Systems and Means of Informatics
2025, Volume 35, Issue 2, pp 81-102
ANALYSIS OF APPROACHES TO HYBRIDIZATION OF THE CASE-BASED REASONING METHOD IN MEDICAL DECISION SUPPORT SYSTEMS
- S. V. Listopad
- A. S. Luchko
Abstract
The paper is aimed at improving the methods of automating problem solving in clinical practice using cooperative self-configuring hybrid intelligent systems that integrate various models and intelligent technologies to achieve a synergistic effect from their interaction. The paper examines the features and evaluates the possibilities of hybridizing one of the artificial intelligence methods, namely, case-based reasoning, when building medical decision support systems.
An analysis of works in this area demonstrated the active use of various artificial intelligence methods and hybridization approaches as well as the prospects for developing methods for adapting cases using artificial intelligence methods to build such systems.
[+] References (60)
- Shestakov, O. V. 2016. Usilennyy zakon bol'shikh chisel dlya otsenki riska v zadache rekonstruktsii tomograficheskikh izobrazheniy iz proektsiy s korrelirovannym shumom [The strong law of large numbers for the risk estimate in the problem of tomographic image reconstruction from projections with a correlated noise]. Informatika i ee Primeneniya - Inform. Appl. 10(3):41-45. doi: 10.14357/19922264160306. EDN: WMJXRV.
- Krivenko, M.P. 2021. Myagkie vychisleniya v zadachakh meditsinskoy diagnostiki [Soft computing in problems of medical diagnostics]. Informatika i ee Primeneniya - Inform. Appl. 15(2):52-59. doi: 10.14357/19922264210208. EDN: VFNFRR.
- Kobrinskiy, B.A. 2021. Iskusstvennyy intellekt v meditsine: goryachie tochki [Artificial intelligence in medicine: Hot spots]. 19-ya Natsional'naya konferentsiya po iskusstvennomu intellektu s mezhdunarodnym uchastiem: Trudy konferentsii [19th National Conference on Artificial Intelligence with International Participation Proceedings]. Eds. V. V. BorisovandB. A. Kobrinskiy. Rostov-on-Don; Taganrog: YuFU. 13-29.
- Rumovskaya, S.B. 2024. Intellektual'nye sistemy podderzhki prinyatiya resheniy v meditsine: ponyatie, problemy, podkhody k razrabotke [Intelligent decision support systems in medicine: Concept, problems, and approaches to the development]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 34(2): 107-122. doi: 10.14357/08696527240208. EDN: IJDVVV.
- Aamodt, A., and E. Plaza. 1994. Case-based reasoning: Foundational issues, methodological variations, and system approaches. AI Commun. 7(1):39-59.
- Leake, D., Z. Wilkerson, and D. Crandall. 2023. Combining case-based reasoning with deep learning: Context and ongoing case feature learning research. Available at: https://openreview.net/pdf?id=nc9XqnaLys (accessed April 17, 2025).
- Rumovskaya, S.B., and F.N. Paramzin. 2024. Kooperativnye samonastraivayushchiesya gibridnye intellektual'nye sistemy personalizirovannoy diagnostiki i prognozirovaniya v meditsine: kontseptsiya, podkhod k razrabotke, dekompozitsiya problem [Cooperative self-configuring hybrid intelligent systems for personalized diagnostics and prognosis in medicine: Conceptual idea, development approach, and problem decomposition]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 34(4):59-72. doi: 10.14357/08696527240405.EDN: YLQTQU.
- De Mantaras, R.L., and E. Plaza. 1997. Case-based reasoning: An overview. AI Commun. 10(1):21-29.
- Goel, A., and B. Diaz-Agudo. 2017. What's hot in case-based reasoning. 31st AAAI Conference on Artificial Intelligence Proceedings. 31(1):5067-5069.
- Aleven, V. 2003. Using background knowledge in case-based legal reasoning: A computational model and an intelligent learning environment. Artif. Intell. 150:183-237. doi: 10.1016/S0004-3702(03)00105-X.
