenski, and N. V. Morozov. 2011. Analiz na samosinkhronnost nekotorykh tipov tsifrovykh ustroystv [Self-timed analysis of the few types of the digital units]. Sistemy i Sredstva Informatiki Systems andMeans of Informatics 21(1):74 83.
  57. Plehanov, L.P. 2013. Osnovy samosinkhronnykh elektronnykh skhem [The base of the self-timed electronic circuits]. Moscow: Binom Publ. 208 p.
  58. IEEE Computer Society. 2008. IEEE Standard for Floating-Point Arithmetic IEEE Std 754-2008. doi:10.1109/IEEESTD.2008.4610935.
  59. Karthik, S., I. de Souza, J. Rahmeh, and J. Abraham. 1991. Interlock schemes for micropipelines: Application to a self-timed rebound sorter. Conference (International) on Computer Design Proceedings. Cambridge. 393396.
  60. Liebchen, A., and G. Gopalakrishnan. 1992. Dynamic reordering of high latency transactions using a modified micropipeline. Conference (International) on ComputerDesign Proceedings. Cambridge. 336340.
  61. Payne, R. 1995. Self-timed FPGA systems. 5th Workshop (International) on Field Programmable Logic and Applications Proceedings. Berlin/Heidelberg. 2135.
  62. Sobelman, G.E., and K. Fant. 1998. CMOS circuit design of threshold gates with hysteresis. Symposium(International) on Circuits and Systems Proceedings. 6164.
  63. Weng, N., J. S. Yuan, R. F. DeMara, D. Ferguson, and M. Hagedorn. 2000. Glitch power reduction for low power IC design. 9th Annual NASA Symposium on VLSI Design Proceedings. Albuquerque. 7.5.17.5.7.
  64. Smith S.C. 2003. Completion-completeness for NULL convention digital circuits utilizing the bit-wise completion strategy. Conference (International) on VLSI Proceedings. Las Vegas. 143149.
  65. Smith, S.C., R. F. DeMara, J. S. Yuan, D. Ferguson, and D. Lamb. 2004. Optimization of NULL convention self-timed circuits. Integration, VLSI J. 37(3):135165.
  66. Fant, K.M. 2005. Logically determined design: Clockless system design with NULL convention logic. New York: John Wiley&Sons. 292 p.
  67. Smith, S.C. 2005. Development of a large word-width high-speed asynchronous multiply and accumulate unit. Integration, VLSI J. 39(1):1228.
  68. Smith, S.C., and J. Di. 2009. Designing asynchronous circuits using NULL Convention Logic (NCL). Synthesis Lectures Digital Circuits Syst. 4(1):6173.
  69. Stepchenkov, Y. A., A.N. Denisov, Y.G. Diachenko, F. I. Grinfeld, O. P. Filimonenko, and Y. P. Fomin. 2004. Biblioteka elementov BMK dlya kriticheskikh oblastey primeneniya [The gate array cell library for critical applications]. Sistemy i Sredstva Informatiki Systems and Means of Informatics 14:318361.
  70. Stepchenkov, Y. A., A.N. Denisov, Y.G. Diachenko, et al. 2006. Biblioteka samosinkhronnykh elementov dlya tekhnologii BMK [Self-timed cell library for gate array technology]. TrudyMezhdunarodnoy Konferentsii Problemy Razrabotki Perspektivnykh Mikro- i Nanoelektronnykh Sistem [Problems of the Perspective Micro- and Nanoelectronic Systems Development 2006 Proceedings]. Moscow. 259264.
  71. Morozov, N. V., Y. A. Stepchenkov, Y.G. Diachenko, and D. Y. Stepchenkov. 2010. Funktsionalnaya poluzakaznaya biblioteka samosinkhronnykh elementovML03 [The functional semicustomlibrary of the self-timed cells].Certificate on official registration of the computer program No. 2010611908. (In Russian, unpublished.)
  72. Sokolov, I.A., Y.A. Stepchenkov, and Y.G. Dyachenko. 2010. Self-timed RS-trigger with the enhanced noise immunity. U.S. Patent No. 8232825. 31 p.
  73. Artisan Components. Chartered Semiconductor 0.18 m IB Process 1.8-Volt SAGE-XTM Standard Cell Library Databook. 2003. Release 1.0. 313 p.
  74. Diachenko, Y.G.,N. V.Morozov, andD. Y. Stepchenkov. 2010.Kharakterizatsiya psevdodinamicheskikh elementov [The characterization of the pseudodynamic cells]. Trudy Mezhdunarodnoy Konferentsii "Problemy Razrabotki Perspektivnykh Mikro - i Nanoelektronnykh sistem" ["Problems of the Perspective Micro- and Nanoelectronic Systems Development - 2010" Proceedings].Moscow. 32-35.
  75. Gate and throughput optimizations for null convention self timed digital circuits. Available at: http://citeseerx. ist.psu.edu/viewdoc/download?doi=10.1.1.118.7825& rep=rep1&type=pdf (accessed August 18, 2013). C Edwards, D., A. Bardsley, L. Jani, L. Plana, and W. Toms. 2006. Balsa: A tutorial guide. Manchester. 157 p. Available at: ftp://ftp.cs.man.ac.uk/pub/apt/ bal- sa/3.5/BalsaManual3.5.pdf (accessed August 18, 2013). C Reese, R. B. 2011. UNCLE (Unified NCL Environment). TechnicalReportMSU-ECE-10-001.Available at: http://www.ece.msstate.edu/~reese/uncle/UNCLE.pdf (accessed August 18, 2013).
  76. Edwards, D., A. Bardsley, L. Jani, L. Plana, and W. Toms. 2006. Balsa: A tutorial guide. Manchester. 157 p. Available at: ftp://ftp.cs.man.ac.uk/pub/apt/ bal- sa/3.5/BalsaManual3.5.pdf (accessed August 18, 2013).
  77. Reese, R. B. 2011. UNCLE (Unified NCL Environment). TechnicalReportMSU-ECE-10-001.Available at: http://www.ece.msstate.edu/~reese/uncle/UNCLE.pdf (accessed August 18, 2013).
  78. Rogdestvenski, Y. V., N. V. Morozov, Y.A. Stepchenkov, and A. V. Rozhdestvenskene. 2006. Universal'naya podsistema analiza samosinkhronnykh skhem [The universal suite for self-timed circuit analysis]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 16:463-475.

