Systems and Means of Informatics
2025, Volume 35, Issue 4, pp pp 111-128
MAPPING OF KHABAROVSK KRAI ARABLE LANDS USING METEOR-M NO. 2 SATELLITE DATA
- A. S. Stepanov
- L. V. Illarionova
- K. N. Dubrovin
- E. A. Fomina
- A.L. Verkhoturov
Abstract
The article considers the possibility of using weekly composite images from the Meteor-M No. 2 satellite to classify arable lands in Khabarovsk Krai. For four vegetation classes (soybeans, grain crops, perennial grasses, and fallow land), average Normalized Difference Vegetation Index (NDVI) seasonal variation series were constructed for municipal districts in the south of Khabarovsk Krai in 2024 and the main characteristics - the NDVI maximum values and the day of the maximum - were calculated. Statistically significant differences in the indicators for the average NDVI time series for different vegetation classes were revealed (p < 0.0001). Using validated data from Khabarovsk KRAI, a classification of arable lands in the Bikinsky, Vyazemsky, and Lazovsky Districts was conducted using machine learning (the Random Forest algorithm). The average accuracy of the method based on the results of three-fold cross-validation was equal to 87.6%. For different vegetation classes, the F1 metric value ranged from 0.61 to 0.93. Arable land maps were created for the southern regions of Khabarovsk Krai. It was found that fallow land accounts for over 30% of the region's total arable land area, while soybean crops accounted for 48% in 2024. The mapping results were entered into the developed geographic information system.
[+] References (18)
- Weiss, M., F. Jacob, and G. Duveiller. 2020. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 236:111402. doi: 10.1016/j.rse. 2019.111402.
- Karmakar, P., S.W. Teng, M. Murshed, S. Pang, Y. Li, and H. Lin. 2024. Crop monitoring by multimodal remote sensing: A review. Remote Sensing Applications Society Environment 33:101093. 15 p. doi: 10.1016/j.rsase.2023.101093.
- Nikishin, D. A. 2024. Modelirovanie dinamicheskikh geoob"ektov na osnove kontseptsii fazovoy variantnosti [An approach to modeling dynamic geoobjects based on the concept of phase variation]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 34(2):95-106. doi: 10.14357/08696527240207. EDN: GCJQET.
- Arkhipov, P. O., and S.L. Philippskih. 2023. Raspoznavanie anomaliy na raznovremennykh panoramakh s ispol'zovaniem neyrosetevogo metoda konsolidatsii modeley [Recognition of anomalies on multitime panoramas using the neural network method of model amalgamation]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 33(2): 13-24. doi: 10.14357/08696527230202. EDN: TSMYNA.
- Rozenberg, I. N., S. K. Dulin, and N. G. Dulina. 2022. Geoinformatsionnaya sistema - instrument tsifrovoy transformatsii geodannykh [Geographic information system - tool for digital geodata transformation]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 32(1):46-54. doi: 10.14357/08696527220104. EDN: SJGRML.
- Prokhorets, I.O., and A. S. Stepanov. 2024. Kartografirovanie zemel' sel'skokhozyaystvennogo naznacheniya Khabarovskogo kraya metodami mashinnogo obucheniya s ispol'zovaniem izobrazheniy [Mapping of the Khabarovsk Region arable lands by machine learning using Sentinel-2 images]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 34(1):57-69. doi: 10.14357/08696527240105. EDN: YEZNXD.
- Lysenko, M.N., and P.N. Lozhkovoj. 2022. Ispol'zovanie sputnikov dlya distantsionnogo zondirovaniya Zemli: problemy i perspektivy [Usage of satellites for the Earth remote sensing: Problems and prospects]. Zh. Sibirskogo federal'nogo universiteta. Ser. Gumanitarnye nauki [J. Siberian Federal University. Humanities and Social Sciences] 15(12): 1763-1767. doi: 10.17516/1997-1370-0950. EDN: EQTEVT.
- Wang, L., J. Wang, Z. Liu, J. Zhu, and F. Qin. 2022. Evaluation of a deep-learning model for multispectral remote sensing of land use and crop classification. Crop J. 10(5): 1435-1451. doi: 10.1016/j.cj.2022.01.009.
- Xia, C., and Y. Zhang. 2022. Comparison of the use of Landsat 8, Sentinel-2, and Gaofen-2 images for mapping soil pH in Dehui, Northeastern China. Ecol. Inform. 70:101705. doi: 10.1016/j.ecoinf.2022.101705.
- Pascual, I., R. Edrosa, F. Machado, and M. Thiebault. 2024. Operational crop classification with Saocom L-band SAR images in the Pampas Region, Argentina. IEEE Biennial Congress of Argentina Proceedings. IEEE. Art. 10735849. 7 p. doi: 10.1109/ARGENCON62399.2024.10735849.
- Plotnikov, D., P. Kolbudaev, A. Matveev, A. Proshin, and I. Polyanskiy. 2023. Accuracy assessment of atmospheric correction of KMSS-2 Meteor-M #2.2 data over Northern Eurasia. Remote Sensing 15(18):4395. 18 p. doi: 10.3390/rs15184395.
