

Software robustness analysis by a probabilistic

technique

Technical report

Sergey Frenkel1, Victor Zakharov1, Boris Basok2

1Federal Reserach Center "Computer Science and Control " Russian Academy of Sc.,

Moscow, Russia, fsergei51@gmail.com, VZakharov@ipiran.ru

2
Moscow Technological University “MIREA”

Abstract. The report shows the possibility to use a two-dimensional Markov

model defined on direct product of state spaces of two finite state machines (FSM),

one of which is a program finite automaton model that is running under normal

conditions, and second is the same FSM in which at some point in time (Depending

on the considered temporal discreteness) there was a failure (e.g., within the time of a

single operation, or a program's block execution) for estimation of software

robustness to transient hardware failures or rather short-term external attacks. This

model previously was proposed for probabilistic verification of hardware systems.

The robustness of the program is estimated by probability of the faulty FSM return

on the path of transitions of the source machine after termination of the failure.

The model is analyzed in detail for an example of block-diagram of a specific

program.

Keywords: fault tolerance, Markov chains, Finite State Machine, design

verification.

1 Introduction

The problem of accounting for the effect of failures on the operation of computer

systems, both hardware and software subsystems, remains one of the very important

for the theory and practice of designing computer systems.

Failures can occur both in this or that part of the program memory area, and

outside it, both due to some physical effects (e.g., some radiation) and some malicious

attacks. They can distort both the data and the contents of the program (values of

variables, constants, operation codes, etc.).

mailto:fsergei51@gmail.com

Since the main way of the correctness assessment of the complex system operations,

including in conditions of failure, is testing for those or other Sets of programs and

data (benchmarks, for example, as in [1], or functional tests), it would be very useful

for the possible consequences of these failures to be evaluated and verified during the

development of the CS.

The report shows the possibility of using the two-dimensional Markov model of

finite automaton behavior in order to assess the stability of programs for short-term

failures, which has previously been proposed for probabilistic verification of

hardware systems [3, 4]. A model is a product of Markov chains corresponding to a

finite-automaton model of a program operating under normal conditions, and an

automaton in which a momentary (for example, within the execution time of one

operation, one machine cycle or some specific time window), failure occurs.

Resistance to failures is estimated by the probability of returning the specified product

chain to a path corresponding to the normal functioning of the machine.

We are considering this approach to assess the likelihood of a malicious

action of failures on a given program being developed as an alternative to the widely

used FI technique.

In the FI technique, the application program is emulated by the instruction-

by-instruction, while the source operands are randomly modified before the

instruction is executed, and the result of the execution of the instruction is also

accidentally distorted, thereby simulating the error action. A software counter is also

accidentally modified if it is a branch instruction. The resulting sequence of such

modifications of the instructions and the counter is traced to determine the level of

security of this program to specified failures (soft error rate - SER).

In fact, we simulate the action of the injected fault in violation of the

execution of a certain transition in the above-mentioned automaton.

Since the effect of short-term malicious attacks on the computing system is also

modeled by injecting a fault, we can apply our approach also to assess the resistance

to attacks.

One of benefit of our approach is that in contrast to FI based methods which

requires developers to have rather expensive software, which is not used to solve

other numerous design problems, in particular verification and functional testing [2],

We can consider our method as part of the overall process of designing a computer

system using generic design tools.

2. Brief Description of the Program External-caused Failure

 Model

At the heart of the application program model considered in this article is the finite

Mealy automaton, corresponding to the algorithm implemented by this program. In

this paper, we will not consider the formal aspects of using this model-we will refer

the reader to [6] and the article of the authors [7], but give only explanations

necessary for further understanding.

In terms of this automaton model, the execution of the program is modeled as

transitions between the states of the corresponding automaton [6]. A directional arc in

the diagram (graph) of the automaton represents the sequence of execution of the

program from state to state. The inputs of Mealy model can be flags of events or

conditions. Outputs are computed variables.

