Systems and Means of Informatics
2025, Volume 35, Issue 4, pp 4-19
TEMPLATE METHOD IN SYNTHESIS OF SELF-TIMED DIGITAL CIRCUITS
- L. P. Plekhanov
- Yu. G. Diachenko
- D. V. Khilko
- G. A. Orlov
Abstract
The article considers the problem of self-timed (ST) digital circuit design automation. Self-timed circuits are an alternative to the synchronous ones.
In spite of significant advantages, especially in terms of operational reliability in a wide range of operating conditions under the influence of unfavorable factors,
ST circuits have not yet found wide application. In part, this is due to the complexity of their design which requires a specific approach and consideration of the ST circuit's functioning discipline features. The greatest difficulty is the formalization and automation of sequential ST unit synthesis. For this purpose, it is proposed to use the template method. It includes an analysis of the synchronous counterpart's original description of the synthesized ST circuit using Yosys, the open-source logical synthesizer of synchronous circuits, searching for fragments implemented by units with memory, and replacing them with preprepared templates, namely, ST Verilog descriptions of sequential units adequate to the prototype in terms of operational features. The templates contain the synchronous and ST implementations of the corresponding units. The article provides template examples and describes the method of their application in the process of converting the original synchronous description of the synthesized circuit into an ST Verilog description. Substituting templates into the synthesized circuit description eliminates the need for their individual synthesis taking into account the specifics of the ST circuits. The proposed approach ensures minimal hardware costs and optimal performance and guarantees the ST nature of the resulting circuit implementations of digital units.
[+] References (33)
- Varshavskiy, V. I., V. A. Kishinevskiy, V. B. Marakhovskiy, et al. 1986. Avtomatnoe upravlenie asinkhronnymi protsessami v EVM i diskretnykh sistemakh [Automata control of asynchronous processes in computers and discrete systems]. Ed. V. I. Varshavskiy. Moscow: Nauka. 400 p. doi: 10.13140/RG.2.1.2230.6644.
- Fant, K. M. 2005. Logically determined design: Clockless system design with NULL convention logic. Hoboken, NJ: John Wiley & Sons. 292 p. doi: 10.1002/0471702897.
- Plekhanov, L. P., and Yu. A. Stepchenkov. 2006. Eksperimental'naya proverka nekotorykh svoystv strogo samosinkhronnykh skhem [Experimental verification of some properties of strictly self-timed circuits]. Sistemy i Sredstva Informatiki | Systems and Means of Informatics 16:476{485. EDN: KZUWOX.
- Sokolov, I. A., Yu. A. Stepchenkov, Yu. G. Diachenko, and Yu.V. Rogdestvenski. 2022. Otsenka nadezhnosti sinkhronnogo i samosinkhronnogo konveyerov [Synchronous and self-timed pipeline's reliability estimation]. Informatika i ee Primeneniya - Inform. Appl. 16(4):2{7. doi: 10.14357/19922264220401. EDN: GWXJHM.
- Yoshikawa, S., S. Sannomiya, M. Iwata, and H. Nishikawa. 2020. Pipeline stage level simulation method for self-timed data-driven processor on FPGA. 8th Electrical Engineering Congress (International) Proceedings. Piscataway, NJ: IEEE. Art. 229515. 5 p. doi: 10.1109/iEECON48109.2020.229515.
- Chikarenko, S. K., K. M. Ivanova, A. Y. Skornyakova, and S. F. Tyurin. 2021. Selftimed FPGA design perspectives. Conference (International) on Information and Digital Technologies Proceedings. IEEE. 106-112. doi: 10.1109/IDT52577.2021. 9497620.
- Kushnerov, A., M. Medina, and A. Yakovlev. 2021. Towards hazard-free multiplexer based implementation of self-timed circuits. 27th Symposium (International) on Asynchronous Circuits and Systems Proceedings. Piscataway, NJ: IEEE. 17{24. doi:
10.1109/ASYNC48570.2021.00011.
