Systems and Means of Informatics
2025, Volume 35, Issue 4, pp pp 129-142
MODERN METHODS OF EXTRACTING GEOGRAPHICAL KNOWLEDGE IN LARGE ARRAYS OF SPATIAL DATA
Abstract
The main spatial concepts of spatial data representation and a number of modern methods for analyzing and extracting geographical knowledge from geographic databases including current trends in the development of geographic artificial intelligence (AI) are presented. Searching for knowledge in geographical databases is a nontrivial process that requires understanding of fundamental geographical concepts taking into account the features of spatial or spatiotemporal representation of geoobjects and related specialized algorithms and which is difficult to implement using direct transfer of traditional methods of data mining. Geographical AI is a promising technology for intelligent spatial data processing for solving various tasks (such as clustering, classification, segmentation, interpolation, etc.), especially in the context of the analysis of spatial and temporal patterns. The results obtained should serve as a starting point for the development of new approaches to the extraction of geographical knowledge.
[+] References (26)
- Janowicz, K., S. Gao, G. McKenzie, Y. Hu, and B. Bhaduri. 2019. GeoAI: Spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond. Int. J. Geogr. Inf. Sci. 34(4):625-636.doi: 10.1080/13658816.2019.1684500.
- Mennis, J., and D. Guo. 2009. Spatial data mining and geographic knowledge discovery - an introduction. Comput. Environ. Urban 33(6):403-408. doi: 10.1016/j .compenvurbsys .2009.11.001.
- Miller, H., and J. Han. 2009. Geographic data mining and knowledge discovery: An overview. Geographic data mining and knowledge discovery. Eds. H. Miller and J. Han. CRC Press, Taylor and Francis Group. 1-26.
- Nikishin, D. A. 2023. Napravleniya razvitiya metodologicheskoy bazy dlya raboty s geodannymi v perspektivnykh geoinformatsionnykh sistemakh [Directions of development of the methodological base for working with geodata in promising geoinformation systems]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 33(2):34-45. doi: 10.14357/08696527230204.EDN: YRDRJY.
- Rinzivillo, S., F. Turini, V. Bogorny, C. Korner, B. Kuijpers, and M. May. 2008. Knowledge discovery from geographical data. Mobility, data mining and privacy. Eds. F. Giannotti and D. Pedreschi. Berlin, Heidelberg: Springer. 243-265. doi: 10.1007/978-3-540-75177-9-10.
- Ester, M., J. Sander, H.-P. Kriegel, and X. Xu. 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. 2nd Conference (International) on Knowledge Discovery and Data Mining Proceedings. AAAI Press. 226-231. doi: 10.5555/3001460.3001507.
- Ester, M., H.-P. Kriegel, and J. Sander. 1997. Spatial data mining: A database approach. Advances in spatial databases. Eds. M. Scholl and A. Voisard. Lecture notes in computer science ser. Berlin: Springer-Verlag. 1262:47-66. doi: 10.1007/3-540- 63238-7-24.
- Cleve, C., M. Kelly, F.R. Kearns, and M. Moritz. 2008. Classification of the wildland-urban interface: A comparison of pixel- and object-based classifications using high-resolution aerial photography. Comput. Environ. Urban 32(4):317-326. doi: 10.1016/j .compenvurbsys .2007.10.001.
- Griffith, D. 2004. Faster maximum likelihood estimation of very large spatial autoregressive models: An extension of the Smirnov-Anselin result. J. Stat. Comput. Sim. 74(12):855{866. doi: 10.1080/00949650410001650126.
- How Kriging works. 2021. ESRI. ArcMap 10.8: Tool reference. Available
at: https://desktop.arcgis.com/en/arcmap/latest/tools/3d-analyst-toolbox/how-
kriging-works.htm (accessed November 18, 2025).
- Nikishin, D.A. 2022. Obzor podkhodov k prostranstvenno-vremennomu modelirovaniyu i vyyavlenie osnovnykh tendentsiy razvitiya T-GIS [Overview of approaches to space-time modeling and the main trends in the development of T-GIS]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 32(3):50{62. doi:
10.14357/08696527220305. EDN: TOWSDH.
- Janowicz, K., F. van Harmelen, J. A. Hendler, and P. Hitzler. 2015. Why the data train needs semantic rails. AI Mag. 36(1):5-14. doi: 10.1609/aimag.v36i1.2560.