Based on the finite automaton model of the program, we define the concept of

failure. Informally, under the failure of the program we will understand the

computational errors caused by random changes in any of the bits of a certain

machine word from the binary image of the program, that is, by replacing '0' with '1'

or '1' with '0 ', which can be caused by various external causes, including malicious

attacks In what follows we will assume that such a change leads to a change in one or

another state of the automatic representation of the program, but does not lead to the

appearance of new states.

We call the event HS(t) as the self-recovery of the automaton after a malfunction

that occurred at the clock t0, if t> t0 is the first following the automaton clock cycle at

which Af (t) = A(t) and Yf (t) = Y(t), where A(t) and Af (t) are the states of the

Markov chain of the fault-free faulty automata at the clock t, and Y (t) and Yf (t) are

the corresponding output value vectors.

In this case, the chain has one more absorbing state, which can be determined in

one of two ways:

- it corresponds to the distortion of at least one output variable before the return of the

trajectory of the transitions of the automaton into a state corresponding to the normal

one;

- it corresponds to the distortion of the outputs when the states of the serviceable and

faulty automata coincide.

The matrix of transition probabilities is calculated from the given table of

automaton transitions and the probabilities of Boolean units of input binary variables

of the automaton (since the transition to a given state is determined by one or another

operation over the current value of the input variable and the current state). We can

determine the number of time slots to possible return to correct functioning by

calculating the probability vector of the states into which the two-dimensional

Markov chain (MC) falls due to interference for t transitions of the automaton:

 , (1)

where the initial distribution is determined by the initial states of the

serviceable and faulty automata, and P* is the transition matrix of this two-

dimensional Markov chain.

If the valid automaton at the initial moment 0 is in the state i0, and the faulty state is in

the state j0 ≠ i0, then
 , and the remaining coordinates of the vector

are zero.

The components of the vector p (t) are the probabilities of getting into the

absorbing state A0 corresponding to the restoration of the correct functioning after the

interruption of the interference, the probability p1(t) of the absorbing state A1

(determined by one of the above methods),and the probability of transitions to the rest

(transient) states of the MC,in the sum equal to 1 - p0 (t) - p1 (t).

A detailed mathematical analysis of the model is carried out in [3]. Here, only an

illustrative example is provided that helps to better understand the sensitivity analysis

of a particular program described below.

Consider the automaton given in Table. 1, where at, as are the current and next states

of the automaton, X = (x1, x2, x3), Y = (y1, y2, y3, y4) are binary input and output

variables, and the absence of one or another component of the vector X in (0, 1, 1),

and also the input vectors (0, 0, 0), (0, 0, 1), (0, 1, 0) corresponding to the cell of table

with 1x , applied to state a1, lead the automaton to the state a2 and form the vector (0,

1, 0, 1) at the output, and so on.

Recall that if a valid automaton at the initial moment 0 is in the state i0, and the

faulty state is in the state j0 ≠ i0, then
 , and the remaining coordinates

of the vector are zero.

 Table 1. Automaton with two states

For a given automaton, the matrix of transition probabilities is calculated from a

given table of automaton transitions and the probabilities of Boolean units of input

binary automaton variables.

In this case, depending on the choice of the conditions that determine the two-

dimensional MC approach to the absorbing state A1, we can consider different

models of the matrix of transition probabilities P. Let us consider, using the example

of this automaton, the two possible models.

The model 1. The MC gets into the absorbing state A1 in all cases of the mismatch

between the outputs of the serviceable and faulty automata.

The transition probability matrix of this two-dimensional MC is shown in Table. 2,

where pi = Prob (xi = 1), i = 1, 2, 3, qi = 1 - pi.

Table 2 Transition probability matrix of the automaton of Table 1

The states A0, A1 (Table 2) correspond to the above absorbing states of a two-

dimensional MC. The states of the indicated MC (1, 2), (2, 1) mean that in the initial

state the automaton must be in the state a1 (a2), but as a result of a malfunction (error,

interference) it turns out to be a2 (a1). Obviously, if the number of states of the initial

automaton is N, then the size of the two-dimensional MC will be N (N-1) + 2, and in

this example it will be 4.

