

Joint Use of Set-Theoretic and Markov Models for
Detection of Malicious Attacks

Sergey Frenkel and Victor Zakharov

Federal Research Center "Computer Science and Control " Russian Academy of Sc.,

Moscow, Russia, fsergei51@gmail.com, VZakharov@ipiran.ru

Abstract. This report considers some modelling issues to the estimation of

security risks of programs due to malicious attacks, which is needed for

rational choice and evaluation of the attacks protection methods. In particular,

it can be the malicious codes action altering the target program’s control data,

say, as data that are loaded to processor program counter at some point in

program execution. A basic underlying models of application program

considered are calls graph and the Finite State Machine (FSM), corresponding

to the algorithm implemented by this program. This FSM can be built either

from a program source or from system calls traces. We will consider both the

similarity metrics (for example, Jaccard similarity, the Edit (Levenshtein)

distance) between the dynamic traces of system calls, and the probabilistic

Markov effect attack models that are defined on the same traces.

We show some helpful relationships between the similarity distance based

models and the Markov models.

Keywords: malicious attacks detection, similarity metrics, Markov chains, Finite

State Machine

 1. Introduction

Design of systems with security and safety deals with choice of mathematical models

of the system to quickly and accurately estimate their ability to detect malicious

programs. Malicious attacks detection is an essential part of this activity. The system

calls (or an instruction sequences/set) automatic observation is a natural way of

malicious codes detection. A widely-used approach of detection (or classification as

“benign-malicious”) is based on similarity measurement. Presently both the similarity

metrics (for example, Jaccard similarity, the Edit (Levenshtein) distance [1]) between

the dynamic traces of system calls, and the probabilistic Markov effect attack models

that are defined on the same traces. The various similarity metrics were suggested [1].

One of the most discussed is the Edit Distance, namely, the minimal number of edit

operations (delete, insert and substitute of a single symbol) required to convert one

sequence to the other, as it reflects the traces semantics. However, the time and space

complexity of the edit distance between two strings s1 and s2 even the fastest

algorithm requires quadratic complexity O(|s|2/log(|s|)), where |s| denoted the length

of the string [1]. Another aspect is the inherent imbalance between malicious and

benign API traces that are harvested from the system, as most of the traces are benign.

Therefore, clustering only on the malware traces where each cluster concentrates

malwares with some specific common essence is more practical.

The Markov models suggested recently have more appropriate complexity, but they

do not reflect the semantics of the traces, and there remains the problem of the

imbalance between malicious and benign API traces.

In our approach, based on possibility to use a Markov model with two absorbing

states defined on direct product of the spaces of two finite state machines (FSM), one

of which is a program finite automaton model that is running under some original

conditions, and second is the same FSM which at some point in time (depending on

the considered temporal discreteness) underwent some malicious attack which

transformed the trace of the program execution into a malicious one, do not assume

that the original trace appeared as a result of the performance of a benign program,

but simply analyze the possibility to detect some changes in the trace.

Using this approach we suggest in this report a framework for combining both graph-

based and probabilistic modes enabling both the analysis of the system robustness to

malicious attacks and malicious codes recognition and detection.

2 Problem description and related works analysis

The approaches to assessing the ability of projected programs (software systems) to

detect malicious attacks (as well as their resistance to attack) can be divided into two

classes: (i) based on the search for differences in the traces of normal and malicious

programs, and (ii) based on the behavior of certain mathematical models representing

these programs, among which, most often considered automaton models [2].

The first group of this models are the means of the traces classification over the

classes “benign”, “malicious” on the base similarity measurement, which is

performed through comparison of all pairs of the traces. Presently various similarity

metrics were suggested, one of the most discussed is the Edit Distance, namely, the

minimal number of edit operations (delete, insert and substitute of a single symbol)

required to convert one of compared sequence to the other [1]. It can be done both for

textual (e.g., in terms of Win API) traces representation (Fig.1), or as q-grams, which

is all the contiguous substring of length n in sting s [1]. For example, given an integer

q and a string s, the q-grams set of the string s is all the contiguous substring of length

q in s, for example, 3-grams a for the string s=”peter” are “pet”,”ete”, “ter”. The size

of q-grams set of s= |s| − q + 1,

 The q-grams are collected by a process of shingling - passing a sliding window of

length q on the string.