- Dulin, S. K., N. G. Dulina, and O. S. Kozhunova. 2019. Sintez geodannykh v prostranstvennykh infrastrukturakh na osnove svyazannykh dannykh [Synthesis of geodata in spatial infrastructures based on related data]. Informatika i ee Primeneniya - Inform. Appl. 13(1):82{90. doi: 10.14357/19922264190112.EDN: ZASZIT.
- Dulin, S. K., I. N. Rozenberg, and V. I. Umanskiy. 2019. O probleme integratsii informatsionnykh resursov [About the problem of information resources integration]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 29(3):127-138. doi: 10.14357/08696527190311. EDN: PGJIFL.
- Gao, S., IK Janowicz, D. R. Montello, Y. Hu, J.-A. Yang, G. McKenzie, Y. Ju, L. Gong, B.Adams, and B. Yan. 2017. A data-synthesis-driven method for detecting and extracting vague cognitive regions. Int. J. Geogr. Inf. Sci. 31(6):1245-1271. doi: 10.1080/13658816.2016.1273357.
- Iskusstvennyy intellekt v GIS [Artificial Intelligence in GIS]. KB "Panorama" [KB Panorama]. Available at: https://www.gistoolkit.com/download/prezents/ gisartintelligence.pdf (accessed November 18, 2025).
- Li, W., and C.-Y. Hsu. 2020. Automated terrain feature identification from remote sensing imagery: A deep learning approach. Int. J. Geogr. Inf. Sci. 34(4):637{660. doi: 10.1080/13658816.2018.1542697.
- Xie, Y., J. Cai, R. Bhojwani, S. Shekhar, and J. Knight. 2020. A locally-constrained YOLO framework for detecting small and densely-distributed building footprints. Int. J. Geogr. Inf. Sci. 34(4):777{801. doi: 10.1080/13658816.2019.1624761.
- Guo, Z., and C.-C. Feng. 2020. Using multi-scale and hierarchical deep convolutional features for 3D semantic classification of TLS point clouds. Int. J. Geogr. Inf. Sci. 34(4):661-680. doi: 10.1080/13658816.2018.1552790.
- Acheson, E., M. Volpi, and R. S. Purves. 2020. Machine learning for crossgazetteer matching of natural features. Int. J. Geogr. Inf. Sci. 34(4):708{734. doi: 10.1080/13658816.2019.1599123.
- Ballatore, A., M. Bertolotto, and D. C. Wilson. 2013. Geographic knowledge extraction and semantic similarity in OpenStreetMap. Knowl. Inf. Syst. 37(1):61-81. doi: 10.1007/s10115-012-0571 -0.
- Regalia, B., G. McKenzie, S. Gao, and K. Janowicz. 2016. Crowdsensing smart ambient environments and services. T. GIS 20(3):382-398. doi: 10.1111/tgis. 12233.
- Mai, G., K. Janowicz, B. Yan, and S. Scheider. 2019. Deeply integrating linked data with geographic information systems. T. GIS 23(3):579{600. doi: 10.1111/tgis. 12538.
- Yan, B., K. Janowicz, G. Mai, and R. Zhu. 2019. A spatially explicit reinforcement learning model for geographic knowledge graph summarization. T. GIS 23(3):620{640. doi: 10.1111/tgis. 12547.
- Janowicz, K., G. McKenzie, Y. Hu, R. Zhu, and S. Gao. 2019. Chapter 3: Using semantic signatures for social sensing in urban environments. Mobility patterns, big data and transport analytics: Tools and applications for modeling. Eds. C. Antoniou, L. Dimitriou, and F. Pereira. Elsevier. 3G54. doi: 10.1016/B978-0-12-812970- 8.00003-8.
- Resch, B., A. Summa, G. Sagl, P. Zeile, and J.-P. Exner. 2015. Urban emotions - geosemantic emotion extraction from technical sensors, human sensors and crowdsourced data. Progress in location-based services. Eds. G. Gartner and H. Huang. Springer. 199-212. doi: 10.1007/978-3-319-11879-6.14.
[+] About this article
Title
MODERN METHODS OF EXTRACTING GEOGRAPHICAL KNOWLEDGE IN LARGE ARRAYS OF SPATIAL DATA
Journal
Systems and Means of Informatics
Volume 35, Issue 4, pp 129-142
Cover Date
2025-12-25
DOI
10.14357/08696527250409
Print ISSN
0869-6527
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
geodata; geographical databases; methods of extracting geographical knowledge; geographical artificial intelligence
Authors
D. A. Nikishin
Author Affiliations
 Federal Research Center "Computer Science and Control", Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|