Let us explain in detail the construction of the transition probability matrix of two-

dimensional MC for the automaton of Table. 1, presenting for greater clarity all the

information about the possible behavior of a pair of non-defective and failing

automata in the form of table. 3.

Table 3. Possible transitions of pairs of states of non-faulty and faulty automata

Here, in contrast to Table. 1, all the components x1, x2, x3 of the input vector are

specified, including those that do not affect this transition.

Suppose that at the initial instant of time, because of the action of (undetected)

interference, the automaton (Table 1) instead of the state is in a state. The general CM

Zt, describing the joint functioning of the serviceable and faulty automata, has states:

transient (1, 2), (2, 1) and absorbing A0 and A1. Here (1, 2) – fault-free and faulty

automata are respectively in the states and, (2, 1) - in the states and, A0 - the event "by

the moment the automaton's trajectory has been restored (it was in the correct state)

and the output is not Were distorted ", A1 - malfunctioning has already manifested

itself in the output signal. In contrast to the absorbing states, transitions are possible

for states (1, 2) and (2, 1).

We calculate the transition probabilities of the CM Zt (Table 2). The states A0 and A1

are absorbing, and therefore the probability of remaining in each of these states is 1.

From the state (1, 2) to the state A0 it is possible to get only in the event that the signal

(with probability) arrives. Then both automata (fault-free and faulty) will go to the

same state, and the output signal for both automata. From the state (1, 2) to the state

(1, 2) it is possible to hit only in the event that the signal (with probability) arrives.

Then the serviceable machine remains in the state, the faulty state is in the state, and

the output signal for both automata is y2y4. The probability of a transition from the

state (1, 2) to the state (2, 1) is calculated similarly. From state (1, 2), state A1 can be

accessed with different input signals. First, if a signal arrives (with probability, the

third component of the input signal can be any), then the output signal of the

serviceable automaton is, for the faulty one, y2y4 (while the serviceable state machine

goes from state to state, faulty - from state to state).

Secondly, if there is a signal (with probability), then the output signal of the

serviceable automaton is, for the faulty one (both automata get into the state). Thirdly,

if a signal (with probability) arrives, then the output signal of the serviceable

automatic device is, for the faulty one.

Let P1 = 0.2; P2 = 0.4; P3 = 0.25.

For the initial state vector *(0) = (0, 1, 0, 0) after the first step

 *(1) = *(0)P* = (0.08,0.02, 0.48,0.42)

Accordingly, the probability p0(1) of falling into the absorbing state A0, at which

the automaton, upon removal of the short-term perturbation that caused the

malfunction, will return to the trajectory of the transitions of the serviceable

automaton before the change in at least one output y1, y2, y3, y4, 0.08, the probability

p1 (1) to get into the absorbing state A1 (the output was distorted before returning to

the correct trajectory) is 0.42 (the product of the row of initial states on the 4th

column of the transition probability matrix corresponding to the hit in A1), and the

chain Markov remains in the subset of ergodic states (1, 2), (2, 1) with probability

 *(1)= 0.02 + 0.48 = 0.5.

After second step:

 *(2) = *(1) P* = (.

and so on in accordance with the Table 4.

Table 4. Probabilities to reach absorbing and ergodic states through t steps

The model 2. The occurrence of the Markov chain in the absorbing state A1 only

in the case of a mismatch between the outputs of the serviceable and failing automata

when the failing automaton hits a state that coincides with the state of the faulty

automaton.

This model corresponds to the transitions in Table. 5, in which the absorbing state A1

corresponds to the mismatch of the outputs when two automata are in the same state

(a1 in this example).

Table 5. Possible transitions of pairs of states of non-faulty and faulty automata

 (Model 2)

The probabilities of achieving absorbing and ergodic states through t steps (similar

to Table 4) are presented in Table 6.