Representing strings of q-grams sets can be obtained by sorting the q-grams in the

set according to, say, lexicographic ordering, and concatenating them as it is

described in [1]. In this case, the outcome is strings of n-grams (string over the

alphabet of the q-grams) that are sorted and have no repetitions.

LoadLibrary lpFileName=VERSION.dll Return=SUCCESS

#272230000

CreateFile hName=C:\WINDOWS\System32\Wbem\wmic.exe

desiredAccess=GENERIC_READ creationDisposition=OPEN_EXISTING

Return=SUCCESS

Fig 1. Fragment of systems calls trace. Here #272230000 means a timestamp in the

trace, which also may be used sometime in the traces modeling .

The 3-gram of this trace is :

Loa oad adL dLi Lib ibr bra rar ary ry@ y@N @No Non one ne* e*C *Cr Cre rea eat

ate teF eFi Fil ile le@ e@N @No Non

Along with edit distance of two strings x,y defined above, D(x,y), so called-

Normalized Edit Distance of two strings (traces) x,y NED(x; y) = ED(x;y)/max(|x|,|y|)

is used, in order to map the metric in [0,1] interval. Although the triangular inequity is

not true for NED, it, in contrast to ED, has obvious probabilistic sense what is very

useful for the detection analysis [7].

These metrics allow to clusterize the set of traces, corresponding to different

programs (with different paths of execution) and detection is implemented by the

distance (or similarities, e.g. Jaccard, or 1-NED(x,y)) relatively malicious codes

clusters to provide the malicious codes detection by compare the distance of a

suspicious trace from the clusters .

Since the system calls sequence can be represented as so-called “calls graph”, that is

as a directed graph with labeled vertices, where the vertices correspond to functions

and the edges to function calls [3], there is an extension of the ED notion for the

graph, namely, as a directed graph in which functions are modeled as vertices, and

calls between those functions as directed edges.

Graph edit distance (GED) is obtained by computing how many alterations have to

be done to graph G for it to become isomorphic with graph H. In fact, the GED is size

of the symmetric difference of the edge sets. The GED may be used for clustering of

malicious samples in off-line training and then examine the on-line data for being

benign or malicious by the distance of the data from existing clusters defined in the

training phase.

The main difficulties of such approach is also its computational complexity.

Therefore, the GED-based clustering problems is formulated as finding of minimal set

of samples allowing an ε-approximation of the similarity metric with time polynomial

complexity.

Second group of models can be defined either on traces abstraction by Markov

chain generated by a finite state machine (FSM) with random input variables, or on

the models of attack detection by comparing the normal and corrupted (caused by the

attack) behavior of FSMs generating by the FSMs (also with random input variables)

corresponding to both benign and malicious codes.

First of all, note, that many Markov models of anomaly detection are not built for a

pair traces, but for individual traces only. For example, in [2], the program flow (in

the traces form or not) is represented by a Markov chain in order to better fit the

clustering to system call parameters (e.g.,

hName=C:\WINDOWS\System32\Wbem\wmic.exe of the system call CreateFile

mentioned above in the Figure 1) and creates inter-relations among different

parameters of a system call. The model states represent the system calls, or they

represent the various clusters of each system call, in the form, in which the clustering

was performed. Each transition will reflect the probability of passing from one of

these groups of system calls to another through the program.

These models can be introduced basing on analysis of system calls that are

collected dynamically from the system calls traces. The calls trace can be represented

with a Markov chain structure in the transition matrix. The traces can be received by

some tracing tools (e.g., CWSandbox, Joebox, Norman Sandbox [3]) to record the

system call sequence of an application.

Considering that each distinct system call corresponds to one unique state of the

Markov chain, it is possible to count the times of transition from one system call to

another one to calculate the transition probability matrix.

For instance, suppose there are only four system calls, noted as SC0,SC1, SC2, and

SC3, and the system call sequence as, say: SC0  SC0  SC1 SC2 SC3 

SC1  SC2 SC3  SC0  SC1  SC0  SC2 SC3  SC1  SC2

SC2.

The transition times from system call i to system call j (i,j=0,1,2,3) is noted as aij.

In this case, a00 = 1, a01 = 2, a02 = 1, a03 = 0 and so on. Then we define, pij, the

transition probability from system call i to system call j, in the following way: pij

=aij/∑jaij

Elements of an estimated probability transition matrix P={pij} for the dynamic

trace of each program are used as predictors to classify a program as malicious or

benign.

