Systems and Means of Informatics
2025, Volume 35, Issue 2, pp 61-80
ASSESSMENT OF THE AVAILABILITY OF ATMOSPHERIC OPTICAL COMMUNICATIONS IN VARIOUS REGIONS OF THE RUSSIAN FEDERATION
- S. Yu. Kazantsev
- M. V. Sapozhnikov
- D. N. Terekhin
- Yu. B. Mironov
- B. M. Shabanov
Abstract
The trend of constant growth of requirements for the volume, speed,
and degree of protection of information transmitted in communication networks
determines the search and study of promising communication systems that provide a reliable high-speed communication channel in conditions of possible destructive external influences on communication lines. As such a prospective technology, the paper considers atmospheric optical communication implemented using serial optical terminals manufactured by Russian companies. The paper describes a universal approach to calculating the availability of an atmospheric communication channel taking into account the technical parameters of the terminals and meteorological parameters in the area of the terminals as well as optical losses due to the absorption and scattering of laser radiation that occur during the propagation of an optical signal through the atmosphere. For the first time, sets of dependencies of the distances of the atmospheric channel with specified availability factors for modern Russian terminals of free space optics were obtained taking into account a long-term archive of meteorological parameters of the cities that are part of 37 Federal Districts of the Russian Federation, taking into account new regions (Donetsk People's Republic, Lugansk People's Republic, and Zaporizhya and Kherson Regions).
[+] References (36)
- Kuzovkova, T.A. 2015. Otsenka roli infokommunikatsiy v natsional'noy ekonomike i vyyavlenie zakonomernostey ikh razvitiya [Evaluation of the role of infocommunications in the national economy and to identify patterns of development]. Sistemy upravleniya, svyazi i bezopasnosti [Systems of Control, Communication and Security] 4:26-68. EDN: VBLVCN.
- Moiseev, A. A., A. V. Chuev, and A. A. Kiselev. 2019. Kachestvo voennoy svyazi kak sovokupnost' ee osnovnykh svoystv [The quality of military communications as a set of its main properties]. Tekhnika sredstv svyazi [Means of Communication Equipment] 2:127-133. EDN: GEJJJW.
- Pestryakov, A. V., and S. S. Dymkova. 2023. Sinkhronizatsiya. Itogi 50-ti let razvitiya v SSSR i Rossii [Synchronization. 50 years development in the USSR and Russia]. T-Comm: Telekommunikatsii i transport [T-COMM] 17(11):27-34. doi: 10.36724/2072-8735-2023-17-11-27-34. EDN: SALXGY.
- Novikov, A.S., A.N. Ivutin, and M. S. Pestin. 2024. Algoritm marshrutizatsii dlya obespecheniya bystrogo vosstanovleniya svyazi pri obryvakh marshrutov v setyakh MANET [Routing algorithm to ensure quick restoration of communication in case of route breaks in MANET networks]. Sistemy upravleniya, svyazi i bezopasnosti [Systems of Control, Communication and Security] 2:14-42. doi: 10.24412/2410-9916-2024- 2-014-042. EDN: EPMHJU.
- Kazantsev, S.Yu., S.N. Kuznetsov, A. Yu. Maksimov, and N. V. Pchelkina. 2023. Primeneniya atmosfernoy opticheskoy svyazi na ob"ektakh atomnoy energetiki [Prospects for the use of atmospheric optical communication at nuclear power plants]. Uspekhi prikladnoy fiziki [Advances in Applied Physics] 11 (6):530-539. doi: 10.51368/2307-4469-2023-11-6-530-539. EDN: AOZOOY.
- Lipatnikov, V.A., and V.A. Parfirov. 2023. Strukturno-parametricheskiy metod zashchity informatsionno-telekommunikatsionnoy seti spetsial'nogo naznacheniya v usloviyakh informatsionnogo konflikta [Structural-parametric method of protection of information and telecommunication network of special purpose in the conditions of information conflict]. Sistemy upravleniya, svyazi i bezopasnosti [Systems of Control, Communication and Security] 4:105-156. doi: 10.24412/2410-9916-2023-4-105-156. EDN: UKFEIL.
- Kazantsev, S.Yu., M.V. Sapozhnikov, and D.N. Terekhin. 2025. Razrabotka karty primenimosti atmosfernoy opticheskoy svyazi na ob"ektakh atomnoy energetiki Rossiyskoy Federatsii [Development of the applicability map of atmospheric optical communication at nuclear energy facilities of the Russian Federation]. Yadernaya fizika i inzhiniring [Nuclear Physics and Engineering] 16(1):5-12. doi: 10.56304/ S2079562924060162. EDN: OGFNKU.