Table 6. Probabilities of attaining absorbing and ergodic states through t steps

(Model 2)

t = 0 t = 1 t = 2 t = 3 t = 4 … t = 28

p0(t) 0,000 0,08 0,1488 0,208 0,2589 0,563

p1(t) 0,000 0,06 0,1116 0,156 0,1941 0,423

p’(t) 1 0,86 0,7396 0,636 0,547 0,014

Depending on the purpose of the systems and the approaches to their design, one or

the other of the two semantics of the behavior of systems under fault conditions may

be more preferable. This issue is discussed in more detail below on a concrete

example.

Let us see how we can adapt the above models to assess the likelihood of incorrect

program behavior due to malicious attacks, where the FSMs are models of system

calls trace corresponding to the program execution like in [11]. We will consider

the product of two above normal and faulty ("malicious") FSMs, and corresponding

two-dimensional Markov chain as well. That is the models assume that when the

attacker injects a fault into the system, an erroneous result will be observed at the

output. We consider, that every event in the system (e.g., network) is applied to finite

state machine instances which finally results in transition. An attack will be occurred

when the machine reaches a state with different outputs, like in the models mentioned

above. In particular, if we consider binary outputs and states (codewords), then the

error can be expressed as an XOR operation (˜Y=Y ⊕ e), states A=A+e, where e is a

given Boolean vector, describing the bits corruption. Thereby, if we consider a

malware with obfuscated codes, the Model 2 could be more relevant, as the states

coinciding can be result of the obfuscation.

 The system calls may be considered as input sequence of the FSM and the

probabilities of the different transitions may be based on the frequency of certain

system call sequences during a healthy execution (see Sections 4,5).

3. Example of Program Stability Analysis for Failures

Consider some utility program designed to process successive (ASCII) symbols
transmitted through a transmission link. Let the information be structured by strings(

blocks) and there are spaces between the blocks in order to define a condition of now

information in this data recording medium. This utility program should remove the

spaces from character strings according to the following conditions:

- leading (at the beginning of the string) spaces are suppressed;

- if the string ends with spaces, then they are also deleted;

- within a string there can not be a sequence containing more than one space in a row,

extra spaces are deleted.

In order to simplify the analysis, we will consider a block diagram of the program

for processing only one string (S1), meaning that the program includes the means of

transition to reading and processing the next string from the entire set of strings

processed by this program text.

Note that this program can be considered as a model of various programs designed to

remove some service symbols in the stream of transmitted symbol information, for

example, the signs of the beginning and the end of the transmission of a data block in

telecommunication applications (We consider the alphabet as LD  LS, Where D-

symbols are used for data transmission, S-some service symbols or their combinations

used for). For example, in protocols such as IBM'S SDLC where a string "1" bits is

broken by an inserted '0' bit to avoid confusing data and SYN characters. Once

received, the inserted 0 is removed.

Figure 1. ASM block diagram of the utility program

According to the purpose of this article formulated in the introduction, let us consider

the problem of calculating the probabilistic estimation of the possibility of self-

recovery of the program module in question after a failure - in this case the question is

about the recoverability of the operation when the operation is performed incorrectly.

This obviously depends not only on the structure of the module, but also on the

probability of performing certain transitions, that is, on the input information.

Imagine an algorithm that implements this program as a diagram of the Algorithmic

State Machine (ASM) [8] (the flowchart in Figure 1).

 In the above block diagram, S1 is an array containing the processed string, from

which control characters that are not included in the alphabet A are deleted, the length

of this array is L1 (the mechanism of reading and buffering is not considered here,

considering the whole process of buffering by one operation corresponding to the

rectangle S1 block -scheme). If the length of the string is zero (for example, contain

only special control characters (including some end-of-line character) and there is not

one character from the alphabet A), then the next string is entered. C1 is the index in

array S1, C2 is the index in array S2, in which characters of a string without deleted

spaces are written and in which the result of program work is formed (Denoted as

PrS2). In case the string consisted of only spaces, the user receives an Empty

message.