- Varshavskiy, P. R., and A. P. Eremeev. 2010. Modeling of case-based reasoning in intelligent decision support systems. Scientific Technical Information Processing 37(5):336-345. doi: 10.3103/S0147688210050096. EDN: OMLMAZ.
- Yan, A., and Z. Cheng. 2024. A review of the development and future challenges of case- based reasoning. Appl. Sci. - Basel 14(16):7130. 22 p. doi: 10.3390/app14167130.
- Narinyani, A. S. 2008. Inzheneriya znaniy i NE-faktory: kratkiy obzor-08 [Knowledge engineering and NON-factors: A brief overview-08]. Voprosy iskusstvennogo intellekta [Artificial Intelligence Issues] 1:61{77.
- Shaker, H., and M. Elmogy. 2015. Case based reasoning: Case representation methodologies. Int. J. Advanced Computer Science Applications 6(11): 192{208. doi: 10.14569/ijacsa.2015.061126.
- Jian, C., T. Zhe, and L. Zhenxing. 2015. A review and analysis of case-based reasoning research. Conference (International) on Intelligent Transportation, Big Data & Smart City Proceedings. IEEE. 5155. doi: 10.1109/ICITBS.2015.19.
- Kolodner, J.L. 1992. An introduction to case-based reasoning. Artif. Intell. Rev. 6:3{34. doi: 10.1007/BF00155578.
- Pavon, R., J. M. Corchado Rodriguez, A. Gomez Rodriguez, and R. Laza. 2001. Improving the revision stage of a CBR system with belief revision techniques. Computing Information Systems 8(2):40{45.
- Watson, I. 1999. Case-based reasoning is a methodology not a technology. Knowl.- Based Syst. 12(5-6):303{308.
- Kolesnikov, A. V., I. A. Kirikov, S. V. Listopad, S. B. Rumovskaya, and A. A. Domanitskiy. 2011. Reshenie slozhnykh zadach kommivoyazhera metodami funktsional'nykh gibridnykh intellektual'nykh system [Complex travelling salesman problems solved by the methods of the functional hybrid intelligent systems]. Moscow: IPI RAN. 295 p.
- Nolle, L., F. Stahl, and T. El-Mihoub. 2023. On explanations for hybrid artificial intelligence. Artificial intelligence XL. Eds. M. Bramer and F. Stahl. Lecture notes in computer science ser. Cham: Springer Nature Switzerland. 14381:3{15. doi: 10.1007/978-3-031-47994-6_l.
- Kolesnikov, A. V., and I. A. Kirikov. 2007. Metodologiya i tekhnologiya resheniya slozhnykh zadach metodami funktsional'nykh gibridnykh intellektual'nykh sistem [Methodology and technology for solving complex problems using the methods of functional hybrid intelligent systems]. Moscow: IPI RAN. 387 p.
- Borisov, V. V. 2020. Hybridization method of intelligent models. Otkrytye semantiche- skie tekhnologii proektirovaniya intellektual'nykh sistem [Open Semantic Technology for Intelligent Systems] 4:137440. EDN: MPWSFO.
- Medsker, L. R. 1995. Hybrid intelligent systems. Boston, MA: Springer US. 312 p. doi: 10.1007/978-1-4615-2353-6.
- Sun, R. 1996. Hybrid connectionist-symbolic modules: A report from the IJCAI- 95 Workshop on Connectionist-Symbolic Integration. AI Mag. 17(2):99-103. doi: 10.1609/aimag.v17i2.1225.
- Goonatilake, S., and S. Khebbal. 1995. Intelligent hybrid systems: Issues, classifications and future directions. Intelligent hybrid systems. Eds. S. Goonatilake and S. Khebbal. Chichester: John Wiley and Sons. 149.