But uncertainty in P for online classification will have a large impact on the

decision until a sufficiently long trace is obtained.

In another approach the Markov chain can be used for a steady-state distribution

computation which describes how likely each state, corresponding to given system

call is to be visited in the long-run [4]. If a system call underlying the Markov chain

to be in an unlikely state with great frequency, the sample could be considered as

malicious behaviour. For example, let us a benign sequence involves the system calls

RegEnumKeyExW, RegCloseKey, RegCloseKey, RegQueryValueExW, Reg-

QueryValueExW, and the most-likely state (say, with the probability 0.3 which

exceeds essentially the steady-state probabilities of others) _involves the system calls

RegOpenKey followed by three repetitions of the seqence ReqQueryValueExW, Reg-

CloseKey, and RegCloseKey. If in an unknown new trace of the system calls this call

occurred with greater relative frequency than in the model, the new data could be

deemed suspicious, as this calls deals with access to the user data.

Of course, the estimation of this probabilities assumes of some statistical tools,

e.g., using a Kolgomorov-Smirnov non parametric test.

In view of the fact that in the automaton model we use only states, and in ED-

recording of traces, it would be useful to have a model combining both types of

information. The Hidden Markov Model (HMM) can be used to describe the

statistical rules among the system calls [5].

For HMM model (S, O, A, B, π), the system call sequences are compared to the

observed sequences O will be either normal or attack. Here are:

S = (Normal, Attack, Intrusion) is the state space, represents that the system call

sequence has the following three states:

• Normal (N)

• Attack (A) (that indicates an attack activity that is setting itself up),

 Intrusion (I) state indicates that an attack corrupted the normal behavior.

The maximum number of observations m is dependent on the number of system

calls.

The sequences observed may be not distinct enough, what is a challenge of this

model from the point of view the malicious property detection. Correspondingly,

involving HMMs, we need to measure the size of uncertain disturbances in an

underlying HMM. In particular, some possibilities of using relative entropy rate as a

distance between normal and corrupted (perturbed) HMMs can be studied [6]. This

relative entropy rate conveniently used to measure a “distance” between the two

HMMs or Markov chains defined by the corresponding sets of parameters.

To illustrate an HMM, we consider an example where two hidden mechanisms,

one malicious and one normal, are switched T times to generate an observation

sequence O. We switch one of mechanism at a time, and we occasionally switch

between the mechanisms. Suppose that the alphabet is {N; C} (which implies M = 2),

where N stands for normal and C for corrupted behavior, and we observe the

sequence O = {N, C, N, C, N, N}. There are two hidden states corresponding to the

corrupted (by an attack) and normal traces.

Suppose that the transition probability matrix is

A =

0.9 0.1

0.20 0.80

where row (and column) 1 represents the normal coin, and row (and column) 2

represent the behavior of attacked program. Then, for example, the probability that

the Markov process transitions from the normal state to the corrupted by the attack

state is 0.1, since a12 = 0.1. That is, if the normal program is flipped, the probability

the corrupted program is flipped next is 0.1.

The symbol distribution matrix B gives the probability distribution of a system

calls SC1 and SC2 for both the normal and attacked states. Suppose that in this

example we have

B =

0.5 0.5

0.7 0.3

where first row gives the probability of N and C, respectively, when the program

under normal conditions normal is executed, and second row is the corresponding

distribution for the attacked program.

The term b21 (SC1) represents the probability of SC1 when the attacked program is

executed. In this example, b21(SC1) = 0.7. There is also an initial distribution, _,

which specifies the probability that the Markov process begins with the normal and

corrupted states, respectively. For example, we can take π = (0.5, 0.5)

But the principal difficult of all well-known statistical models based approaches is

that benign applications (“labels”, from the machine learning viewpoint) are usually

more imprecise than malware labels, in the sense that new applications that are

originally labeled benign might later have its label changed to malware.

That is there is the inherent imbalance between malicious and benign API traces

that are harvested from the system.

The result is that while we can be confident that an application is malicious, you

can never be certain that a benign application is really benign or just an undetected

malware.

This leads to essential difficulties with the statistic estimation.

It is important that these approaches were not investigated in conjunction with the

handling of parameters and with a clustering of system calls based on such

parameters.

Also, since in this Markov approaches deal with the state transition over all trace

but not with specific system calls, there is not explicit relation with similarity metrics

which are used widely for semantic analysis.