In this flow chart, the rectangles correspond to the execution of some operation, and

the rhombs correspond to the transition conditions. With the help of the Abelite

program [8], it is possible to obtain a finite-automaton representation of a block

diagram in the form of a Mealy automaton, in which the binary input variables

correspond to the path selection conditions in the block diagram of Fig. 1 (from the

tops of the rhombus "0" or "1"), and each execution of operations is associated with

the transition from state to state (for more information about the Abelite program and

its methodology for designing digital systems, see [7, 8]). Note that the program

Abelite itself determines by ASM-diagram of the state of the machine being built.

However, it is necessary to take into account the following circumstances:

1.Since the model of the two-dimensional Markov chain of the product of automata

described in the preceding section assumes the independence of the random inputs of

automata, and in the automata obtained from the ASM diagrams, the input variables

correspond to conditional transitions, it is necessary that the indicated transitions be

performed according to the conditions determined by the independent events.

The automaton built by the Abelite program is shown in Fig. 2.

a1 a13 1 y16

a2 a11 1 y13

a3 a9 1 y12

a4 a2 x1 y3

a4 a3 ~x1 y2

a5 a2 x2 y1

a5 a4 ~x2 y4

a6 a2 1 y11

a7 a8 x3 y10

a7 a5 ~x3 y5

a8 a1 x1 y8

a8 a1 ~x1 y9

a9 a6 1 y6

a10 a7 x4 y7

a10 a9 ~x4 y12

a11 a10 x5 y12

a11 a8 ~x5 y10

a12 a2 x6 y14

a12 a12 ~x6 y15

a13 a12 1 y15

Figure 2. Mealy automaton from Figure 3.

2. Since synchronous automata are considered in this fault model, each result of the

change in the input data (selection of the transition to ASM) must be recorded in one

or another state of the machine, which means that the output of each rhombus is

associated with a certain rectangle.

Here the first column is the previous state, the second is the next state, the third is the

logical values of the inputs x1-x6, which cause the corresponding transition, the last

are the outputs of the automaton formed during this transition. The correspondence of

the outputs and inputs of the automaton to the flowchart shown in Fig. 1, describes

Fig. 3.

 Output variables (Micro Operations):

y1 : S1[C1+1]=''

y2 : C2<> 0

y3 : C2=0

y4 : S1[C1+1]<>''

y5 : <L1

y6 : C2=C2+1,

y7 : ''

y8 : Empty

y9 : PrS2

y10 : C2

y11 : S2[C2]=S1[C1]

y12 : S1[C1]

y13 : C1=C1+1

y14 : C1=0;C2=0

y15 : L1

y16 : S1

 Input variables (Logical Conditions):

x1 : C2=0

x2 : S1[C1+1]=''

x3 : C1=L1

x4 : S1[C1]=''

x5 : C1=<L1

x6 : L1>0

Figure 3. The correspondence between the input and output variables of the

automaton to operations and transitions in

Here the <> sign replaces the symbol ≠, the use of which (like some other

characters from the MS Windows symbol table) prohibits the interface of the Abelite

program [8] used to build the machine.

The states a1-a13 describe the states of the constructed, y1-y16 are the output

variables of the automaton, corresponding to the execution of operations in the

rectangles of the flowchart consisting either of assigning the values of one variable to

another, or of performing the specified actions directly. Variables S1 [C1 + 1] = ",",

C2 <> 0 represent the marked "synchronizing" operations, which are inserted into the

diagram to separate the changes in the inputs of the machine. These pseudo-

operations simply fix the state of the machine to which it has moved after selecting

the appropriate transition.

The state of the automaton can easily be interpreted by comparing Fig. 2 and 3. For

example, the state a4 is a state where a word is found in the word, followed by a non-

blank space. If this occurs at the beginning of a word, then the space is not written to

the word S2 being formed, otherwise it is written.