- Nautiyal, V., G. Singla, B. Maiti, and M. Kinkade. 2021. Self-timed write aid circuit for tall memories in advanced CMOS technologies. IEEE Symposium (International) on Circuits and Systems Proceedings. IEEE. Art. 9401420. 4 p. doi: 10.1109/ISCAS51556.2021.9401420.
- Cortadella, J., M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev. 1997. Petrify: A tool for manipulating concurrent specifications and synthesis of asynchronous controllers. IEICE T. Inf. Syst. E80-D(3):315{325.
- Edwards, D., and A. Bardsley. 2002. Balsa: An asynchronous hardware synthesis language. Comput. J. 45(1): 12-18. doi: 10.1093/comjnl/45.1.12.
- Poliakov, I., D. Sokolov, and A. Mokhov. 2007. Workcraft: A static data flow structure editing, visualisation and analysis tool. Petri nets and other models of concurrency. Eds. J. Kleijn and A. Yakovlev. Lecture notes in computer science ser. Berlin, Heidelberg: Springer. 4546:505-514. doi: 10.1007/978-3-540-73094-00.
- Taubin, A., J. Cortadella, L. Lavagno, A. Kondratyev, and A. Peeters. 2007. Design automation of real-life asynchronous devices and systems. Foundations Trends Electronic Design Automation 2(1): 1-133. doi: 10.1561/1000000006.
- Bardsley, A., L. Tarazona, and D. Edwards. 2009. Teak: A token-flow implementation for the Balsa language. 9th Conference (International) on Application of Concurrency to System Design Proceedings. IEEE. 23-31. doi: 10.1109/ACSD.2009.15.
- Tailor, R.A., and R. B. Reese. 2019. UNCLE - Unified NCL Environment - an NCL design tool. Asynchronous circuit applications. Institute of Engineering and Technology. 293-307. doi: 10.1049/PBCS061E_chl4.
- Sparsp, J. 2020. Introduction to asynchronous circuit design. Copenhagen, Denmark: DTU Compute, Technical University of Denmark. 269 p. Available at: https://orbit.dtu.dk/files/215895041 /JSPA_async_book_2020_PDF.pdf (accessed October 13, 2025).
- Oliveira, D.L., N. N. M. Cardoso, and G. C. Batista. 2021. A new method for synthesis of self-timed combinational circuits with strong indication. 5th Ecuador Technical Chapters Meeting Proceedings. IEEE. Art. 9590822. 6 p. doi: 10.1109/ETCM53643.2021.9590822.
- Fiorentino, M., C. Thibeault, and Y. Savaria. 2021. Introducing KeyRing self-timed microarchitecture and timing-driven design flow. IET Comput. Digit. Tec. 15:409- 426. doi: 10.1049/cdt2.12032.
- Andrikos, N., L. Lavagno, D. Pandini, and C. P. Sotiriou. 2007. A fully-automated desynchronization flow for synchronous circuits. 44th Annual Design Automation Conference Proceedings. New York, NY: Association for Computing Machinery. 982- 985. doi: 10.1145/1278480.1278722.
- Zhou, R., K.-S. Chong, B.-H. Gwee, J. S. Chang, and W.-G. Ho. 2014. Synthesis of asynchronous QDI circuits using synchronous coding specifications. Symposium (International) on Circuits and Systems Proceedings. Piscataway, NJ: IEEE. 153- 156. doi: 10.1109/ISCAS.2014.6865088.
- Chadzynski, T. 2020. An efficient design methodology for complex sequential asynchronous digital circuits. San Jose State University. Master Thesis. 213 p. doi: 10.31979/etd.gy4n-x9sz.
- Abbyasov, A. M., and A. I. Terekhov. 2022. Sintez posledovatel'nostnykh ustroystv: metodicheskie ukazaniya [Synthesis of sequential devices: Methodological guidelines]. Ivanovo: IGEU. 24 p.
- Czekalski, P., K. Tokarz, and B. Pochopien. 2014. A modern approach to the asynchronous sequential circuit synthesis. Theoretical Applied Informatics 26(1-2):25-37.
- Andaloussi, I., and M. B. Sedra .2020. Reversible design of asynchronous sequential circuits. Int. J. Engineering Technology 12(2): 101-107. doi: 10.21817/ijet/2020/v12i2/ 201202017.