INFORMATION MODEL OF FULL-SCALE OBJECT AND ITS ATTITUDE CHANGES REPRESENTATION TECHNOLOGY .

  • O.P. Arkhipov   Orel Branch of Institute of Informatics Problems, Russian Academy of Sciences, 137 Moskovskoe Highway, Orel 302025, Russian Federation
  • Y.A. Maniakov   Orel Branch of Institute of Informatics Problems, Russian Academy of Sciences, 137 Moskovskoe Highway, Orel 302025, Russian Federation
  • D.O. Sirotinin   Orel Branch of Institute of Informatics Problems, Russian Academy of Sciences, 137 Moskovskoe Highway, Orel 302025, Russian Federation

literature

  1. Gruzman, I.S., V. S.Kirichuk, V. P. Kosyh, G. I. Peretjagin, and A.A. Spektor. 2000. Tsifrovaya obrabotka izobrazheniy v informatsionnykh sistemakh [Digital image processing in information systems]. Novosibirsk: Novosibirsk State Technical University. 168 p.
  2. Maniakov, Y. A. 2010. Tekhnologiya registratsii povedeniya obektov v trekhmernom prostranstve [Three-dimensional spaceobject behavior tracking technology]. Informatsionnye Tekhnologii v Nauke, Obrazovanii i Proizvodstve (ITNOP): Materialy Konferentsii [Information Technologies in Science, Education and Production: Science and Technology Conference (International) Proceedings]. Orel. 3:182186.

DYNAMIC CONTEXTS OF RELATIONAL-TYPE DATABASE .

  • S. V. Zykin   Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, 4 Acad. Koptyug Av., Novosibirsk 630090, Russian Federation