Since malfunctions are treated as events that occur randomly during processing of a

set of rows S in a given alphabet, the probabilities of events are specified on the set of

all possible strings containing alphabet symbols and on the set of symbol indices

inside each of the strings.

To construct the desired Markov model (Section 2), it is necessary to assign each of

the automaton (x1, ..., x6) to the probability of the Boolean unit, which corresponds to

the probability of activation of The corresponding path in the block diagram of Fig. 1

over the unit branch. These probabilities are estimated by the sets of processed texts

ST  S, considered as a finite sample of NT from the set S.

For example, the probability that x6 = 1 is evaluated as Prob (L1> 0) = Nemp/NT,

where Nemp is the number of empty strings, NT is the total number of rows in the test

set.

Consider the application of this model in analyzing the sensitivity of the test and the

stability of the program to failures, namely by calculating the probability values of the

hit of a two-dimensional Markov chain constructed from a pair of automata with

different initial conditions, one of which corresponds to a change in the initial state

vector as a result of the failure, to the absorbing state. This is an estimation of the

probability of the absence of empty strings in the processed stream, for example,

consisting only of the beginning and end attributes and not containing any symbol of

the used alphabet (the construction of the test set was considered in [4]).

For the considered example, the total number of states of the two-dimensional

Markov chain {(i, j)}, where i, j are the indices of the states ai, aj of the serviceable

and the automaton subjected to failure (the "failed" automaton), as indicated in the

previous section, is N (N - 1) + 2, where N is the number of states of the automaton in

Fig. 2, and is 158. The states are ordered as follows:

(1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9) , (1, 10), (1, 11), (1, 12), (1, 13),

(2, 1), (2, 3), (2, 4), ..., (5, 6) , ..., (13, 11), (13, 12), A1}.

The vector of probabilities of the initial states {pij}158 has a unique unit component

(i0, j0): if the effective automaton at the initial instant 0 is in the state i0, and the faulty

state is in the state j0 ≠ i0, then pi0,j0(0) = 1, and the remaining coordinates of the

vector are zero. For example, for a failure of the form (5, 6), the vector will contain

one at position (5, 6).

4. Failure Sensitivity Analysis based on Testing Results

Let there be some set of strings S1 representing a set of tests for functional testing of

the program. Let probabilities Prob (x1 = 1), ..., Prob (x6 = 1) be defined for a given

test set of texts (or a wider set of texts, considered as a training sample).

As noted in Section 3, for each automaton model of the program one can construct

two different Markov chains, one of which has an absorbing The state A1 is

determined by the subset of the transitions of the chain Zt, in which the outputs of the

serviceable and faulty automata do not coincide (Model 1), and in the other Markov

chain the state A1 corresponds to transitions in which the outputs coincide when the

states coincide (Model 2). The use of this or that model depends on the specific task

to be solved.

Consider the problem of determining the probable interval of self-healing. In this

case, Model 2 is obviously adequate, since Model 1 means checking the mismatch of

outputs for each state, which in some cases may not allow the self-healing effect to be

realized, since the program can be stopped already at the first clock cycle after a

failure, whereas many Algorithms of self-healing and self-correction just suggest the

presence of some time for self-healing [9].

Next, we consider several examples of the analysis of the automaton given in

Table. 5, for sensitivity and resistance to malfunctions.

Example 1. Consider failure (10, 8) "the automaton instead of the state a10, in which

it should be on this clock after the transition at the previous clock cycle, as a result of

the malfunction was in the state a8", which means, according to Fig. 2, the execution

of operation y10 instead of y12 and, accordingly, the formation of the resulting string

S2 can be completed before the exhaustion of the characters in the input string S1.

In this case, the probability table for the recovery of , the appearance of a

malfunction at the outputs p1(t) and the finding on an incorrect trajectory of

transitions for undistorted output variables ~ p (t) is calculated by formula (1) as the

product of the above probability vector of initial states on the t-th degree of the

probability matrix of the transitions of the two-dimensional Markov chain, calculated

from the transition probabilities, as shown in the example of the automaton of Table.