Therefore, let us consider the approach what we suggested recently for program

robustness verification to attacks [8].

3. Markov chains product based Model of robustness to attacks estimation

We consider a trace of system calls (with their parameters - see Figure1) as a

trajectory of transition of an FSM working with the alphabet used in the trace

representation. This FSM can be built either from a program source or from system

calls sequences (see below). We consider the attacks effect (that is the malicious

codes action) as the control-data attack which alter the target program’s control data.

The automation model corresponding to the automaton–based representation of the

system calls sequences mentioned in the Section 2, where each vertex of the system

call graph representing the sequence corresponding to a state of the automaton, and

edges are transitions from one state to another. Then we consider a result of the attack

as a replace of a system call SC during given timestamp in the program execution

trace by another system call.

In terms of this automaton model, let us define a malicious behaviour model which

would permit to coordinate such transitions of the system with an automaton

behavior, that is the Malicious behavior model is {(ai,aj) (ai, ak)}, where (ai,aj) is an

inter-state transition in the FSM, represented the program with normal behavior,

which was changed to the transition in the state ak due to an attack. No new states

arise.

Let us a program which may be subjected to an attack is represented by Mealy

automaton (FSM) st+1 =  (xt+1,st), or, we consider the program on the system calls

(parametrized, in general)) level as [9]), where  is a transition system, x and s are

input and state vectors correspondingly. The automaton clock t corresponds to

execution of each of the program operator, or each of system call execution. A way of

the FSM building from a system calls sequences see, e.g., in [10].

 Let us assume, that all components of the input vector x are independent random

variables. This independence can be provided by a specific choice of the FSM inputs

(see, for example, in [11]).

Let {Mt, t ≥ 0} is Markov chain (MC) describing the target behavior of target FSM

with n states under random input, that is, functioning without effect of any faults

caused by an attack (altering the flow graph, corresponding to the transition function

) and {Ft , t ≥ 0} is the MC based on the same FSM but exposed by some altering

transition. Let Zt = {(Mt, Ft, t ≥ 0} corresponding to behavior of the MCs pairs that is

MC with state space S2= S × S of pairs (ai, aj), ai, aj ∈S. The size of the MC will be

n(n-1) + 2. The matrix of transition probabilities of these MCs are calculated from the

given FSM transitions table and the probabilities of Boolean input binary variables of

the FSM as well. Along with the states, Zt has two absorbing states A0 and A1, where

A0 is the event "by the moment the FSM's trajectory has been restored and the output

is not distorted", A1 is “malfunctioning has already manifested itself in the output

signal”. The pairs of (ai, aj) states enables representation of any transient faults as "the

FSM instead of the state ai, in which it should be on this clock after the transition at

the previous time cycle, as a result of the malfunction was in the state aj".

We characterize the security regarding a malicious attack as the probability of

event that the trajectories (states, transitions and outputs) of Mt and Ft will be

coincided after the termination the attack causing a flow graph deviation, before than

outputs of both FSMs (underlying these MCs) become mismatched. This probability

that the FSM returns to correct functioning after some number t of time slots can be

computed as probability to get in one an absorbing state, using Chapman-Kolmogorov

equation expressed the probability vector of the states into which the falls the Zt

(and corresponding FSM as well, which is the product of these two FSMs) after t

transitions in terms of initial distribution of the MC states. determined

by the initial states of the fault-free and faulty FSMs, and the state transition

probability matrix of this two-states Markov chain. The components of the vector

are the probabilities p0(t), p1(t) of getting into the absorbing state A0 and A1

mentioned above, and the probability of transitions to the rest (transient) states of the

MC, in the sum equal to 1 - p0 (t) - p1 (t). If the fault-free FSM at the initial moment 0

is in the state i0, and the faulty state (say, due to an attack effect) is in the state j0 ≠ i0,

then , and the remaining coordinates of the vector are zero.

a) b)

Fig. 2. System call graph of the trace fragment of the Fig. 3a) is a graph obtained

from the sequence, Fig.3 b) is its abstraction.