literature

  1. Vassiliadis, P., and T. Sellis. 1999. A survey of logicalmodels for OLAP databases. SIGMOD Rec. 28(4):6469. doi: 10.1145/344816.344869.
  2. Pedersen, T.B., C. S. Jensen, and C. E. Dyreson. 2001. A foundation for capturing and querying complex multidimensional data. Inform. Syst. 26(5):383423. doi: 10.1016/S0306-4379(01)00023-0.
  3. Lechtenborger, J., and G. Vossen. 2003. Multidimensional normal forms for data warehouse design. Inform. Syst. 28(5):415434. doi: 10.1016/S0306-4379(02)00024-8.
  4. Li, H.-G., H. Yu, D. Agrawal, and A. E. Abbadi. 2007. Progressive ranking of range aggregates. Data Knowl. Eng. 63(1):425. doi: 10.1016/j.datak.2006.10.008.
  5. Lehner, W., J. Albrecht, and H. Wedekind. 1998. Normal forms for multidimensional databases. 10th Conference (International) on Scientific and Statistical Database Management Proceedings.Capri: IEEE Computer Society. 6372.
  6. Giorgini, P., S. Rizzi, and M. Garzetti. 2005. Goaloriented requirement analysis for data warehouse design. 8th ACM Workshop (International) on Data Warehousing and OLAP Proceedings. Bremen: ACM. 4756.
  7. Mazon, J.-N., J. Trujillo, and J. Lechtenborger. 2007. Reconciling requirement-driven data warehouses with data sources via multidimensional normal forms. Data Knowl. Eng. 63(3):725751. doi: 10.1016/j.datak.2007.04.004.
  8. Kukin, A. V., and S. V. Zykin. 2002. Postroeniematematicheskoymodeli uchebnogo protsessa dlya dolgosrochnogo planirovaniya [Creation of the mathematical model of organization of the study process for long-term planning]. Matematicheskie struktury i modelirovanie [Mathematical Structures and Modeling] 10:7786.
  9. Redreev, P.G. 2009. Postroenie ierarkhiy v mnogomernykh modelyakh dannykh [Construction of hierarchies in multidimensional data models]. Izvestija Saratovskogo Universiteta. Seriya Matematika. Mekhanika. Informatika [News of Saratov University. Mathematics. Mechanics. Computer Science ser.] 9(4-1):8487.
  10. Ullman, J. 1980. Principles of database systems. Computer Science Press. 379 p.
  11. Maier, D. 1983. The theory of relational databases. Computer Science Press. 637 p.
  12. Casanova, M., R. Fagin, and C. Papadimitriou. 1984. Inclusion dependencies and their interaction with functional dependencies. J. Comput. Syst. Sci. 28(1):2959. doi: 10.1145/588111.588141.
  13. Missaoui, R., and R. Godin. 1990. The implication problem for inclusion dependencies: A graph approach. SIGMOD Record 19(1):3640. doi: 10.1145/382274. 382402.
  14. Levene, M., and M.W. Vincent. 2000. Justification for inclusion dependency normal form. IEEE Trans. Knowl. Data Eng. 12(2):281291. doi: 10.1109/69.842267.
  15. Miller, L., and S. Nilakanta. 1998. Data warehouse modeler: A CASE tool for warehouse design. 31st Annual Hawaii Conference (International) on System Sciences.Kohala Coast: IEEE Computer Society. 4248.
  16. Zykin, S. V., and A.N. Poluyanov. 2008. Formirovanie predstavleniy dannykh s kontekstnymi ogranicheniyami [Formation of the data representations with contextual restrictions]. Omskiy Nauchnyy Vestnik [Omsk Scientific Bulletin] 1(64):141144.
  17. Zykin, S. V. 2001. Postroenie otobrazheniya relyatsionnoy bazy dannykh v spiskovuyu model dannykh [Construction ofmapping of a relational database at the listmodel of data].Upravlyayushchie Sistemy iMashiny [Control Systems and Machines] 3:4263.
  18. Zykin, S. V. 1993. Otsenka moshchnosti spiska dlya otobrazheniya tipa chastichnoe soedinenie [The list size estimation for mapping of partial join type]. Kibernetika i Sistemnyy Analiz [Cybernetics and Systems Analysis] 6:142152.
  19. Zykin, S. V. 2010. Formirovanie giperkubicheskogo predstavleniya dannykh so spisochnymi komponentami [Formation of the hypercubic data representation with list components]. Informatsionnye tekhnologii i vychislitelnye sistemy [Information Technologies and Computing Systems] 4:3846.
  20. Redreev, P.G. 2009. Postroenie tablichnykh prilozheniy so spisochnymi komponentami [Construction of applications with the list components]. Informatsionnye Tekhnologii [Information Technologies] 5:712.

INTEGRATED MODELING OF LANGUAGE STRUCTURES FOR LINGUISTIC PROCESSORS OF KNOWLEDGE MANAGEMENT AND MACHINE TRANSLATION SYSTEMS .

  • E.B. Kozerenko   Institute of Informatics Problems, Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation

literature

  1. Kozerenko, E.B. 2003. Cognitive approach to language structure segmentation for machine translation algorithms. Conference (International) on Machine Learning, Models, Technologies and Applications Proceedings. Las Vegas, USA: CSREA Press. 49 - 55.
  2. Kozerenko, E.B. 2013. Strategii vyravnivaniya parallel'nykh tekstov: Semanticheskie aspekty [Parallel texts alignment strategies: The semantic aspects]. Informatika i ee primeneniya Inform. Appl.] 7(1):82 - 89.
  3. Shaumyan, S. 2003. Categorial grammar and semiotic universal grammar. IC-AI'03: Conference (International) on Artificial Intelligence Proceedings. Las Vegas, USA: CSREA Press. 623 - 629.
  4. Kuznetsov, I. P., E.B. Kozerenko, and A.G. Matskevich. 2011. Intelligent extraction of knowledge structures from natural language texts. 2011 IEEE/WIC/ACM Joint Conferences (International) on Web Intelligence and Intelligent Agent Technology Proceedings. Washington, DC, USA: IEEE Computer Society. 03:269 - 272. doi:10.1109/WIIAT. 2011.235
  5. Dempster, A. P., N.M. Laird, and D.B. Rubin. 1977. Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. Ser. B. 39(1):1 - 22.
  6. Lund, K., and C. Burgess. 1996. Producing highdimensional semantic spaces from lexical co-occurrence. Behav. Res. Meth. Instr. Comp. 28(2):203 - 208.
  7. Curran, J.R. 2004. From distributional to semantic similarity. PhD Thesis. Edinburgh: University of Edinburgh. 177 p. Available at: http://sydney.edu.au/ engineering/it/james/pubs/pdf/phdthesis.pdf.
  8. McCarthy, D., R. Koeling, J. Weeds, and J. Carroll. 2004. Finding predominant senses in untagged text. 42nd Annual Meeting of the Association for Computational Linguistics Proceedings. Barcelona, Spain: ACL. 280 - 287.
  9. Clark, S., and S. Pulman. 2007. Combining symbolic and distributional models of meaning. AAAI Spring Symposium on Quantum Interaction Proceedings. Palo Alto, CA, USA: AAAI Press. 52 - 55. Available at: http://www.cl.cam.ac.uk/~sc609/pubs/aaai07.pdf.
  10. Morozova, Yu. 2013. Method for extracting translation correspondences from a parallel corpus. ICAI'13, WORLDCOMP'13 Proceedings. Las Vegas, USA: CSREA Press. II:65 - 69.
  11. Danielson, D.A. 2003. Vectors and tensors in engineering and physics. 2nd ed. Boulder, CO: Westview (Perseus). 282 p.
  12. Montague,R. 1970. Universal grammar. Theoria. 36:373 - 398. (Reprinted: Thomason, R.H., ed. 1974. Formal philosophy: Selected papers of Richard Montague. New Haven - London: Yale University Press. 222 - 246.)
  13. Partee, B. 2004. Compositionality. Compositionality in formal semantics: Selected papers by Barbara H. Partee. Malden, MA: Blackwell. 153 - 181. doi: 10.1002/ 9780470751305.ch7.
  14. Pang, B., K. Knight, and D. Marcu. 2003. Syntax-based alignment ofmultiple translations: Extracting paraphrases and generating new sentences. NAACL'03: 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology Proceedings. Stroudsburg, PA, USA: ACL. 1:102 - 109.
  15. Bannard, C., and C. Callison-Burch. 2005. Paraphrasing with bilingual parallel corpora. 43rd AnnualMeeting of the ACL Proceedings. Stroudsburg, PA, USA: ACL. 597 - 604.
  16. Callison-Burch, C. 2008. Syntactic constraints on paraphrases extracted from parallel corpora. EMNLP-2008 Proceedings. Stroudsburg, PA, USA: ACL. 196 - 205.
  17. Ganitkevitch, Ju., C. Callison-Burch, C. Napoles, and B. Van Durme. 2011. Learning sentential paraphrases from bilingual parallel corpora for text-to-text generation. 2011 Conference on Empirical Methods in Natural Language Processing Proceedings. Stroudsburg, PA, USA: ACL. 1168 - 1179.
  18. Bogatyrev, K. 2006. In defense of symbolic NLP. MLMTA' 06: Conference (International) on Machine Learning, Models, Technologies and Applications Proceedings. Las Vegas, USA: CSREA Press. 63 - 68.
  19. Malkov, K. V., and D. V. Tunitsky. 2006. On extreme principles of machine learning in anomaly and vulnerability assessment. MLMTA'06: Conference (International) on Machine Learning, Models, Technologies and Applications Proceedings. Las Vegas, USA: CSREA Press. 24 - 29.
  20. Ajdukiewicz,K. 1935. Die Syntaktische Konnexitat. Stud. Philos. 1(1):1 - 27.
  21. Bar-Hillel, Y. 1953. A quasi-arithmetical notation for syntactic description. Language 29(1):47 - 58. Available at: http://ling.umd.edu//alxndrw/CGReadings/bar- hillel-53.pdf.
  22. Lambek, J. 1958. The mathematics of sentence structure. Am. Math. Mon. 65(3):154 - 170.
  23. Steedman, M. 1996. Surface structure and interpretation. Linguistic inquirymonographs.Massachusetts:MIT Press. 140 p.
  24. Lambek, J. 2008. From word to sentence: A computational algebraic approach to grammar. Monza, Italy: Polimetrica Publ. 154 p.
  25. Moortgat, M. 2009. Symmetric categorial grammar. J. Philos. Logic 38(6):681 - 710.
  26. Gazdar, G. 1996. Paradigm merger in natural language processing. Computing tomorrow: Future research directions in computer science. Eds. R. Milner and I. Wand. Cambridge, U.K.: Cambridge University Press. 88 - 109.
  27. Clark, S., and J.R. Curran. 2007. Wide-coverage efficient statistical parsing with CCG and log-linear models. Comput. Linguist. 33(4):493552.
  28. Baroni, M., and R. Zamparelli. 2010. Nouns are vectors, adjectives arematrices:Representing adjectivenounconstructions in semantic space. 2010 Conference on Empirical Methods in Natural Language Processing Proceedings. Stroudsburg, PA, USA: ACL. 11831193.
  29. Grefenstette, E., and M. Sadrzadeh. 2011. Experimental support for a categorical compositional distributional model of meaning. Conference on Empirical Methods in Natural Language Processing Proceedings. Stroudsburg, PA, USA: ACL. 13941404.
  30. Hermann, K.M., and P. Blunsom. 2013. The role of syntax in vector space models of compositional semantics. 51st Annual Meeting of the Association for Computational Linguistics Proceedings. Stroudsburg, PA, USA: ACL. 894904.
  31. Church, K., and P. Hanks. 1996.Word association norms, mutual information, and lexicography. Comput. Linguist. 16(1):2229.