1-3. For this example, analogous matrices 158158 are constructed by the program

[10].

We take a certain vector of probabilities of the unit values of the inputs x1, ..., x6

(without asking for a connection between their values and the semantics of the

program), for example, 0.2, 0.7, 0.2, 0.7, 0.01, 0.2, And calculate the value of the

probabilities of self-healing at steps (cycles) t = 1, ..., 19 by formula (1), representing

them as a vector:

P0(t) = [0, 0, 0, 0, 0, 0,3136, 0,3136, 0,31395, 0,45906, 0,57226, 0,64495, 0,69991,

0,75712, 0, 78388, 0.82202, 0.85148, 0.87607, 0.89468, 0.91082, 0.992396],

where the number of each position corresponds to the tick number minus 1 (the

first element corresponds to the moment of failure and is considered a zero index).

As can be seen from the probability vector of self-healing P0(t), the probability of

recovery is already high at the 12th clock after the failure (0.757).

Let us analyze the connection between probabilities x1, ..., x6 with the semantics of

the applied problem in Fig. 1. As noted above, the probabilities of the input variables

x1, ..., x6 are determined by the distribution of spaces in the texts that form the test set

of rows. The probability of the event C2 = 0 (represented by the variable x1) means

the probability that at a randomly chosen step of the algorithm (on the whole set of

test strings) it turns out that no leading space has been encountered.

In this example, this probability is 0.2, which indicates a sufficiently high density

of spaces in the strings of the set. The same is said about the probability value for

variables x2, x4, corresponding to the frequency of spaces in the test strings. The

probability value for x3 is the probability of encountering at the random step the end

(0)p

of the string, which in this case is small. Obviously, the variables x5 and x3 ("C1 =

L1") are logically related (the greater the probability of encountering the end of the

string, the less likely that the string is (relatively) long, at a randomly chosen time

moment, the condition C1<L1) which poses the question of the possibility of

considering them independent. Note that if, as noted above, to consider this program

for analyzing the presence and removal of gaps as a model of a telecommunications

program for which spaces correspond to certain service symbols, then the condition

L1 = 0 means that there is no information symbols in some premise, and the small

probability values L1 > 0 mean that information packages are quite rare.

We give examples of calculating the probabilities of self-healing also for other

failures and for different probabilities x1, ..., x6.

Example 2. For the failure (10, 8) and the probabilities of inputs 0.05; 0.7; 0.1; 0.05;

0.9; 0.1

P0(t) = [0, 0, 0, 0, 0, 0.00405, 0.00405, 0.0040898, 0.062046, 0.062999, 0.066632,

0.068139, 0.069252, 0, 10226, 0.10411, 0.10778, 0.11016, 0.1119, 0.13258, 0.13501].

Example 3. For failure (7, 9) with the same input probabilities, the recovery

probability is extremely small:

P0(t) = [0, 0, 0, 0, 0, 0, 0, 0.00729, 0.00741, 0.010307, 0.010507, 0.0124, 0.01847,

0.018905, 0, 02131, 0.021632, 0.0242, 0.0295, 0.03004, 0.03211].

5. Discussion of Results and Conclusion.

Thanks to the proposed approach, one can judge the stability of programs to

accidental failures and, if necessary, use additional tools and methods for restoring

programs. In this case, the construction of the Markov model (the transition

probability matrix) can be performed according to the earlier developed functional

tests and does not require additional costs for constructing new tests.

The probability of self-recovery for the program under consideration in the general

case may be small, which raises the question of how the information obtained in the

self-recovery analysis described can be used by the designer to obtain program

variants that are resistant to accidental failures. Let's consider the basic factors of

stability to failures which the designer of the software-hardware system, investigated

by means of the given model of the program should take into account.

First of all, as it can be seen from the analysis of the considered examples, the applied

purpose and functional features of the projected system, which are displayed in the

test sets used, are essential. For example, for the program in question, if based on the

original design specification of a certain system of which the program is a part, it

follows that most of the data at the program input (string S1) does not contain the

symbols of the specified (used) alphabet, then the probability of self-recovery is very

high.

