Systems and Means of Informatics
2025, Volume 35, Issue 4, pp 33-44
NEURO-FUZZY MODEL AND PRECEDENT EXPERT SYSTEM OF THE TRANSFORMATIONAL HYBRID INTELLIGENCE FOR PREDICTING OUTCOMES OF THE ACUTE PANCREATITIS
Abstract
In polymorbid and polyetiological diseases with complex clinical presentations and phasic progression such as acute pancreatitis, the development of infectious complications combined with inadequate treatment strategies and surgical interventions can lead to mortality rates reaching 100%. Improving outcomes for patients with acute pancreatitis requires the early prediction of infectious complications and potential lethal outcomes to identify the most severe patient cohort for timely comprehensive intensive therapy and adequate surgical treatment. Current diagnostic methods and approaches are maximally informative only by the end of the second to third days. However, the highest therapeutic efficacy is observed within the first 24-48 h. Thus, transitioning to personalized integrated prediction algorithms is critical. The paper presents the results of the developing a heterogeneous field of models within the transformational model designed as a "neuro-fuzzy-case-based expert system. This model is the part of the future cooperative self-adjusting hybrid intelligent systems for personalized patient state assessment (the case of acute pancreatitis).
[+] References (21)
- Pokrovskiy, V. I., ed. 1996. Malaya meditsinskaya entsiklopediya [Small medical encyclopedia]. Moscow: Meditsina. 5:44.
- Rumovskaya, S., and F. Paramzin. 2024. Virtual training simulator and medical decision support for personalized assessment of severity and prediction of the patients' state (the case of acute pancreatitis): Investigation of the problem area and identification of the problem. 4th Conference (International) on Technology Enhanced Learning in Higher Education Proceedings. IEEE. 100-105. doi: 10.1109/TELE62556.2024.10605702.
- Rumovskaya, S.B. 2024. Intellektual'nye sistemy podderzhki prinyatiya resheniy v meditsine: ponyatie, problemy, podkhody k razrabotke [Intelligent decision support systems in medicine: Concept, problems, and approaches to the development]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 34(2): 107-122. doi: 10.14357/08696527240208. EDN: IJDVVV.
- Krivenko, M.P. 2021. Myagkie vychisleniya v zadachakh meditsinskoy diagnostiki [Soft computing in problems of medical diagnostics]. Informatika i ee Primeneniya - Inform. Appl. 15(2):52-59. doi: 10.14357/19922264210208. EDN: VFNFRR.
- Rumovskaya, S. B., and I. A. Kirikov. 2022. Modelirovanie vyrabotki polnogo rannego differentsial'nogo diagnoza i prognoza sostoyaniya slozhnykh ob"ektov v meditsine. Problemy i perspektivy [Modeling of the development of a complete early differential diagnosis and prognosis of the state of complex objects in medicine. Problems and prospects]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 32(3):26-35. doi: 10.14357/08696527220303.EDN: FWJRWB.
- Rumovskaya, S.B., and F.N. Paramzin. 2024. Kooperativnye samonastraivayushchiesya gibridnye intellektual'nye sistemy personalizirovannoy diagnostiki i prognozirovaniya v meditsine: kontseptsiya, podkhod k razrabotke, dekompozitsiya
problem [Cooperative self-configuring hybrid intelligent systems for personalized diagnostics and prognosis in medicine: Conceptual idea, development approach, and problem decomposition]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 34(4/59^2. doi: 10.14357/08696527240405. EDN: YLQTQU.
- Rumovskaya, S., S. Listopad, and A. Luchko. 2024. Study of functional and instrumental heterogeneity of the problem of assessing the patients' body state. 6th Conference (International ) on Control Systems, Mathematical Modeling, Automation and Energy Efficiency Proceedings. IEEE. 724^30. doi: 10.1109/SUMMA64428.2024.10803724.
- Pospelov, D.A., and O. P. Kuznetsov. 1996. Znaniya i rassuzhdeniya v gumanitarnykh naukakh [Knowledge and reasoning in the humanities]. Novosti iskusstvennogo intellekta [Artificial Intelligence News] 2:93{98. EDN: CAGIAQ.
