Systems and Means of Informatics
2025, Volume 35, Issue 3, pp 54-70
TYPICAL MODELS OF OBSERVATION SYSTEM FOR TRACKING AND NAVIGATION OF UNMANNED MOVING OBJECTS
Abstract
The solution of navigation problems by the state of a stochastic dynamic system filtering on indirect observations is based on two models of equal importance. The first is motion model of the object whose position needs to be estimated. The second is the observation model, the specific features of which are dictated by the variety of measurement instruments used. The article discusses a typical noncooperative scenario in which an object is monitored by an independent complex of external measurements. The physical quantities measured in this scenario are directional angles (azimuth, or bearing, and elevation) and range. However, the impact on the measurement results of external uncontrolled factors formed by the environment in which the movement-observation takes
place can be quite diverse. The article proposes several typical options for describing such an impact. The first, the standard one, assumes simple additive errors of observations. In the second case, this model is complicated by the assumption that measurement errors are correlated with the current state of the moving object. The physical meaning of this option is provided by the range measurement. Both cases assume stable (without failures) operation of the monitoring complex. The third option is based on a well-known model of switching observation channels and allows for flexible modeling of both short- and long-term failures of some measuring devices. The final version takes into account the specific features of using sonars - acoustic sensors, i.e., motion in an aquatic environment. To illustrate the differences between the models considered, calculations are provided using position estimates based on direct measurements which are not affected by the motion model.
[+] References (27)
- Popova, M.S., and V.V. Strijov. 2015. Vybor optimal'noy modeli klassifikatsii fizicheskoy aktivnosti po izmereniyam akselerometra [Selection of optimal physical activity classification model using measurements of accelerometer]. Informatika i ee Primeneniya - Inform. Appl. 9(1):76-86. doi: 10.14357/19922264150107. EDN: TVXFFL.
- Sinitsyn, I. N. 2024. Metody veroyatnostnogo i statisticheskogo modelirovaniya neyavnykh stokhasticheskikh sistem [Probabilistic and statistical modeling methods for implicit stochastic systems]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 34(3):48-66. doi: 10.14357/08696527240305. EDN: RTNRUZ.
- Krivenko, M. P. 2024. Modelirovanie vkhodnogo potoka rabochikh nagruzok vychislitel'nogo klastera LANL Mustang [Modeling of the input flow of LANL Mustang computing cluster workloads]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 34(3):109-122. doi: 10.14357/08696527240308. EDN: FRSPMK.
- Uryupin, I. V. 2024. Razrabotka programmnogo kompleksa modelirovaniya effektivnosti v aviatransportnoy sisteme Rossii [Development of a software package for modeling efficiency in the Russian air transport system]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 34(3): 136-146. doi: 10.14357/08696527240310. EDN: VMQRRH.
- Uryupin, I. V. 2025. Ob universal'nykh modelyakh sostoyaniya dlya zadach slezheniya i navigatsii bespilotnykh dvizhushchikhsya ob"ektov [On universal state models for tracking and navigation tasks of unmanned moving objects]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 35(2):31{44. doi:
10.14357/08696527250203. EDN: WRGXLN.
- Mohsan, S. A. H., M. A. Khan, F. Noor, I. Ullah, and M. H. Alsharif. 2022. Towards the unmanned aerial vehicles (UAVs): A comprehensive review. Drones 6(6):147. 27 p. doi: 10.3390/drones6060147.
- Ehlers, F., ed. 2020. Autonomous underwater vehicles: Design and practice (radar, sonar & navigation). London, U.K.: SciTech Publishing. 592 p.
- Burns, L. D., and C. Shulgan. 2018. Autonomy: The quest to build the driverless car - and how it will reshape our world. New York, NY: HarperCollins. 368 p.
- Bowen, E. G. 1987. Radar days. Boca Raton, CA: CRC Press. 231 p. doi: 10.1201/ 9781003069584.
- Polyakov, V.T. 1988. Posvyashchenie v radioelektroniku [Initiation into radio electronics]. Moscow: Radio i svyaz'. 352 p. EDN: TXEJTF.
- Whitcomb, L., D. Yoerger, andH. Singh. 1999. Advances in Doppler-based navigation of underwater robotic vehicles. Conference (International) on Robotics and Automation Proceedings. IEEE. 1:399^06. doi: 10.1109/robot.1999.770011.
- Hegrenaes, O., and E. Berglund. 2009. Doppler water-track aided inertial navigation for autonomous underwater vehicle. OCEANS Europe Proceedings. IEEE. Art. 5278307. 10 p. doi: 10.1109/oceanse.2009.5278307.