- Polyanskiy, I.V., B. S. Zhukov, T.V. Kondratieva, S.A. Prokhorova, and P. S. Smetanin. 2019. Kompleks mnogozonal'noy sputnikovoy s"emki srednego razresheniya dlya gidrometeorologicheskikh kosmicheskikh apparatov [Medium-resolution multispectral satellite imaging system for hygrometeorological spacecraft]. Sovremennye roblemy distantsionnogo zondirovaniya Zemli iz kosmosa [Modern Problems of Remote Sensing of the Earth from Space] 16(6):83{92. doi: 10.21046/2070-7401-2019-16-6- 83-92. EDN: DMKHCB.
- Kashnitskii, A.V., E.A. Loupian, D.E. Plotnikov, and V.A. Tolpin. 2023. Analiz vozmozhnosti ispol'zovaniya dannykh razlichnogo prostranstvennogo razresheniya pri provedenii monitoringa ob"ektov [Analysis of the possibility of using different spatial resolution data for objects monitoring]. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa [Modern Problems of Remote Sensing of the Earth from Space] 20(2):60-74. doi: 10.21046/2070-7401-2023-20-2-60-74. EDN: CCHNYC.
- Kolbudaev, P. A., D. E. Plotnikov, E. A. Loupian, A. A. Proshin, and A. M. Matveev. 2021. The methods and automatic technology aimed at imagery georeferencing, cloud screening, atmospheric and radiometric correction of KMSS-M satellite data. E3S Web Conf. 333:01006. 5 p. doi: 10.1051/e3sconf/202133301006.
- Illarionova, L. V., A. S. Stepanov, K.N., Dubrovin, et al. 2025. Opyt ispol'zovaniya dannykh pribora KMSS KA "Meteor-M" ¹ 2 dlya zadach monitoringa sel'skokhozyaystvennykh ugodiy yuga Khabarovskogo kraya [Experience of using data from the Meteor-M No. 2 KMSS sensor for cropland monitoring in the south of Khabarovsk Krai]. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kos- mosa [Modern Problems of Remote Sensing of the Earth from Space] 22(1):81{92. doi: 10.21046/2070-7401-2025-22-1-81-92. EDN: DHELYQ.
- Loupian, E. A., A. A. Proshin, M. A. Bourtsev, et al. 2019. Opyt ekspluatatsii i razvitiya tsentra kollektivnogo pol'zovaniya sistemami arkhivatsii, obrabotki i analiza sputnikovykh dannykh (TsKP "IKI Monitoring" [Experience of development and operation of the IKI-Monitoring center for collective use of systems for archiving, processing and analyzing satellite data]. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa [Modern Problems of Remote Sensing of the Earth from Space] 16(3):151-170. doi: 10.21046/2070-7401-2019-16-3-151-170.EDN: OVWKZV.
- Illarionova, L., A. Stepanov, E. Fomina, K. Dubrovin, and A. Bordakov. 2024. Programmnyy kompleks avtomatizirovannoy obrabotki kompozitnykh izobrazheniy sputnika Meteor dlya polucheniya sezonnykh vremennykh ryadov NDVI dlya sel'khozugodiy Khabarovskogo kraya [A software package for automated processing of Meteor satellite composite images to obtain seasonal NDVI time series for agricultural lands in Khabarovsk Krai]. Certificate RF of State Registration of Computer Programs No. 2024684901. EDN: NRNGOJ.
- Fedoseev, D. V., A. S. Stepanov, L. V. Illarionova, V. A. Eliseev, I. O. Prokhorets, A.N. Frolov, and A. I. Shamurina. 2024. Razrabotka informatsionnoy sistemy dlya khraneniya i obrabotki rezul'tatov monitoringa sel'skokhozyaystvennykh ugodiy yuga Dal'nego Vostoka [Development of information system for storing and processing the results of agricultural land monitoring in the south of the Far East]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 34(1):44-56. doi: 10.14357/08696527240104. EDN: XPPVVV.
[+] About this article
Title
MAPPING OF KHABAROVSK KRAI ARABLE LANDS USING METEOR-M NO. 2 SATELLITE DATA
Journal
Systems and Means of Informatics
Volume 35, Issue 4, pp 111-128
Cover Date
2025-12-25
DOI
10.14357/08696527250408
Print ISSN
0869-6527
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
cropland; machine learning; classification; satellite monitoring; GIS
Authors
A. S. Stepanov  , L. V. Illarionova  , K. N. Dubrovin  , E. A. Fomina  ,
and A.L. Verkhoturov
Author Affiliations
 Far Eastern Research Institute of Agriculture, 13 Klubnaya Str., Vostochnoe 680521, Khabarovsk Krai, Russian Federation
 Computing Center of the Far Eastern Branch of the Russian Academy of Sciences, 65 Kim Yu Chen Str., Khabarovsk 680000, Russian Federation
|