- Averkin, A.N., and S.V. Prokopchina. 1997. Myagkie vychisleniya i izmereniya [Soft computing and measurements]. Intellektual'nye sistemy [Intelligent Systems] 2(1-4):93414. EDN: LRQYBQ.
- Borisov, V. 2014. Hybridization of intellectual technologies for analytical tasks of decision-making support. J. Computer Engineering Informatics 2(1): 11-19.
- Viveros-Melo, D., M. Ortega-Adarme, X. Blanco Valencia, A.E. Castro-Ospina, S. Murillo Rendon, and D. H. Peluffo-Ordonez. 2017. Razonamiento basado en casos aplicado al diagnostico medico utilizando clasificadores multi-clase: Un estudio preliminar. Enfoque UTE 8(1):232{243.
- Sharma, S., and D. Mehrotra. 2021. Two-stage CBR based healthcare model to diagnose liver disease. Int. J. Computing Digital Systems 10(1):773{780. doi:
10.12785/ijcds/100171.
- Sapra, V., L. Sapra, A. Bhardwaj, S. Bharany, A. Saxena, F. Khalid Karim, S. Ghorashi, and A. Wagdy Mohamed. 2023. Integrated approach using deep neural network and CBR for detecting severity of coronary artery disease. Alexandria Engineering J. 68:709{720. doi: 10.1016/j.aej.2023.01.029.
- Gu, D., W. Zhao, Y. Xie, X. Wang, K. Su, and O. V. Zolotarev. 2021. A personalized medical decision support system based on explainable machine learning algorithms and ECC features: Data from the real world. Diagnostics 11 (9): 1677. 17 p. doi: 10.3390/diagnostics11091677.
- Pusztova, L., F. Babic, and J. Paralic. 2020. Semi-automatic adaptation of diagnostic rules in the case-based reasoning process. Appl. Sci. - Basel 11 (1):292. 18 p. doi: 10.3390/app11010292.
- Tarchoune, I., A. Djebbar, and H. F. Merouani. 2021. A hybrid CBR classification model by integrating decision tree and random forest into case retrieval. Conference (International) on Networking and Advanced Systems Proceedings. IEEE. Art. 9628920. 6 p. doi: 10.1109/icnas53565.2021.9628920.
- Benamina, M., B. Atmani, andS. Benbelkacem. 2018. Diabetes diagnosis by case-based reasoning and fuzzy logic. Int. J. Interactive Multimedia and Artificial Intelligence 5(3):72{80. doi: 10.9781/ijimai.2018.02.001.
- Oyelade, O.N., and A. E. Ezugwu. 2020. A case-based reasoning framework for early detection and diagnosis of novel coronavirus. Informatics Medicine Unlocked 20:100395. 22 p. doi: 10.1016/j.imu.2020.100395.
- Amador-Dominguez, E., E. Serrano, D. Manrique, and J. Bajo. 2021. A case- based reasoning model powered by deep learning for radiology report recommendation. Int. J. Interactive Multimedia Artificial Intelligence 7(2): 15. 12 p. doi: 10.9781/ijimai.2021.08.011.
- Lamy, J.-B., B. Sekar, G. Guezennec, J. Bouaud, and B. Seroussi. 2019. Explainable artificial intelligence for breast cancer: A visual case-based reasoning approach. Artif. Intell. Med. 94:42{53. doi: 10.1016/j.artmed.2019.01.001.
- Ramos-Gonzalez, J., D. Lopez-Sanchez, J.A. Castellanos-Garzon, J.F. De Paz, and J. M. Corchado. 2017. A CBR framework with gradient boosting based feature selection for lung cancer subtype classification. Comput. Biol. Med. 86:98{106. doi: 10.1016/j.compbiomed.2017.05.010.
- Malekpoor, H.,N. Mishra, andS. Kumar. 2022. A novel TOPSIS-CBR goal programming approach to sustainable healthcare treatment. Ann. Oper. Res. 312(2): 1403{1425. doi: 10.1007/s10479-018-2992-y.