DEVELOPMENT OF LEARNING PROCESS CONTROL MODEL WITH COGNITIVE TECHNOLOGIES .

  • V.A. Marenko   Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, 4 Acad. Koptyug Av., Novosibirsk 630090, Russian Federation
  • O.N. Luchko  Omsk State Institute of Service, 13 Petrov Str., Omsk 644099, Russian Federation
  • O.S. Lupentsov  Omsk State Institute of Service, 13 Petrov Str., Omsk 644099, Russian Federation

literature

  1. Maksimov, V. I., and N. V. Ter-Egiazarova. 2005. IV Mezhdunarodnaya konferentsiya Kognitivnyy analiz i upravlenie razvitiemsituatsiy CASC2004 [IV InternationalConference Cognitive Analysis andManagement of Development of Situations CASC2004]. Problemy Upravleniya [Management Problems] 1:8387.
  2. Novikov, D.A. 2009. Teoriya upravleniya obrazovatelnymi protsessami [Theory of management of educational systems]. Moscow: National Education. 416 p.
  3. Ivanova, S. V. 2007. Obrazovanie v organizatsionnogumanisticheskomizmerenii [Education in organizational and humanistic measurement]. Moscow: RUDN. 236 p.
  4. Maksimov, V. I., E.K. Kornoushenko, and S. V. Kachayev. Kognitivnye tekhnologii dlya podderzhki prinyatiya upravlencheskikh resheniy [Cognitive technologies for support of adoption of administrative decisions]. Available at: http://emag.iis.ru/arc/infosoc/emag.nsf/bpa/ 092aa276c601a997c32568c0003ab839 (accessed December 26, 2013).
  5. Gorelova, G. V., and S.A. Radchenko. 2003. Kognitivnye tekhnologii podderzhki upravlencheskikh resheniy v sotsialno-ekonomicheskikh sistemakh [Cognitive technologies of support of administrative decisions in social and economic systems]. Izvestiya Yuzhnogo Federalnogo Universiteta. TekhnicheskieNauki [News of the Southern Federal University. Technical Sciences]. 34(5):95-104.
  6. Lupentsov, O. S., O.N. Luchko, and V.A. Marenko. 2012. Primenenie semanticheskogo differentsiala dlya realizatsii kompetentnostnogo podkhoda v vuze [Application of semantic differential for realization of competence-based approach in higher education institution]. Informatizatsiya Obrazovaniya i Nauki [Science and Education Informatization] 3(15):128134.
  7. Lefevre, V.A. 1982. The formula of man: An outline of fundamental psychology. Irvine: School of Social Sciences, University of California. 290 p.

GENERAL BOUNDS FOR NONSTATIONARY CONTINUOUS-TIME MARKOV CHAINS .

  • A. I. Zeifman   Vologda State University, 15 Lenin Str., Vologda 160000, Russian Federation Institute of Informatics Problems, Russian Academy of Sciences, 44-2 Vavilov Str.,Moscow 119333, Russian Federation
  • V.Yu. Korolev  Institute of Informatics Problems, Russian Academy of Sciences, 44-2 Vavilov Str.,Moscow 119333, Russian Federation. Department of Mathematical Statistics, Faculty of Computational Mathematics and Cybernetics, M.V. Lomonosov Moscow State University, 1-52 Leninskiye Gory, GSP-1,Moscow 119991, Russian Federation
  • A.V. Korotysheva   Vologda State University, 15 Lenin Str., Vologda 160000, Russian Federation
  • S. Ya. Shorgin   Institute of Informatics Problems, Russian Academy of Sciences, 44-2 Vavilov Str.,Moscow 119333, Russian Federation

