Systems and Means of Informatics
2025, Volume 35, Issue 3, pp 71-89
UNIMODALITY OF THE WEIGHTED SUM OF PARTIAL CRITERIA OF THE G/M/1 MODEL WITH UPDATING AND A TWO-THRESHOLD RED-LIKE ALGORITHM
Abstract
Currently, in addition to end-to-end congestion control mechanisms, RED-like (RED - Random Early Detection) queue management mechanisms are being actively implemented in routers in existing information networks. The paper considers a model of the G/M/1 queue system in which the queue is controlled by
a two-threshold RED-like algorithm with probabilistic dumping of requests.
In the model under consideration, the decision to reset is made at the time of completion of the client service depending on the current queue length. Theoretically, the behavior of a weighted function of criteria (the intensity of the accepted customer flow, the average delay of served customers, the intensity of rejected customers at the entrance, the intensity of customers dropped from the queue, and the average downtime of the device) is studied when changing the value of the lower threshold parameter of the algorithm. A number of statements about the properties of particular criteria and the statement that the weighted function of particular criteria is unimodal in terms of the lower threshold parameter are proved. A simple rule for correcting the value of the lower threshold parameter is proposed which is guaranteed to find the maximum value of a weighted function of particular criteria.
[+] References (25)
- Braden, B., D. Clark, J. Crowcroft, et al. 1998. Recommendations on queue management and congestion avoidance in the internet. The Internet Society. RFC 2309. 17 p. Available at: https://www.rfc-editor.org/rfc/pdfrfc/rfc2309.txt.pdf (accessed October 1, 2025).
- De Schepper, K., B. Briscoe, and G. White. 2023. Dual-queue coupled active queue management (AQM) for low latency, low loss, and scalable throughput (L4S). Internet Engineering Task Force. RFC 9332. Available at: https://www.rfc- editor.org/rfc/rfc9332.pdf (accessed October 1, 2025).
- Floyd, S., and V. Jacobson. 1993. Random early detection gateways for congestion avoidance. IEEE ACM T. Network. 1(4):397{413. doi: 10.1109/90.251892.
- Viana, C.C.H., I. S. Zaryadov, and T.A. Milovanova. 2020. Queueing systems with different types of renovation mechanism and thresholds as the mathematical models of active queue management mechanism. Discrete Continuous Models Applied Computational Science 28(4):305{318. doi: 10.22363/2658-4670-2020-28-4-305- 318.
- Mahawish, A. A., and H.J. Hassan. 2021. Survey on: A variety of AQM algorithm schemas and intelligent techniques developed for congestion control. Indonesian J. Electrical Engineering Computer Science 23(3): 1419{1431. doi:
10.11591/ijeecs.v23.i3.pp1419-1431.
- Zaryadov, I. S., C. C. H. Viana, A. V. Korolkova, and T. A. Milovanova. 2024. Chronology of the development of active queue management algorithms of RED family. Part 3: From 2016 up to 2024. Discrete Continuous Models Applied Computational Science 32(2):154-171. doi: 10.22363/2658-4670-2024-32-2-154-171.
- Abdel-Jaber, H. 2025. Performance analysis of diverse active queue management algorithms. Int. J. Networked Distributed Computing 13:15. 32 p. doi: 10.1007/s44227- 025-00056-1.
- Campbell, A., G. Coulson, and D. Hutchison. 1994. A quality of service architecture. ACM SIGCOMM Comp. Com. 24(2):6-27. doi: 10.1145/185595.18564.
- Bonald, T., M. May, and J.-C. Bolot. 2000. Analytic evaluation of RED performance. IEEE INFOCOM Conference on Computer Communications, 19th Annual Joint Conference of the IEEE Computer and Communications Societies Proceedings. 3:1415{ 1424. doi: 10.1109/INFCOM.2000.832539.
- Zaryadov, I. S., A. V. Korolkova, and R. V. Razumchik. 2012. Matematicheskie modeli rascheta i analiza kharakteristik sistem aktivnogo upravleniya ocheredyami s dvumya vkhodyashchimi potokami i razlichnymi prioritetami [Mathematical models of active queue management systems analysis based on queueing system with two types of traffic and different priorities]. T-Comm: Telekommunikatsii i transport [T-COMM] 6(7):107{111. EDN: PWXFSB.
- Konovalov, M., and R. Razumchik. 2023. Finite capacity single-server queue with Poisson input, general service and delayed renovation. Eur. J. Oper. Res. 304(3):1075{ 1083. doi: 10.1016/j.ejor.2022.05.047.