- Dokuchaev, V.A., A. A. Kalfa, S.S. Mytenkov, and A. V. Shvedov. 2017. Analiz tekhnicheskikh resheniy po organizatsii sovremennykh tsentrov obrabotki dannykh [Analysis of technical solutions for organizing modern data processing centers]. T -Comm: Telekommunikatsii i transport [T-COMM] 11 (6): 16-24. EDN: ZAOKJB.
- Statev, V. Yu., V.A. Dokuchaev, and V. V. Maklachkova. 2022. Informatsionnaya bezopasnost' na prostranstve "Bol'shikh dannykh" [Information security in the Big Data space]. T-Comm: Telekommunikatsii i transport [T-COMM] 16(4):21-28. doi: 10.36724/2072-8735-2022-16-4-21-28. EDN: IXUYWS.
- Buzhin, I. G., A. Yu. Derevyankin, V. M. Antonova, et al. 2023. Comparative analysis of the rest and GRPC used in the monitoring system of communication network virtualized infrastructure. T-Comm 17(4):50-55. doi: 10.36724/2072-8735-2023-17- 4-50-55. EDN: FZJGEE.
- Zebzeev, A. G., E. A. Rybakov, D. P. Starikov, and A. G. Chernov. 2014. Razrabotka karty primenimosti tekhnologiy svyazi dlya ob"ektov neftegazovoy otrasli [Development of connection technology applicability card for the gas and oil industry]. Ekspozitsiya. Neft'. Gaz [Exposition. Oil. Gas] 5(37): 19-22. EDN: SMKNPV.
- Kazantsev, S.Y., S.N. Kuznetsov, A.Y. Maksimov, and N. V. Pchelkina. 2024. Prospects for the use of atmospheric optical communication at nuclear and fusion facilities. Fusion Sci. Technol. 80(7):893-903. doi: 10.1080/ 15361055.2024.2339662.
- Boev, A. A., S.S. Vorobey, S.Y. Kazantsev, M.Y. Kernosov, O.V. Kolesnikov, S. N. Kuznetsov, Y. B. Mironov, A. A. Parshin, and N. V. Rudavin. 2022. Possibility of creating a modular system for quantum key distribution in the atmosphere. Tech. Phys. Lett. 48(8): 11-14. doi: 10.21883/TPL.2022.08.55051.19192.
- Bolotov, D. V., S. Y. Kazantsev, N. V. Pchelkina, S. N. Kuznetsov and M. Y. Kernosov. 2023. Modular facility of quantum key distribution in a free space. Wave Electronics and Its Application in Information and Telecommunication Systems Proceedings. IEEE. Art. 10148017. 5 p. doi: 10.1109/WECONF57201.2023.10148017.
- Erokhin, K. Yu., S. Yu. Kazantsev, T. V. Kazieva, Yu. B. Mironov, and N. V. Pchelkina. 2024. Primenimost' tekhnologii kvantovogo raspredeleniya klyuchey v svobodnoy atmosfere pri postroenii segmentov sovremennykh kvantovykh kommunikatsionnykh setey [The applicability of quantum key distribution technology in a free atmosphere when constructing segments of modern quantum communication networks]. Opticheskiy zh. [J. Opt. Technol.] 91(11):63-70. doi: 10.17586/1023-5086-2024-91-11-63-70. EDN: RMUYWD.
- Molchanov, S. V., and S. O. Kalekina. 2019. Primenenie kogerentnogo vremenno- chastotnogo mul'tipleksirovaniya dlya povysheniya proizvoditel'nosti atmosfernoy opticheskoy sistemy svyazi [The use of coherent time-frequency multiplexing to improve the performance of the atmospheric optical communication system]. Vestnik Baltiyskogo federal'nogo universiteta im. I. Kanta. Ser. Fiziko-matematicheskie i tekhnicheskie nauki [Vestnik IKBFU. Physics, Mathematics, and Technology] 2:31-39. EDN: JIIRNF.
- Polyanskiy, S. V., and A. N. Ignatov. 2009. Opredelenie distantsii atmosfernogo kanala svyazi s zadannym koeffitsientom gotovnosti dlya g. Novosibirska [Defining the distance of atmospheric link with necessary readiness factor for Novosibirsk]. Vestnik SibGUTI [Herald of SibSUTIS] 4(8):73-82. EDN: MBFVRD.
- Berezhnoy, D.N., Kh. Sh. Kulbikayan, and E.N. Mishchenko. 2017. Osobennosti primeneniya atmosfernykh opticheskikh liniy svyazi v strukture RZhD [Peculiarities of communication application of atmospheric optical line in the structure of JSC "Russian Railway"]. Vestnik RGUPS [Vestnik RGUPS] 1(65):62-69. EDN: YHPUPX.
