Systems and Means of Informatics
2025, Volume 35, Issue 3, pp 3-16
IMPLEMENTATION OF SYNCHRONOUS FLIP-FLOP AND LATCH FUNCTIONALITY IN A SELF-TIMED BASIS
- Yu. G. Diachenko
- L. P. Plekhanov
- N. V. Morozov
- D. Yu. Stepchenkov
- G. A. Orlov
- D. Yu. Diachenko
Abstract
The article considers the self-timed (ST) flip-flop development issues based on the original description of their synchronous counterparts functioning at the behavioral level. The options of synchronous flip-flops and their compliance with the ST flip-flop's behavioral features are analyzed. The implementations of some typical ST flip-flops with preset options are represented. A method for converting synchronous flip-flop behavioral description into an ST counterpart taking into account the ST circuit operation specifics is proposed. Asynchronous reset and set of the synchronous flip-flop remain asynchronous in the ST counterpart as well, they are not indicated. Synchronous reset and set are transformed into ST reset and ST set, respectively. Their successful completion is indicated. The paper shows that it is advisable to implement ST reset and ST set by preliminary mixing of reset and set signals with the flip-flop information input. Substitution of the ST flip-flop instead of the synchronous prototype is carried out using templates that ensure the replacement adequacy, the optimality of the hardware implementation, and the self-timing of the resulting circuit.
[+] References (20)
- Hennessy, J.L., and D.A. Patterson. 2019. Computer architecture: A quantitative approach. 6th ed. Morgan Kaufmann. 936 p.
- Harris, D., and S.L. Harris. 2013. Digital design and computer architecture. North Holland: Elsevier. 690 p. doi: 10.1016/C2011-0-04377-6.
- Muller, D. E., and W. C. Bartky. 1959. A theory of asynchronous circuits. Symposium (International) on the Theory of Switching Proceedings. Cambridge, MA: Harvard University Press. 29:204-243.
- Kishinevsky, M., A. Kondratyev, A. Taubin, and V. Varshavsky. 1994. Concurrent hardware: The theory and practice of self-timed design. New York, NY: John Wiley & Sons. 368 p.
- Sparsp, J. 2020. Introduction to asynchronous circuit design. Copenhagen, Denmark: DTU Compute, Technical University of Denmark. 275 p. Available at: https: //backend. orbit.dtu.dk/ws/files/215895041/JSPAjsync_book_2020_PDF.pdf (accessed October 6, 2025).
- Zakharov, V. N., Yu. A. Stepchenkov, Yu. G. Diachenko, N. V. Morozov, L. P. Plekhanov, and D. Yu. Stepchenkov. 2025. Svoystva i optimizatsiya samosinkhronnykh skhem [Properties and optimization of self-timed circuits]. Sistemy i Sredstva In- formatiki - Systems and Means of Informatics 35(1): 149-169. doi: 10.14357/ 08696527250108. EDN: QPTSAO.
- Stepchenkov, Yu. A., D. V. Khilko, Yu. G. Diachenko, N. V. Morozov, D. Yu. Stepchenkov, and G. A. Orlov. 2024. Metodika desinkhronizatsii pri sinteze samosinkhronnykh skhem [Desynchronization methodology at self-timed circuit synthesis]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 34(1):33-43. doi: 10.14357/08696527240103. EDN: XGZCWU.
- Taubin, A., J. Cortadella, L. Lavagno, A. Kondratyev, and A. Peeters. 2007. Design automation of real-life asynchronous devices and systems. Foundations Trends Electronic Design Automation 2(1): 1-133. doi: 10.1561/1000000006.
- Andrikos, N., L. Lavagno, D. Pandini, and P. Sotiriou. 2007. A fully-automated desynchronization flow for synchronous circuits. 44th Annual Design Automation Conference Proceedings. New York, NY: Association for Computing Machinery. 982985. doi: 10.1145/1278480.1278722.