If this is not the case, and the probabilities of self-healing on the test set under

consideration are small (example 3), the designer decides on various methods of

providing protection. Depending on the project quality criteria used (cost, energy

consumption, weight, dimensions, reliability, etc.), it decides that it is more effective

to significantly reduce the intensity of failures and/or apply some self-healing

schemes. A simplified assessment of the impact of hardware failures can be presented

as follows. Let Ln be the fault list ((10,8), (7,9), etc. in the examples considered).

Then, estimating the probabilities of hardware failures [1] pi, i = 1, ..., | Ln |, which, for

example, affect the corresponding areas of program memory responsible for failures

from Pt = i=1,..,|Ln| piPo
i
, where Po

i
 are the components of the vectors P0(t)

corresponding to the cycles 1, 2, ..., t for each of the faults i from the list Ln, examples

of which are given in the previous section and which in this case are interpreted as

conditional probability of failure, Failure i, and the formula given is a formula for the

total probability of the event "a failure" occurred.

Having a list of faults and calculated probabilities of self-healing, it is possible to

formulate requirements for the equipment to ensure permissible pi. Further, the

developer uses some or other approaches to software stability to failures, for example,

N-version programming, in which n (where n is an odd number) copies (versions) of

the program is written to the memory with the subsequent comparison of the results

"by the majority".

Acknowledgement. This work has been partially supported by the Russian

Foundation for Basic Research under grant RFBR 15-07-05316.

References

1. Li X., Adve, S. V., Bose, P., Rivers, J. A. Softarch: An architecture level tool for modeling

and analyzing soft errors. In Proceedings of the International Conference on Dependable

Systems and Networks (DSN), Yokohama, Japan, June 2005, pp. 496–505 (2005).

2. Darbar, A., Al-Hashimi, B., Harrod, P., Bradley, D.: A New Approach for Transient

Fault Injection using Symbolic Simulation. In: IOLTS 2008: Proceedings of the 14th IEEE

International On-Line Testing Symposium. pp. 93–98 (2008)

3. Frenkel, S., Pechinkin, A.: Estimation of self-healing time for digital systems under

transient faults.: Informatics and its Applications Journal, 4, 3 pp. 2–8 (2010)

4. Frenkel, S.,. Zakharov, V., Ushakov, V.: Probabilistic verification in the design of

computing systems. In: International conference Tools and Methods of Programs Analysis

(TMPA-2014): Kostroma, Russia, 14–15 November 2014), pp. 148–155 (2014)

5. Li, X., Yeung, D.: Application-level correctness and its impact on fault tolerance. In: The

Sixteenth International Symposium on High-Performance Computer Architecture, Bangalore

(India), January 2010. pp. 220–225 (2010)

6. Shalyto, A., Tukkel, N.: SWITCH-technology - Automatic approach to software

development of "reactive" systems. Programming, 5,. pp. 45–62 (2001)

7. Baranov, S., Frenkel, S., Zakharov, V.: Semiformal verification for pipelined digital

designs based on Algorithmic State Machines. Informatics and its Applications Journal, 4, 3,

pp. 49–60 (2010)

8. Baranov, S.: ASMs in high level synthesis of EDA tool Abelite. In: DESDes’09 Int.

IFAC Workshop Proceedings. – Valensia, Spain, pp. 195–200 (2009)

9. Lala, P., Kumar, B.: On self-healing digital system design. J. Microelectronics, 37, pp.

353–362 (2001).

10. Frenkel, C., Lyburkin.,D, Program for evaluating the time of self-recovery of a digital

system after a failure by its high-level model. Certificate of state registration of the program №

2013661815 of 16.12.2013 (2013)

 11. Jacob, G, · Debar, H., · Filiol, E. Behavioral detection of malware: from a survey

towards an established Taxonomy, Comput Virol, 4, pp.251–266 (2008).