3.1 The example of the model application

Let us consider a segment of a system calls trace [12]:

Loaded DLL at 77250000 ntdll.dll

NtCreateFile(FileHandle = A, . . . , ObjectAttributes =“Sample.exe”)

NtCreateFile(FileHandle = B, . . . , ObjectAttributes = “1111.exe”)

NtCreateSection(SectionHandle = C, . . . , FileHandle = B)

 · · ·

13 NtQueryInformationFile (FileHandle = A, IoStatusBlock = · · ·)

11 NtWriteFile (FileHandle = B, · · ·)

Fig. 3 A fragment of system calls trace

is represented as graph in Fig. 2 a), or in more abstract, as Figure 2b), where

the nodes represent the system calls executed, and a directed edge indicates a data

between two nodes, an attack can, say, provoke execution

NtCreateSection(SectionHandle = C, . . . , FileHandle = B) instead of

NtCreateFile(FileHandle = A, . . . , ObjectAttributes =“Sample.exe”),

We assume in this example that in the fragment in question the "Exit" state is formed

normally or "NtQueryInformationFile" is executed (assuming that after receiving

information about the file object we finish the sub-task in question), or

NtMapViewofSection, (which specified part of Section Object into process memory,

and play a role in bridging between source and destination system calls).

For example, in order to open a specific file and then write to it, a program

successively invokes NtCreateFile, NtCreateSection, NtMapViewofSection, and

NtWriteFile.

Intermediate system calls, namely, NtMapViewofSection, play a role in bridging

between source and destination system calls. In other words, system calls interact

with other system calls, whereas intermediate system calls pass information to

destination system calls (in particular, pass a file handle as a reference between

modules and subs).

Function NtMapViewOfSection maps specified part of Section Object into process

memory.

Using a methodology described in [11] we can receive a FSM, represented the

transitions of the system calls. Namely, in order to build the Mealy automaton, this

graph (considering each of vertexes as a state of an automaton) is rewritten as

“Algorithmic State Machine” [13] in Fig. 4, where each vertex Y1,..Y5 are some

abstractions of the operations which corresponding blocks of the program Fig.2

executing, the results of which are represented by output variables y1,..y5. Note, that

function of vertex Y5 in this representation is to synchronize the condition checking

(x1, corresponding to the conditional vertex 2 in the program (Fig.4)) only and the

result to form. The (ai,yi) pairs are the states and the automaton output variables of

the FSM (Fig.2(a)), and x1”, is the input variable of the automaton.

Then, in accordance with definition of malicious behavior by an attack mentioned

above, this attack altering the program flow graph (Fig.2 b)) is described in terms of

this automaton transitions as {(4,3)(4,2)}.

We think in this example that in the fragment of a normally functioning program, the

state "Exit" is formed when or "NtQueryInformationFile" is executed (assuming that

we are completing the task on obtaining the information about the file object), or

NtMapViewofSection, (which specified part of Section Object in process memory, for

interacting source and destination system calls).

In this case, we may represent this fragment as ASM-diagram corresponding to the

FSM.

Then, we could characterize the possibility to detect the attack using this path by

the probability of its activation. Obviously, this probability depends on the probability

of variable x1, which depends on whether it is produced in the normal functioning

“FileHandle = B” or “FileHandle = A”. That is the program’s input data play a role in

the abstraction of the program behavior by affecting the branching choice probability,

that is the probability that input data provide the choice just a given branch.

Note, that this altering of the target program’s control data, can be appeared, say,

as data that are loaded to processor program counter at some point in program

execution, or because of some reason the reference FileHandle B will be changed by

FileHandle A.

a) b)

Fig. 4. States transition table ((a)) and “Algorithmic State Machine” ((b)) of the

program Fig.1 corresponding to the FSM.

For example, let’s Prob (x1=1)=0.9, which is the probability that result of block 2

Fig. 2 b) activates the exit from the module. Then, probabilities that the output values

(say, y2 in Fig. 4b) of the program has already manifested itself to the given clock as

corrupted, what means the attack detection, can be obtained by the solution of the

above Markov chain is the following vector: PD = (0,0, 0.09, 0.091, 0.093, 0.1629,

0.1638), where the number of each position corresponds to the clock number minus 1

(the first component of the vector corresponds to the moment of failure and it is

considered as a zero index).

It means, that to the fourth clock of the automaton work, when the Exit will be

achieved the attack can be detected with probability about 0.09 only, that may be

turned out rather small, from the point of view security requirements to this program.

But If the probability of the condition Prob(x1=1) = 0.4. this probability is about 0.3,

that has essentially more chances to be detected.

Thus, the model reflects the dynamic of the program behavior.

However, in contrast to the Markov chain based model considered above, we can

indicate explicitly the specific transformation of the system calls sequence, and its

connection with change of a similarity metric (Jaccard, NED) as well.

