Systems and Means of Informatics
2025, Volume 35, Issue 4, pp pp 73-91
METAHEURISTIC OPTIMIZATION ALGORITHMS OF PARAMETRIC IDENTIFICATION OF A THREE-DIMENSIONAL MODEL FOR REDUCING THE FATIGUE STIFFNESS OF COMPOSITE MATERIALS
- A. V. Panteleev
- N. V. Turbin
- I. S. Nadorov
- N. O. Kononov
Abstract
The article explores the application of modern metaheuristic optimization algorithms to determine the parameters of new mathematical models describing experimental results. The subject of the study was the property of composite materials used in aircraft construction to lose fatigue stiffness during operation. For mathematical modeling of stiffness degradation, a system of three ordinary differential equations describing the characteristic stages of the process is proposed. To find the parameters of the right-hand sides of the equations, two constrained optimization problems are solved minimizing the deviations of the equation solutions from known composite material test results. The solutions to the equations are found using classical explicit numerical integration methods of varying orders of accuracy. For parametric identification, i. e., finding the values of the parameters of the right-hand sides of the differential equations based on test results, it is proposed to use metaheuristic optimization methods: a modified method simulating the behavior of a swarm of moths as well as a random search method with sequential reduction of the study area. Numerical results of the study of a specific composite material are presented illustrating the effectiveness of the proposed approach.
[+] References (18)
- Shokrieh, M.M., and L.B. Lessard. 2000. Progressive fatigue damage modeling of composite materials. Part I: Modeling. J. Compos. Mater. 34(13):1056M080. doi:10.1177/002199830003401301.
- Van Paepegem, W. 2002. Development and finite element implementation of a damage model for fatigue of fibre-reinforced polymers. Ghent, Belgium: Ghent University Architectural and Engineering Press. 395 p.
- Turbin, N. V., and K. A. Shelkov. 2023. Numerical study of fatigue damage accumulation in composite wing panels of prospective supersonic transport aircraft. Aerospace Systems 6:48U490. doi: 10.1007/s42401-023-00200-1.
- Shramko, K.K., N. O. Kononov, A. E. Lutoshkina, and A.V. Shadrinov. 2023. Computational estimate of the initial damage effect on the fatigue strength of composite materials. J. Composites Science 7(10):438. 15 p. doi: 10.3390/jcs7100438.
- Brunbauer, J., F. Arbeiter, S. Stelzer, and G. Pinter. 2014. Stiffness based fatigue characterisation of CFRP. Adv. Mat. Res. 891-892/66G71. doi: 10.4028/www.scientific.net /AMR.891-892.166.
- Whitworth, H. A. 1997. A stiffness degradation model for composite laminates under fatigue loading. Compos. Struct. 40(2):95{101. doi: 10.1016/S0263-8223(97)00142-6.
- Abgaryan, K. K., and A. A. Zhuravlev. 2022. Metody mnogomasshtabnogo modelirovaniya v zadachakh tsifrovogo materialovedeniya [Methods of multiscale modeling in the problems of digital materials science]. Moscow: MAX Press. 120 p. doi: 10.29003/m3138.978-5-317-06870-7. EDN: ASHFBK.
- Abgaryan, K. K., N. L. Zagordan, and Y. D. Mochalova. 2023. Metod komp'yuternogo modelirovaniya uprugikh kharakteristik mnogosloynykh kompozitsionnykh materialov [Method for computer modeling of elastic characteristics of multilayer composite materials]. Sistemy i Sredstva Informatiki | Systems and Means of Informatics 33(4):92{101. doi: 10.14357/08696527230409. EDN: DPZJSX.
- Panteleev, A. V., N. V. Turbin, I. S. Nadorov, and N. O. Kononov. 2024. Parametricheskaya identifikatsiya koeffitsientov modeli ustalostnoy degradatsii zhestkosti kompozitsionnogo materiala [Parametric identification of coefficients for a model of fatigue stiffness degradation of a composite material]. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie [Vestnik of Samara University. Aerospace and Mechanical Engineering] 23(3):119{131. doi: 10.18287/2541 - 7533-2024-23-3-119-131. EDN: NQKXWU.
- Floudas, C.A., and P. M. Pardalos, eds. 2009. Encyclopedia of optimization. New York, NY: Springer. 4646 p.
- Gendreau, M., and J.-Y. Potvin, eds. 2019. Handbook of metaheuristics. New York, NY: Springer. 610 p. doi: 10.1007/978-3-319-91086-4.
- Locatelli, M., and F. Schoen. 2021. (Global) optimization: Historical notes and recent developments. EURO J. Computational Optimization 9:100012. 15 p. doi: 10.1016/j .ejco.2021.100012.
- Mirjalili, S. 2015. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 89:228{249. doi: 10.10.16/i.knosys2015.07.006.
- Del Ser, J., E. Osaba, D. Molina, X.-S. Yang, S. Salcedo-Sanz, D. Camacho, S. Das, P. N. Suganthan, C. A. Coello Coello, and F. Herrera. 2019. Bio-inspired computation: Where we stand and what's next. Swarm Evol. Comput. 48:220{250. doi: 10.1016/j.swevo.2019.04.008.
- Niculina Dragoi, E., and V. Dafinescu. 2021. Review of metaheuristics inspired from the animal kingdom. Mathematics 9(18):2335. 52 p. doi: 10.3390/math9182335.
- Luus, R. 2000. Iterative dynamic programming. London, U.K.: Chapman & Hal/CRC. 344 p.
- Rosatom. Kompozitnye tekhnologii [Composite Technologies]. Available at: https://umatex.com/production/prepreg/?ysclid=mbi5471jgr741612511 (accessed November 12, 2025).
- Panteleev, A.V., and I. S. Nadorov. 2025. Primenenie modifikatsii metoda, imitiruyushchego povedenie stai motyl'kov, dlya resheniya zadachi optimal'nogo programmnogo upravleniya mobil'nym robotom [Application of the modified method simulating the behavior of a flock of moths to solve the optimal open loop control problem of a mobile robot movement]. Modelirovanie i analiz dannykh [Modeling and Data Analysis] 15(1):81-109. doi: 10.17759/mda.2025150105.EDN: PPGMJB.
[+] About this article
Title
METAHEURISTIC OPTIMIZATION ALGORITHMS OF PARAMETRIC IDENTIFICATION OF A THREE-DIMENSIONAL MODEL FOR REDUCING THE FATIGUE STIFFNESS OF COMPOSITE MATERIALS
Journal
Systems and Means of Informatics
Volume 35, Issue 4, pp 73-91
Cover Date
2025-12-25
DOI
10.14357/08696527250406
Print ISSN
0869-6527
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
metaheuristic optimization algorithms; moth swarm behavior simulating method; damage model; composite materials
Authors
A. V. Panteleev  , N. V. Turbin  , I. S. Nadorov  , and N. O. Kononov
Author Affiliations
 Moscow Aviation Institute (National Research University), 4 Volokolamskoe Shosse, Moscow 125933, Russian Federation
|