- Oliveira, D. L., G. C. Duarte, G. C. Batista, and N. N. M. Cardoso. 2020. Converting synchronous digital systems to asynchronous systems using local-clock. 27th Conference (International) on Electronics, Electrical Engineering and Computing Proceedings.
IEEE. Art. 9220269. 4 p. doi: 10.1109/INTERC0N50315.2020.9220269.
- Wu, H., Z. Su, J. Zhang, S. Wei, Z. Wang, and H. Chen. 2021. A design flow for click-based asynchronous circuits design with conventional EDA tools. IEEE T. Comput. Aid. D. 40(11 ):2421-2425. doi: 10.1109/TCAD.2020.3038337.
- Li, Z., Y. Huang, L. Tian, R. Zhu, S. Xiao, and Z. Yu. 2021. A low-power asynchronous RISC-V processor with propagated timing constraints method. IEEE T. Circuits | II 68(9):3153-3157. doi: 10.1109/TCSII.2021.3100524.
- Semba, S., and H. Saito. 2022. RTL conversion method from pipelined synchronous RTL models into asynchronous ones. IEEE Access 10:28949-28964. doi: 10.1109/ACCESS.2022.3158487.
- Semba, S., and H. Saito. 2023. A design support tool set for interface circuits between synchronous and asynchronous modules. IEEE Access 11:13408-13420. doi: 10.1109/ACCESS.2023.3243224.
- Wang, J., S. Xiao, J. Luo, B. Li, L. Zhou, and Z. Yu. 2024. An end-to-end bundled- data asynchronous circuits design flow: From RTL to GDS. IEEE T. VLSI Syst. 33(1): 154-167. doi: 10.1109/TVLSI.2024.3464870.
- Zhang, Jil., D. Huo, Jia. Zhang, et al. 2024. ANP-I: A 28-nm 1.5-pJ/SOP asynchronous spiking neural network processor enabling Sub-0.1-^J/Sample on-chip learning for Edge-AI applications. IEEE J. Solid-St. Circ. 59(8):2717-2729. doi: 10.1109/JSSC.2024.3357045.
- Huang, H., J. Zhang, D. Huo, Q. Sun, W. Rhee, and H. Chen. 2025. An asynchronous RISC-V processor utilizing a chisel-based desynchronization flow. Symposium (International) on Circuits and Systems Proceedings. IEEE. Art. 11043907. 5 p. doi: 10.1109/ISCAS56072.2025.11043907.
- Stepchenkov, Yu. A., Yu. G. Diachenko, N. V. Morozov, D. Yu. Stepchenkov, and D. Yu. Diachenko. 2024. Formalizatsiya sinteza samosinkhronnykh schetchikov [Selftimed counter synthesis formalization]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 34(2):66-82. doi: 10.14357/08696527240205. EDN: KDIEOJ.
- Yosys open synthesis suite. Available at: https://yosyshq.net/yosys (accessed October 6, 2025).
- Zakharov, V. N., Yu. A. Stepchenkov, Yu. G. Diachenko, L. P. Plekhanov, N. V. Morozov, and D. Yu. Diachenko. 2025. Samosinkhronnyy dvukhtaktnyy trigger s parafaznymi vkhodnymi i vykhodnymi signalami s nulevym speyserom [Self-timed push-pull trigger with paraphase input and output signals with zero spacer]. Patent RF No. 2835382. EDN: DQXPYF.
[+] About this article
Title
IMPLEMENTATION OF SYNCHRONOUS FLIP-FLOP AND LATCH FUNCTIONALITY IN A SELF-TIMED BASIS
Journal
Systems and Means of Informatics
Volume 35, Issue 3, pp 3-16
Cover Date
2025-11-10
DOI
10.14357/08696527250301
Print ISSN
0869-6527
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
self-timed circuit; flip-flop, Verilog description; operating range; register; element base; robotic system
Authors
Yu. G. Diachenko  , L. P. Plekhanov  , N. V. Morozov  , D. Yu. Stepchenkov  , G. A. Orlov  ,
and D. Yu. Diachenko
Author Affiliations
 Federal Research Center "Computer Science and Control", Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|