- Gu, D., C. Liang, and H. Zhao. 2017. A case-based reasoning system based on weighted heterogeneous value distance metric for breast cancer diagnosis. Artif. Intell. Med. 77:31 {47. doi: 10.1016/j.artmed.2017.02.003.
- Kouser, R.R., T. Manikandan, and V.V. Kumar. 2018. Heart disease prediction system using artificial neural network, radial basis function and case based reasoning. J. Comput. Theor. Nanos. 15(9-10):2810{2817. doi: 10.1166/jctn.2018.7543.
- Dabowsa, N. I. A., N. M. Amaitik, A. M. Maatuk, and S.A. Aljawarneh. 2017. A hybrid intelligent system for skin disease diagnosis. Conference (International) on Engineering and Technology Proceedings. Antalya: IEEE. Art. 830815. 6 p. doi: 10.1109/ICEngTechnol.2017.8308157.
- Song, Z., J. Li, S. Lai, and S. Huang. 2024. Case-based reasoning approach for diagnostic screening of children with developmental delays. Cornell University. 14 p. Available at: https://arxiv.org/pdf/2408.02073 (accessed April 17, 2025).
- Gomez-Vallejo, H.J., B. Uriel-Latorre, M. Sande-Meijide, B. Villamarm-Bello, R. Pavon, F. Fdez-Riverola, and D. Glez-Pena. 2016. A case-based reasoning system for aiding detection and classification of nosocomial infections. Decis. Support Syst. 84:104-116. doi: 10.1016/j.dss.2016.02.005.
- Ali, S.I., S.W. Jung, H.S. M. Bilal, S.-H. Lee, J. Hussain, M. Afzal, M. Hussain, T. Ali, T. Chung, and S. Lee. 2021. Clinical decision support system based on hybrid knowledge modeling: A case study of chronic kidney disease-mineral and bone disorder treatment. Int. J. Environ. Res. Pu. 19(1):226. 28 p. doi: 10.3390/ijerph19010226.
- Nazarenko, G. I., G. S. Osipov, A. G. Nazarenko, and A. I. Molodchenkov. 2010. Intellektual'nye sistemy v klinicheskoy meditsine. Sintez plana lecheniya na osnove pretsedentov [Intelligent systems in clinical medicine. Case-based clinical guidelines synthesis]. Informatsionnye tekhnologii i vychislitel'nye sistemy [J. Information Technologies Computing Systems] 1:24-35. EDN: OWVHZZ.
- Duan, J., and F. Jiao. 2021. Novel case-based reasoning system for public health emergencies. Risk Management Healthcare Policy 14:541-553. doi: 10.2147/rmhp.s291441.
- Elkader, S. A., M. Elmogy, S. El'Sappagh, and A.N. H. Zaied. 2018. A framework for chronic kidney disease diagnosis based on case based reasoning. Int. J. Advanced Computer Research 8(35):59-71. doi: 10.19101/ijacr.2018.834003.
- Sappagh, S. E., and M. Elmogy. 2016. A decision support system for diabetes mellitus management. Diabetes Case Reports 1(1): 10000102. 13 p. doi: 10.4172/2572- 5629.1000102.
- Shojaee-Mend, H., H. Ayatollahi, and A. Abdolahadi. 2024. A fuzzy ontology-based case-based reasoning system for stomach dystemperament in Persian medicine. PLOS ONE 19(10):e0309722. 15 p. doi: 10.1371/journal.pone.0309722.
- Ben Salem, Y., R. Idoudi, K. Saheb Ettabaa, K. Hamrouni, and B. Solaiman. 2017. Ontology based possibilistic reasoning for breast cancer aided diagnosis. Information systems. Eds. M. Themistocleous and V. Morabito. Cham: Springer International Publishing. 299:353-366. doi: 10.1007/978-3-319-65930-5^9.