Namely, basing on the considered probabilistic model of manifestation of the attack

effect, we can consider the following two aspects of the evaluation of the

effectiveness of malicious code detection.

1. We interpret the confidence in the successful detection of a program trace damaged

by this malicious attack, as the probability of its manifestation at the output of the

described virtual (hypothetical) machine. At the same time, a meaningful

interpretation of such an automatic representation is that changes in system calls

(which do not output the traceable code from an acceptable set of codes) will appear

in the trace at the moment corresponding to some timestamp (see Fig.1) of the trace.

Then, if in the normally functioning program takes place the condition “Go To

Exit” and if the program variable that controls this “Go To” act is checkable by an

built-in checker (which, suppose, convoys the program execution), the attack can be

detected in a point corresponding to the node “Exit” (Fig.2 b), e,g., if the program’s

code contains ”return 1”.

2. We consider the detection of malicious code, as the process of checking for

belonging to a particular cluster of malicious traces. Since the probability considered

above determines the frequency of possible appearances of traces corruption as a

result of the attacks, in order to fully characterize the security of the projected

software and hardware environment from malicious codes, it is interesting to relate

these probabilities to the probabilities of correct traces classification as malicious,

which is determined by distance (in a given metric) between the considered

(suspicious) trace and corresponding clusters of malicious program traces.

Since the probability of a correct trace classification as benign / malicious

(detection) is determined by the distance (in one or another metric) between original

and corrupted (= malicious) traces, we estimate this distance.

For example, let we deal with system calls without parameters (what is used rather

often), that is we consider a distance between the strings:

 X=LoadLibraryNtCreateFileNtQueryInformationFile (the left branch of the

Figure 2a), and

Y=LoadLibrary NtCreateSection NtmapViewOfSystem (the right branch).

Let us compute the Jaccard similarity, of their 3-gram representations:

 The 3-gram representation X3-gram of X:

while Y3-gram

Jaccard similarity of these 3-grams-representation:

 J_sim (X3-gram, Y3-gram) = 17/50

 With clustering based on hashing (Minhashing [1]), this metric represents the

probability of getting into the "own" cluster, which can be significantly increased due

to the proper choice of hash functions:

 p=1-(1-αr)b

where α is the similarity value (interpreted as a probability to get in the right

cluster), parameter of Min-hashing function (“signatures”) r control the filtering

effectiveness and b controls the approximation factor. i.e., the bigger the parameter r

is, the more non-similar strings are filtered, the bigger of b, the better approximation

to the real result.

Therefore, we should consider the probability of the result of the action of the

attack specified by the vector P considered above when specifying the requirements to

the specified hashing mechanism. At low detection probabilities in the hardware-

software environment (0.09, in the example), performing the attacked program, it is

necessary to perform the appropriate selection of the parameters r and b, namely, to

strive to provide more accuracy, by increasing the number of calculations (reducing

the filtering ability, checks of similarity of the tested trace with clusters, including

obviously non-similar traces) with α = 17/50.

 Accordingly, even in the second case, when the likelihood of the result of a

malicious attack is relatively high (0.4), the system developer may not look for

additional solutions for the attack detection, because in this case the probability of

detection is determined by probability only.

Otherwise, in the case of rather high similarity between original and corrupted traces

(say, for J_SIM = 0.8), the system developer could use the model information to reduce

the requirements to the clustering.

We consider the attacks effect (that is the malicious codes action) as the control-

data attack which alter the target program’s control data, say, as data that are loaded

to processor program counter at some point in program execution.

 We note that, as shown in our paper [7], that knowing Jaccard similarity, one can

estimate the boundaries for the NED values, which in many practical cases turn out to

be rather narrow.

4 Conclusion

This paper analyzes some modelling issues to the estimation of security risks of

programs due to malicious attacks, which is needed for rational choice and evaluation

of the attacks protection methods.

We consider both various probabilistic models and strings (set, graph) similarity-

based approaches to detect a malicious code. The structural model of the software

analyzed is a graph representation of the program execution traces, and therefore we

suggest and analyze an approach to estimation of security risks of the programs due to

malicious attacks which try to change the control flow of the program to corrupt the

program behavior.