- Hassan, S.O., A.U. Rufai, O. Ogunlere, et al. 2022. IRED: An improved active queue management algorithm. J. Computer Science 18(3):130M37. doi: 10.3844/ jcssp.2022.130.137.
- Surajo, Y., A. B. Suleiman, and U. Yahaya. 2023. Exponential-self-adaptive random early detection scheme for queue management in next generation routers. FUDMA J. Sciences 7(3):33^9. doi: 10.33003/fjs-2023-0703-1763.
- Alshahrani, A., A. A. Abu-Shareha, Q. Y. Shambour, and B. Al-Kasasbeh. 2023. A fully adaptive active queue management method for congestion prevention at the router buffer. CMC - Comput. Mater. Con. 77(2):1689M698. doi: 10.32604/ cmc.2023.043545.
- Hassan, S. O., C. Ajaegbu, and O. O. Solanke. 2023. Double function random early detection (DFRED): A revised red-oriented algorithm. Iraqi J. Science 64(10):5241{ 5252. doi: 10.24996/ijs.2023.64.10.31.
- Luh, H., C. Wang, and H. Xu. 2025. A study on parameter setting of the RED queueing model. 2nd Sino-International Symposium on Probability, Statistics, and Quantitative Proceedings. Taipei, Taiwan: ROC. 77{91.
- Ali, I., S. Hong, and T.Y. Kim. 2025. A multilevel network-assisted congestion feedback mechanism for network congestion control. Cornell University. 18p. Available at: https://arxiv.org/pdf/2501.08535 (accessed October 1, 2025).
- Baklizi, M. 2020. Weight queue dynamic active queue management algorithm. Symmetry - Basel 12(12):2077. 16 p. doi: 10.3390/sym12122077.
- Podinovskiy, V. V., and V. D. Nogin. 1982. Pareto-optimal'nye resheniya mnogokriterial'nykh zadach [Pareto optimal solutions in multicriteria problems]. Moscow: Nauka. 256 p. EDN: RYRTAR.
- Konovalov, M. G. 2013. Ob odnoy zadache optimal'nogo upravleniya nagruzkoy na server [About one task of overload control]. Informatika i ee Primeneniya - Inform. Appl. 7(4):34M3. doi: 10.14357/19922264130404.EDN: RRROXB.
- Grishunina, Y. B. 2015. Optimal control of queue in the M|G|1|TO system with possibility of customer admission restriction. Automat. Rem. Contr. 76(3):433{445. doi: 10.1134/S0005117915030078. EDN: UFOQYF.
- Agalarov, Ya. M. 2024. Ob odnoporogovom upravlenii ochered'yu v sisteme massovogo obsluzhivaniya s neterpelivymi zayavkami [On single-threshold queue management in a queuing system with impatient customers]. Informatika i ee Primeneniya - Inform. Appl. 18(2):40{46. doi: 10.14357/19922264240206. EDN: JZHAKU.
- Karlin, S. 1968. A first course in stochastic processes. New York, London: Academic Press. 502 p.
- Agalarov, Ya. M. 2024. Optimizatsiya porogovogo parametra RED-podobnogo algoritma upravleniya ochered'yu modeli G/M/1 [Optimization of the threshold parameter of a RED-like queue management algorithm for a G/M/1 queue]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 34(4):3U47. doi: 10.14357/08696527240403. EDN: VLYKTK.
- Agalarov, Ya. M. 2019. Priznak unimodal'nosti tselochislennoy funktsii odnoy peremennoy [A sign of unimodality of an integer function of one variable]. Obozrenie prikladnoy i promyshlennoy matematiki [Surveys Applied and Industrial Mathematics] 26(1):65{66. EDN: EBHBDB.
[+] About this article
Title
UNIMODALITY OF THE WEIGHTED SUM OF PARTIAL CRITERIA OF THE G/M/1 MODEL WITH UPDATING AND A TWO-THRESHOLD RED-LIKE ALGORITHM
Journal
Systems and Means of Informatics
Volume 35, Issue 3, pp 71-89
Cover Date
2025-11-10
DOI
10.14357/08696527250305
Print ISSN
0869-6527
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
queuing system; RED-like algorithm; queue updating; unimodality
Authors
Ya. M. Agalarov
Author Affiliations
 Federal Research Center "Computer Science and Control", Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|