- Tal, A., I. Klein, and R. Katz. 2017. Inertial Navigation System/Doppler Velocity Log (INS/DVL) fusion with partial DVL measurements. Sensors - Basel 17(2):415. 20 p. doi: 10.3390/s17020415.
- Genike, A. A., and G. G. Pobedinskiy. 2004. Global'nye sputnikovye sistemy opre- deleniya mestopolozheniya i ikh primenenie v geodezii [Global satellite positioning systems and their application in geodesy]. Moscow: Kartgeotsentr. 354 p. EDN: QKGWEB.
- Hofmann-Wellenhof, B., H. Lichtenegger, and E. Wasle. 2008. GNSS - global navigation satellite systems: GPS, GLONASS, Galileo, and more. Vienna: Springer. 518 p. doi: 10.1007/978-3-211-73017-1.
- Hodges, R. 2011. Underwater acoustics: Analysis, design and performance of sonar. New York, NY: Wiley. 384 p.
- Kebkal, K. G., and A. I. Mashoshin. 2017. AUV acoustic positioning methods. Gyroscopy Navigation 8:80{89. doi: 10.1134/S2075108717010059.
- Bosov, A. V. 2025. Analiz ispol'zovaniya doplerovskikh izmereniy dlya identifikatsii parametrov dvizheniya po nablyudeniyam so sluchaynymi zapazdyvaniyami [Doppler measurements application analysis to identify motion parameters from observations with random delays]. Informatika i ee Primeneniya - Inform. Appl. 19(1):33{43. doi: 10.14357/19922264250105. EDN: MZKWCI.
- Bosov, A.V. 2023. Observation-based filtering of state of a nonlinear dynamical system with random delays. Automat. Rem. Contr. 84(6):594{605. doi: 10.1134/S0005117923060036. EDN: GVWEAB.
- Bosov, A. 2023. Tracking a maneuvering object by indirect observations with random delays. Drones 7(7):468. 17 p. doi: 10.3390/drones7070468.
- Bosov, A. V. 2023. Optimal'naya fil'tratsiya sostoyaniya nelineynoy dinamicheskoy sistemy po nablyudeniyam so sluchaynymi zapazdyvaniyami [Nonlinear dynamic system state optimal filtering by observations with random delays]. Informatika i ee
Primeneniya - Inform. Appl. 17(3):8-17. doi: 10.14357/19922264230302. EDN: CFVYJM.
- Bosov, A. V. 2024. AUV positioning and motion parameter identification based on observations with random delays. Automat. Rem. Contr. 85(12): 1024{1040. doi: 10.1134/S0005117924700413. EDN: PLPFMZ.
- Lingren, A., and K. Gong. 1978. Position and velocity estimation via bearing observations. IEEE T. Aero. Elec. Sys. AES-14(4):564-577. doi: 10.1109/ TAES.1978.308681.
- Lin, X., T. Kirubarajan, Y. Bar-Shalom, and S. Maskell. 2002. Comparison of EKF, pseudomeasurement, and particle filters for a bearing-only target tracking problem. Proc. SPIE 4728:240-250. doi: 10.1117/12.478508.
- Amelin, K. S., and A. B. Miller. 2013. An algorithm for refinement of the position of a light UAV on the basis of Kalman filtering of bearing measurements. J. Commun. Technol. El. 59(6):622-631. doi: 10.1134/S1064226914060047.EDN: SJVPPV.
- Bosov, A. V., and A. R. Pankov. 1995. Conditionally-minimax filtration in a system with commutating observation channels. Automat. Rem. Contr. 56(6):835-843.
- Bosov, A. V., and A. R. Pankov. 1996. Control algorithms in systems with switching observation channels. J. Comput. Sys. Sc. Int. 35(2):262-267. EDN LDYOXT.
[+] About this article
Title
TYPICAL MODELS OF OBSERVATION SYSTEM FOR TRACKING AND NAVIGATION OF UNMANNED MOVING OBJECTS
Journal
Systems and Means of Informatics
Volume 35, Issue 3, pp 54-70
Cover Date
2025-11-10
DOI
10.14357/08696527250304
Print ISSN
0869-6527
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
navigation; target tracking; unmanned vehicles; stochastic dynamic observation system; additive disturbances; correlated noise; Markov chains; acoustic sonars
Authors
I. V. Uryupin
Author Affiliations
 Federal Research Center "Computer Science and Control", Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|