- Ministerstvo zdravookhraneniya Rossiyskoy Federatsii [Ministry of Health of the Russian Federation]. 2024. Klinicheskie rekomendatsii. Ostryy pankreatit [Clinical guidelines. Acute pancreatitis]. Available at: https://cr.minzdrav.gov.ru/view-cr/903_l (accessed October 17, 2025).
- Topchiev, M.A., E.A. Kchibekov, D. S. Parshin, et al. 2017. Ostryy pankreatit: kompleksnaya diagnostika, prognozirovanie oslozhneniy i lechenie [Acute pancreatitis: Complex diagnosis, prediction of complications, and treatment]. Astrakhan: AGMU. 120 p. EDN: WTCHRT.
- Grekova, N. M., V.N. Bordunovskiy, Yu.V. Naymushina, and A. G. Bukhvalov. 2019. Ostryy pankreatit [Acute pancreatitis]. Chelyabinsk: Uralpoliservis. 96p. EDN: AYYFDU.
- Popandopulo, K. I., V. A. Avakimyan, S. V. Avakimyan, et al. 2020. Ostrye i khronicheskie zabolevaniya podzheludochnoy zhelezy [Acute and chronic diseases of the pancreas]. Krasnodar: KubGMU Minzdrava Rossii. 105 p. EDN: VEWCSV.
- Emmanouilidis, C., A. Hunter, and J. MacIntyre. 2000. A multiobjective evolutionary setting for feature selection and a commonality-based crossover operator. Congress (International) on Evolutionary Computation Proceedings. IEEE. 1:309{316. doi: 10.1109/CEC.2000.870311.
- Hamon, J., E. Gael, R. Dassonneville, J. Jacques, and C. Dhaenens. 2015. Use of a novel evolutionary algorithm for genomic selection. Available at: https://hal.inria.fr/hal-01100660 (accessed October 17, 2025).
- Jourdan, L., C. Dhaenens, E.-G. Talbi, and S. Gallina. 2002. A data mining approach to discover genetic and environmental factors involved in multifactorial diseases. Knowl.-Based Syst. 15(4):235{242. doi: 10.1016/S0950-7051(01)00145-9.
- Turabieh, H. 2016. GA-based feature selection with ANFIS approach to breast cancer recurrence. Int. J. Computer Science Issues 13(1):36{41. doi: 10.20943/IJCSI- 201602-3641.
- Novikova, V. A., E. Yu. Andreeva, and D.K. Tuykina. 2004. Iskusstvennyy intellekt i ekspertnye sistemy [Artificial intelligence and expert systems]. Kursk: KGU. 45 p.
- Jang, J.-S. R. 1993. ANFIS: Adaptive-network-based fuzzy inference systems. IEEE T. Syst. Man Cyb. 23(3/665^85. doi: 10.1109/21.256541.
- Negnevitsky, M. 2005. Artificial intelligence: A guide to intelligent systems. Reading, MA: Addison-Wesley: Pearson Education. 415 p.
- Minsky, M. 1979. A framework for representing knowledge. Frame conceptions and text understanding. Ed. D. Metzing. Berlin, Boston: De Gruyter. 1{25. doi: 10.1515/9783110858778-003.
- Zabezhailo, M. I., A. A. Grusho, N. A. Grusho, and E. E. Timonina. 2021. Podderzhka resheniya zadach diagnosticheskogo tipa [Support for solving diagnostic type problems]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 31(1):69- 81. doi: 10.14357/08696527210106. EDN: DMYQIG.
[+] About this article
Title
NEURO-FUZZY MODEL AND PRECEDENT EXPERT SYSTEM OF THE TRANSFORMATIONAL HYBRID INTELLIGENCE FOR PREDICTING OUTCOMES OF THE ACUTE PANCREATITIS
Journal
Systems and Means of Informatics
Volume 35, Issue 4, pp 33-44
Cover Date
2025-12-25
DOI
10.14357/08696527250403
Print ISSN
0869-6527
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
hybrid intelligent system; neuro-fuzzy system; precedent expert system; predicting in medicine; acute pancreatitis
Authors
S. B. Rumovskaya
Author Affiliations
 Federal Research Center "Computer Science and Control", Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|