literature

  1. Stoyan, D. 1977. Qualitative Eigenschaften und Absch.atzungen stochastischer Modelle. Berlin: Akademie-Verlag. 198 p.
  2. Zolotarev, V.M. 1978. Quantitative estimates for the continuity property of queueing systems of typeG/G/..Theory Probab. Appl. 22(4):679691. doi: 10.1137/1122083.
  3. Kalashnikov, V. V. 1978. Kachestvennyy analiz slozhnykh sistem metodom probnykh funktsiy [Qualitative analysis of complex systems behavior by test functions method]. Moscow: Nauka. 248 p.
  4. Kalashnikov, V. V., and V.M. Zolotarev, eds. 1983. Stability problems for stochastic models. Lecture notes in mathematics. N.Y.: Springer Verlag. Vol. 983. 295 p.
  5. Kalashnikov, V. V., V. Penkov, and V.M. Zolotarev, eds. 1987. Stability problems for stochastic models. Lecture notes in mathematics. N.Y.: Springer Verlag. Vol. 1233. 224 p.
  6. Kalashnikov, V. V., and V.M. Zolotarev, eds. 1989. Stability problems for stochastic models. Lecture notes in mathematics. N.Y.: Springer Verlag. Vol. 1412. 380 p.
  7. Zolotarev, V.M., V.M. Kruglov, and V. Yu. Korolev, eds. 1994. Stability problems for stochastic models. 15th Perm Seminar Proceedings. Perm, Russia. 312 p.
  8. Kalashnikov, V. V., and V.M. Zolotarev, eds. 1993. Stability problems for stochastic models. Lecture notes in mathematics. N.Y.: Springer Verlag. Vol. 1546. 229 p.
  9. Gnedenko, B. V., and V. Yu. Korolev. 1996. Random summation: Limit theorems and applications. Boca Raton: CRC Press. 267 p.
  10. Kartashov, N. V. 1981. Silno ustoychivye tsepi Markova [Strong stable Markov chains]. Problemy ustoychivosti stokhasticheskikh modeley: Trudy seminara [Stability Problems for Stochastic Models Seminar Proceedings]. Moscow: VNIISI. 5459.
  11. Kartashov, N. V. 1986. Inequalities in theorems of ergodicity and stability for Markov chains with common phase space. I. Theory Probab. Appl. 30(2):247259. doi: 10.1137/1122083.
  12. Zeifman, A. I. 1985. Stability for contionuous-time nonhomogeneousMarkov chains. Lecture notes in mathematics. N.Y.: Springer Verlag. 1155:401414.
  13. Aldous, D. J., and J. Fill. Reversible Markov chains and random walks on graphs. Ch. 8. Available at: http://www.stat.berkeley.edu/users/aldous/RWG/ book.html (accessed December 25, 2013).
  14. Diaconis, P., and D. Stroock. 1991. Geometric bounds for eigenvalues of Markov chains. Ann. Appl. Probab. 1:3661. doi: 10.1214/aoap/1177005980.
  15. Mitrophanov, A.Yu. 2003. Stability and exponential convergence of continuous-time Markov chains. J. Appl. Probab. 40:970979. doi: 10.1239/jap/1067436094.
  16. Mitrophanov, A. Yu. 2004. The spectral gap and perturbation bounds for reversible continuous-time Markov chains. J. Appl. Probab. 41:12191222. doi: 10.1239/ jap/1101840568.
  17. Mitrophanov, A. Yu. 2005. Ergodicity coefficient and perturbation bounds for continuous-time Markov chains. Math. Inequal. Appl. 8:159168. doi: 10.7153/mia-08-15.
  18. Mitrophanov, A. Yu. 2006. Stability estimates for finite homogeneous continuous-time Markov chains. Theory Probab. Appl. 50(2):319326. doi: 10.1137/ S0040585X97981718.
  19. Kartashov, N. V. 1996. Strong stable Markov chains. Utrecht, Kiev: VSP, TBiMC. 138 p.
  20. Altman, E., K. Avrachenkov, and R. Nunez-Queija. 2004. Perturbation analysis for denumerableMarkov chainswith application to queueing models. Adv. Appl. Probab. 36: 839853. doi: 10.1239/aap/1093962237.
  21. Mouhoubi, Z., and D. Aissani. 2010. New perturbation bounds for denumerable Markov chains. Linear Algebra and Its Applications. 432:16271649. doi: 10.1016/j.laa.2009.11.020.
  22. Ferre, D., L. Herve, and J. Ledoux. 2013. Regular perturbation of V-geometrically ergodicMarkov chains. J. Appl. Probab. 50:184194. doi: 10.1239/jap/1363784432.
  23. Meyn, S. P., and R. L. Tweedie. 1994. Computable bounds for geometric convergence rates of Markov chains. Ann. Appl. Probab. 4: 9811012. doi:10.1214/ aoap/1177004900.
  24. Yuanyuan, L. 2012. Perturbation bounds for the stationary distributions ofMarkov chains. SIAMJ.Matrix Anal. Appl. 33:10571074. doi: 10.1137/110838753.
  25. Gnedenko, D.B. 1972. On a generalization of Erlang formulae. Zastosow. Mat. 12:239242.
  26. Gnedenko, B., and A. Soloviev. 1973. On the conditions of the existence of final probabilities for aMarkov process. Math. Oper. Stat. 4:379390.