- Denisova, E.A., G. F. Gubanova, S.V. Lezhenina, and V.V. Chernyshov. 2018. Model' sistemy podderzhki prinyatiya resheniy na osnove rassuzhdeniy po pretsedentam v oblasti diagnostiki zhenskogo besplodiya [Model of case-based reasoning system for female infertility diagnosis]. Mezhdunarodnyy zh. prikladnykh i fundamental'nykh issledovaniy [Int. J. Applied Fundamental Research] 7:123-128. EDN: UYUTQA.
- Gribova, V.V., R.I. Kovalev, and D. B. Okun'. 2022. Intellektual'naya sistema naznacheniya personifitsirovannogo lecheniya po analogii [An intelligent system for prescribing personalized treatment by case based reasoning]. XX Natsional'naya konfer- entsiya po iskusstvennomu intellektu s mezhdunarodnym uchastiem: Trudy konferentsii [20th National Conference on Artificial Intelligence with International Participation
Proceedings]. Moscow: National Research University "Moscow Power Engineering Institute." 2:292-301. EDN: TGBMHK.
- Varshavskiy, P.R., L. K. Zo, R.V. Alekhin, and K. M. Ar. 2015. Realizatsiya pretsedentnogo modulya dlya intellektual'nykh sistem [Implementation of a precedent module for intelligent systems]. Programmnye produkty i sistemy [Software Systems] 2:26-31. EDN: UCRAWX.
- Korablyov, M., N. Axak, O. Fomichov, and V. Hnidenko. 2021. Multi-agent clinical decision support system using case-based reasoning. CEUR Workshop Procee. 2870:1466-1476.
- Dhatterwal, J.S., K. Malik, P. Das, and K. S. Kaswan. 2024. Medical diagnostic system using embedding JADE in jCOLIBRI. Conference (International) on Electrical Electronics and Computing Technologies Proceedings. IEEE. 1:10739193. 5 p. doi: 10.1109/iceect61758.2024.10739193.
- Brown, D., A. Aldea, R. Harrison, C. Martin, and I. Bayley. 2018. Temporal case- based reasoning for type 1 diabetes mellitus bolus insulin decision support. Artif. Intell. Med. 85:28-42. doi: 10.1016/j.artmed.2017.09.007.
- Finn, V. K. 2022. JSM reasoning and knowledge discovery: Ampliative reasoning, causality recognition, and three kinds of completeness. Automatic Documentation Mathematical Linguistics 56(2):79-110.
- Djukova, E. V., G. O. Masliakov, and D. S. Ianakov. 2024. Korrektnaya klassifikatsiya po pretsedentam: DSM-metod nad proizvedeniem chastichnykh poryadkov [Correct supervised classification: JSM-method over product of partial orders]. Informatika i ee Primeneniya - Inform. Appl. 18(3):61-68. doi: 10.14357/19922264240308. EDN: ZJHDMY.
- Grusho, A. A., N. A. Grusho, M.I. Zabezhailo, V.V. Kulchenkov, E. E. Timonina, and S.Ya. Shorgin. 2023. Prichinno-sledstvennye svyazi v zadachakh klassifikatsii [Causal relationships in classification problems]. Informatika i ee Primeneniya - Inform. Appl. 17(1):43-49. doi: 10.14357/19922264230106. EDN: DTQZPK.
[+] About this article
Title
ANALYSIS OF APPROACHES TO HYBRIDIZATION OF THE CASE-BASED REASONING METHOD IN MEDICAL DECISION SUPPORT SYSTEMS
Journal
Systems and Means of Informatics
Volume 35, Issue 2, pp 81-102
Cover Date
2025-05-20
DOI
10.14357/08696527250206
Print ISSN
0869-6527
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
cooperative self-configuring hybrid intelligent system; hybridization; case; decision support system
Authors
S. V. Listopad  and A. S. Luchko
Author Affiliations
 Federal Research Center "Computer Science and Control", Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
 Avtotor Information Technologies LLC, 4a Magnitogorskaya Str., Kaliningrad 236013, Russian Federatio
|