It is shown the possibility to use a Markov model with two absorbing states defined

on direct product of the spaces of two finite state machines (FSM), one of which is a

program finite automaton model that is running under normal conditions, and second

is the same FSM in which at some point in time (depending on the considered

temporal discreteness) there was a failure due to external attacks (e.g., within the time

of a single operation, or a program's block execution).

A way of combination of both the similarity metrics (for example, the Edit

(Levenshtein) distance) between the dynamic traces of system calls, and the

probabilistic Markov effect attack models that are defined on the same traces for the

estimation of detection ability was considered.

Because of well-known problem of imbalance between malicious and benign system

calls traces, in our approach we do not assume that the given trace appeared as a result

of the performance of a benign program, but simply analyze the possibility to detect

some changes in the trace. In doing so, we assess the possibility of detecting these

distortions in the trace by comparing them with clusters into which the traces of

accumulated malicious programs are divided. And if in none of the classifications the

estimated trace does not fall, we deduce it from the category of suspicious.

 References

1. Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman, Mining of

massive datasets, Cambridge university press, 2014

2. Federico Maggi, Matteo Matteucci, and Stefano Zanero, Detecting Intrusions

through System Call Sequence and Argument Analysis, In Trans on Dependable and

secure computing, Volume: 7, Issue: 4, Oct.-Dec. 2010,pp.381-396

3. Malheur: Automatic Analysis of Malware Behavior, http://www.mlsec.org/malheur

4. Geoff Mazeroff, Victor De Cerqueira Jens Gregor Michael G. Thomason

Probabilistic Trees and Automata for Application Behavior Modeling, 41st ACM

Southeast Regional Conference Proceedings,pp.435-440

5. Feng Zhao, Hai Jin, Automated approach to instruction detection in VN-based

Dynamic execution environment, In Computing and Informatics, Vol. 31, 2012,

271–297.

6. Li Xie, Valery A. Ugrinovskii, and Ian R. Petersen, Probabilistic Distances

Between Finite-State Finite-Alphabet Hidden Markov Models, IEEE transaction on

automatic control, Vol. 50, No. 4, April 2005.

7. Dolev S., Ghanayim M., Binun A., Frenkel S., Sun Y.S. Relationship of Jaccard

and Edit Distance in Malware Clustering and Online Identification // Proceedings of

16th IEEE International Symposium on Network Computing and Applications, 2017.

P. 369–373.

8. Sergey Frenkel, Victor N. Zakharov: Brief Announcement: A Technique for

Software Robustness Analysis in Systems Exposed to Transient Faults and Attacks, in

CSCML 2017: 196-199, //Cyber Security Cryptography and Machine Learning, First

International Conference, CSCML 2017, Beer-Sheva, Israel, June 29-30, 2017,

Proceedings. Lecture Notes in Computer Science 10332, Springer 2017.

9. Jacob, G., Debar, H., Eric Filiol, Behavioral detection of malware: from a survey

towards an established taxonomy, J Comput Virol (2008) 4:251–266

10. Seeger, M. M., Using control-flow techniques in a security context: A survey

on common prototypes and their common weakness. In Network Computing and

Information Security (NCIS), 2011 International Conference on, volume 2, pages

133–137, May 2011.

http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5624749
http://dblp.uni-trier.de/pers/hd/z/Zakharov:Victor_N=
http://dblp.uni-trier.de/db/conf/cscml/cscml2017.html#FrenkelZ17
http://dblp.uni-trier.de/db/journals/lncs.html

11. Frenkel, S., Zakharov, V., Basok, B.: Technical report of FRC “Computer

Science and Control” of RAS, Moscow, Russia (2017),

http://www.ipiran.ru/publications/Tech_report.pdf

12. Jae-wook Jang, Jiyoung Woo, Aziz Mohaisen, Jaesung Yun, and Huy Kang

Kim, Mal-Netminer: Malware classification approach based on social network

analysis of system call graph, Mathematical Problems in Engineering

Volume 2015 (2015), Article ID 769624, 20 pages.

13. 3. Baranov, S.: ASMs in high level synthesis of EDA tool Abelite. In:

DESDes’09 Int. IFAC Workshop Proceedings. – Valensia, Spain, pp. 195–200 (2009)

http://www.ipiran.ru/publications/Tech_report.pdf
https://www.hindawi.com/29172647/
https://www.hindawi.com/53065798/
https://www.hindawi.com/84572310/
https://www.hindawi.com/41895174/
https://www.hindawi.com/82917029/
https://www.hindawi.com/82917029/