  27. Massey, W.A., and W. Whitt. 1998. Uniform acceleration expansions for Markov chains with time-varying rates. Ann. Appl. Probab. 8:11301155. doi: 10.1214/ aoap/1028903375.
  28. Gnedenko,B. V., and I. P. Makarov. 1971. Svoystva resheniy zadachi s poteryami v sluchae periodicheskikh intensivnostey [Properties of the solution to the loss problem for periodic rates]. Differentsialnye Uravneniya [Differential Equations] 7:16961698.
  29. Zeifman, A. I. 1991. Qualitative properties of inhomogeneous birth and death processes. J. Math. Sci. 57:3217 3224. doi: 10.1007/BF01099019.
  30. Zeifman, A. I. 1989. Properties of a system with losses in the case of variable rates. Autom. Rem. Contr. 50:8287.
  31. Zeifman, A. I. 1991. Some estimates of the rate of convergence for birth and death processes. J. Appl. Probab. 28:268277.
  32. Zeifman, A. I. 1995. Upper and lower bounds on the rate of convergence for nonhomogeneous birth and death processes. Stoch. Proc. Appl. 59:157173. doi: 10.1016/0304- 4149(95)00028-6.
  33. Granovsky, B. L., and A. I. Zeifman. 2004. Nonstationary queues: Estimation of the rate of convergence. Queueing Syst. 46:363388. doi: 10.1023/B:QUES. 0000027991.19758.b4.
  34. Zeifman, A. I., V. E. Bening, and I.A. Sokolov. 2008. Markovskie tsepi i modeli s nepreryvnym vremenem [Continuous-time Markov chains and models]. Moscow: Elex-KM. 168 p.
  35. Van Doorn, E.A., A. I. Zeifman, and T.L. Panfilova. 2010. Bounds and asymptotics for the rate of convergence of birthdeath processes. Theory Probab. Appl. 54:97113. doi: 10.1137/S0040585X97984097.
  36. Zeifman, A. I., and D. Isaacson. 1994. On strong ergodicity for nonhomogeneous continuous-time Markov chains. Stoch. Proc. Appl. 50:263273. doi: 10.1016/0304- 4149(94)90123-6.
  37. Zeifman, A. I. 1998. Stability of birth and death processes. J. Math. Sci. 91:30233031. doi: 10.1007/BF02432876.
  38. Zeifman, A. I., and A. Korotysheva. 2012. Perturbation bounds forMt/Mt/N queue with catastrophes. Stochastic models 28:4962. doi: 10.1080/15326349.2011.614900.
  39. Zeifman, A., V. Korolev, A. Korotysheva, Y. Satin, and V. Bening. 2014 (in press). Perturbation bounds and truncations for a class ofMarkovian queues. Queueing Syst.
  40. Zeifman, A. I., S. Leorato, E. Orsingher, Y. Satin, and G. Shilova. 2006. Some universal limits for nonhomogeneous birth and death processes. Queueing Syst. 52:139 151. doi: 10.1007/s11134-006-4353-9.
  41. Daleckij, Ju, L. and M.G. Krein. 1974. Stability of solutions of differential equations in Banach space. Am.Math. Soc. Transl. 43. 386 p.
  42. Zeifman, A. I., Ya. Satin, and T. Panfilova. 2013. Limiting characteristics for finite birthdeathcatastrophe processes. Math. Biosci. 245:96102. doi: 10.1016/ j.mbs.2013.02.009.
  43. Thorne, J. L., H. Kishino, and J. Felsenstein. 1991. An evolutionary model for maximum-likelihood alignment of DNA sequences. J. Mol. Evol. 33:114124. doi: 10.1007/ BF02193625.
  44. Mitrophanov, A. Yu., and M. Borodovsky. 2007. Convergence rate estimation for the TKF91 model of biological sequence length evolution. Math. Biosci. 209:470485. doi: 10.1016/j.mbs.2007.02.011.
  45. Satin, Ya.A., A. I. Zeifman, A. V. Korotysheva, and S. Ya. Shorgin. 2011. Ob odnom klasse markovskikh sistem obsluzhivaniya [On a class of Markovian queues]. Informatika i ee Primeneniya Inform. Appl. 5(4):1824.
  46. Satin, Ya.A., A. I. Zeifman, A. V. Korotysheva. 2013. On the rate of convergence and truncations for a class of Markovian queueing systems. Theory Probab. Appl. 57:529539. doi: 10.1137/S0040585X97986151.
  47. Zeifman, A. I., A. Korotysheva, Ya. Satin, G. Shilova, and T. Panfilova. 2013. On a queueing model with group services. Lecture notes in communications in computer and information science. 356:198205. doi: 10.1007/978-3- 642-35980-4 22.
  48. Zeifman, A. I., Y. Satin, G. Shilova, V. Korolev, V. Bening, and S. Shorgin. 2013. OnMt/Mt/S type queue with group services. ECMS 2013: 27th Conference (European) on Modeling and Simulation Proceedings. Alesund, Norway. 604609. doi: 10.7148/2013-0604.
  49. Zeifman, A. I., A. V. Korotysheva, Ya.A. Satin, and S. Ya. Shorgin. 2012. Otsenki v nul-ergodicheskom sluchae dlya nekotorykh sistem obsluzhivaniya [Bounds in null ergodic case for some queueing systems]. Informatika i ee Primeneniya Inform. Appl. 6(4):2733.