- Stepchenkov, Yu. A., D.Yu. Stepchenkov, Yu. G. Diachenko, N. V. Morozov, and L. P. Plekhanov. 2023. Zamena sinkhronnykh triggerov samosinkhronnymi analogami v protsesse desinkhronizatsii skhemy [Replacing synchronous triggers with self-timed counterparts during circuit desynchronization]. Sistemy i Sredstva Informatiki | Systems and Means of Informatics 33(4):4-15. doi: 10.14357/08696527230401. EDN: VPLSHI.
- Stepchenkov, Yu. A., Yu. G. Diachenko, N. V. Morozov, D.Yu. Stepchenkov, and
D. Yu. Diachenko. 2024. Formalizatsiya sinteza samosinkhronnykh schetchikov [Selftimed counter synthesis formalization]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 34(2):66{82. doi: 10.14357/08696527240205. EDN: KDIEOJ.
- Diachenko, Yu.G., L. P. Plekhanov, N. V. Morozov, D.Yu. Stepchenkov, G. A. Orlov, and D.Yu. Diachenko. 2025. Realizatsiya funktsional'nosti sinkhronnykh triggerov v samosinkhronnom bazise [Implementation of synchronous flip-flop and latch functionality in a self-timed basis]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 35(3):3M6.
- Sokolov, I., Y. Stepchenkov, and Y. Diachenko. 2024. Synthesis of self-timed circuits with memory. Russian Smart Industry Conference (International) Proceedings. IEEE. 51G516. doi: 10.1109/SmartIndustryCon61328.2024.10516224.
- Sudeng, S., and A. Thongtak. 2008. Synthesis of complicated asynchronous control circuits using template based technique. World Congress on Engineering Proceedings. London, U.K.: NewswoodLtd. Ð462Ì67.
- Sakib, A. A., S. C. Smith, and S. K. Srinivasan. 2019. Formal modeling and verification of PCHB asynchronous circuits. IEEE T. VLSI Syst. 27(12):2911{2924. doi: 10.1109/TVLSI.2019.2937087.
- Ozdag, R. O. 2003. Template based asynchronous design. Los Angeles, CA: University of Southern California. PhD Thesis. 121 p. Available at: https://scispace.com/pdf/template-based-asynchronous-design-2dasq9z4y7.pdf (accessed October 13, 2025).
- Stepchenkov, Yu. A., D.V. Khilko, Yu.G. Diachenko, N. V. Morozov, D.Yu. Stepchenkov, and G. A. Orlov. 2024. Metodika desinkhronizatsii pri sinteze samosinkhronnykh skhem [Desynchronization methodology at self-timed circuit synthesis]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 34(1):33M3. doi: 10.14357/08696527240103. EDN: XGZCWU.
- Yosys open synthesis suite. Available at: https://yosyshq.net/yosys (accessed October 13, 2025).
- Plekhanov, L. P. 2023. Optimizatsiya sinteza samosinkhronnykh skhem [Optimization of the synthesis of self-timed circuits]. Rossiyskiy forum "Mikroelektronika-2023". 9-ya Nauchnaya konferentsiya "Elektronnaya komponentnaya baza i mikroelektronnye moduli": Sbornik tezisov [Russian Forum "Microelectronics 2023," 9th Scientific Conference "Electronic Component Base and Microelectronic Modules" Abstracts]. Moscow: Tekhnosfera. 5 p.
[+] About this article
Title
TEMPLATE METHOD IN SYNTHESIS OF SELF-TIMED DIGITAL CIRCUITS
Journal
Systems and Means of Informatics
Volume 35, Issue 4, pp 4-19
Cover Date
2025-12-25
DOI
10.14357/08696527250401
Print ISSN
0869-6527
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
self-timed circuits; automated logic synthesis; template; sequential circuits; conversion; Verilog
Authors
L. P. Plekhanov  , Yu. G. Diachenko  , D. V. Khilko  , and G. A. Orlov
Author Affiliations
 Federal Research Center "Computer Science and Control", Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|