ON APPROXIMATION AND CONVERGENCE OF ONE-DIMENSIONAL PARABOLIC INTEGRODIFFERENTIAL POLYNOMIALS AND SPLINES .

  • V.I. Kireev   Moscow State Mining University, 6 Leninskiy Prosp.,Moscow 119991, Russian Federation
  • M.M. Gershkovich  Institute of Informatics Problems, Russian Academy of Sciences, 44-2 Vavilov Str.,Moscow 119333, Russian Federation
  • T.K. Biryukova  Institute of Informatics Problems, Russian Academy of Sciences, 44-2 Vavilov Str.,Moscow 119333, Russian Federation

literature

  1. Gershkovich, M.M., T.K. Biryukova, and V. I. Sinitsyn. 2012. Problemy identifikatsii i raspoznavaniya informatsionnykh obektov pri sozdanii raspredelennykh informatsionno-telekommunikatsionnykh sistem [Problems of identification and recognition of informations objects in development of information-telecommunication systems]. Optiko-elektronnye pribory i ustroystva v sistemakh raspoznavaniya obrazov, obrabotki izobrazheniy i simvolnoy informatsii. Raspoznavanie 2012: Sbornik Materialov X Mezhdunarodnoy Nauchno-Tekhnicheskoy Konferentsii. Kursk: Izd-vo Jugo-Zap.Gos. Un-ta. 2426.
  2. Zavjalov, Ju. S. , B. I. Kvasov, and V. L. Miroshnichenko. 1980. Metody splayn-funktsiy [Methods of spline functions]. Novosibirsk: Nauka, 1980. 350 p.
  3. Zavjalov, Ju. S., V.A. Leus, and V.A. Skorospelov. 1985. Splayny v inzhenernoy geometrii [Splines in engineering geometry]. Moscow:Mashinostroenie. 224 p.
  4. Kvasov, B. I. 2006. Metody izogeometricheskoy approksimatsii splaynami [Methods of izogeometric spline approximation]. Moscow: Fizmatlit. 360 p.
  5. Stechkin, S.B., and Ju.N. Subbotin. 1976. Splayny v vychislitelnoy matematike [Splines in computing mathematics]. Moscow: Nauka. 248 p.
  6. Kireev, V. I., and T.K. Biryukova. 1955. Integrodifferentsialnye konservativnye splayny i ikh primenenie v interpolyatsii, chislennom differentsirovanii i integrirovanii [Integrodifferencial splines and their applications in interpolation, numerical differentiation and quadrature]. Vychislitelnye Tekhnologii 4(16):233244.
  7. Biryukova, T.K., M.M. Gershkovich, and V. I. Kireev. 2012. Integro-differentsialnye mnogochleny i splayny proizvolnoy chetnoy stepeni v zadachakh analiza parametrov funktsionirovaniya raspredelennykh informatsionnykh system [Integrodifferential polynomials and splines of arbitrary even degree in analysis of parameters of functioning of spread information systems]. Sistemy Kompyuternoy matematiki i ikh prilozheniya (SKMP-2012): Materialy XIII Mezhdunarodnoy Nauchnoy Konferentsii, posvyashchennoy 75-letiyu Professora E. I. Zverovicha. Smolensk: Izd-vo SmolGU. 13:6772.
  8. Kireev, V. I., and A. V. Panteleev. 2008. Chislennye metody v primerakh i zadachakh [Numerical methods in examples and problems]. Moscow: Vysshaya shkola. 480 p.
  9. Volkov, E.A. 1982. Chislennyemetody [Computational methods]. Moscow: Nauka. 254 p.

STABILITY ANALYSIS OF AN OPTICAL SYSTEM WITH RANDOM DELAY LINES LENGTHS .

  • E. Morozov   Institute of Applied Mathematical Research, Karelian Research Center, Russian Academy of Sciences, 11 Pushkinskaya Str., Petrozavodsk 185910, Russian Federation
  • L. Potakhina  Petrozavodsk State University, 33 Lenin Str., Petrozavodsk 185910, Russian Federation
  • K. De Turck   Ghent University, TELIN Department, 41 Sint-Pietersnieuwstraat,Gent B-9000, Belgium

literature

  1. Callegati, F. 2000. Optical buffers for variable length packets. IEEE Comm. Lett. 4(9):292294.
  2. Rogiest, W., E. Morozov, D. Fiems, K. Laevens, and H. Bruneel. 2010. Stability of single-wavelength optical buffers. Eur. Trans. Telecomm. 21(3):202212.
  3. Morozov, E., W. Rogiest, K.De Turck, and D. Fiems. 2012. Stability of multiwavelength optical buffers with delayoriented scheduling. Trans. Emerging Telecomm. Technol. 23(3):217226.
  4. Asmussen, S. 2003. Applied probability and queues. 2nd ed. NY: Springer-Verlag. 440 p.
  5. Morozov, E., and R. Delgado. 2009. Stability analysis of regenerative queueing systems. Automation Remote Control 70(12):19771991.
  6. Feller, W. 1971. An introduction to probability theory and its applications. Vol. II. New York: John Wiley & Sons. 704 p.
  7. Chang, J. 1994. Inequalities for the overshoot. Ann. Appl. Probab. 4(4):12231233.
  8. Billingsley, P. 1968. Convergence of probability measures. Wiley. 296 p.
  9. R Foundation for Statistical Computing. Vienna, Austria. http://www.R-project.org/.