- Boreysho, A.S., A. A. Kim, M.A. Konyaev, V. S. Luginya, A.V. Morozov, and A.E. Orlov. 2019. Sovremennye lidarnye sredstva distantsionnogo zondirovaniya atmosfery [Modern lidar systems for atmosphere remote sensing]. Fotonika [Photonics Russia] 3(7):648-657. doi: 10.22184/1992-7296.FRos.13.7.648.657. EDN: OXNNVH.
- Boreysho, A.S., M.A. Konyaev, and A. A. Kim. 2024. Lidarnye kompleksy dlya issledovaniya atmosfery [Lidar systems for atmospheric research]. St. Petersburg: Lan'. 244 p.
- Kaushal, H., and G. Kaddoum. 2016. Optical communication in space: Challenges and mitigation techniques. IEEE Commun. Surv. Tut. 19(1):57-96. doi: 10.1109/ COMST.2016.2603518.
- Pchelkina, N. V., D.D. Zhukovsky, A. K. Nanidzhanyan, E.Y. Bushuev and D.D. Chizhin. 2024. Investigation of the atmospheric optical disturbances impact on the free space optics quantum key distribution. Systems of Signal Synchronization, Generating and Processing in Telecommunications Conference Proceedings. IEEE.
Art. 10617486. 7 p. doi: 10.1109/SYNCHROINFO61835.2024.10617486.
- Andrews, L.C., and R. L. Phillips. 2005. Laser beam propagation through random media. 2nd ed. SPIE Press. 808 p. doi: 10.1117/3.626196.
- Williams, W.D., M. Collins, D.M. Boroson, et al. 2007. RF and optical communications: A comparison of high data rate returns from deep space in the 2020 timeframe. NASA. Technical Report NASA/TM-2007-214459. 16 p. Available at: https://ntrs.nasa.gov/api/citations/20070017310/downloads/20070017310.pdf (accessed April 29, 2025).
- Trichili, A., M. Cox, B. Ooi, and M.-S. Alouini. 2020. Roadmap to free space optics. J. Opt. Soc. Am. B 37(11):A184{A201. doi: 10.1364/josab.399168.
- Atiyah, M.A., L. F. Abdulameer, and G. Narkhedel. 2023. PDF comparison based on various FSO channel models under different atmospheric turbulence. Al-Khwarizmi Engineering J. 19(4):78{89. doi: 10.22153/kej.2023.09.004.
- The HITRAN database. Available at: https://www.cfa.harvard.edu/hitran (accessed April 29, 2025).
- Mikhailenko, S.N., Yu. L. Babikov, andV. F. Golovko. 2005. Information-calculating system spectroscopy of atmospheric gases. The structure and main functions. Atmospheric Oceanic Optics 18(09/685^95.
- Mironov, A. V. 1997. Pretsizionnaya fotometriya. Prakticheskie osnovy pretsizionnoy fotometrii i spektrofotometrii zvezd [Precision photometry. Practical foundations of precision photometry and spectrophotometry of stars]. Moscow: EDEM. 157 p.
- Sapozhnikov, M.V., Yu. B. Mironov, D.N. Terekhin, and S.Yu. Kazantsev. 17.04.2024. Programmnyy kompleks FSO [FSO software suite]. Certificate RF of State Registration of Computer Programs No. 2024618934. EDN: VUDCDT.
- Tekhnicheskie parametry statsionarnykh terminalov [Technical parameters of stationary terminals]. Available at: https://moctkom.ru/optical-ground-stations (accessed April 29, 2025).
- Arkhiv pogody, METAR [Weather archive, METAR]. Available at: https://rp5.ru (accessed April 29, 2025).
- Ministerstvo tsifrovogo razvitiya, svyazi i massovykh kommunikatsiy Rossiyskoy Federatsii. November 25, 2021. Ob utverzhdenii Trebovaniy k organizatsionno- tekhnicheskomu obespecheniyu ustoychivogo funktsionirovaniya seti svyazi obshchego pol'zovaniya: Prikaz No. 1229 [On approval of the Requirements for organizational and technical support for the stable functioning of the public communications network: Or- derNo. 1229]. Available at: https://adm.digital.gov.ru/app/uploads/2023/10/prikaz- minczifry-%E2%84%96-1229.pdf (accessed April 29, 2025).
- Kuznetsov, S., B. Ognev, and S. Polyakov. 2009. FSO na "posledney (i ne tol'ko) mile". Prakticheskie rezul'taty [FSO at the "last (and not only) mile." Practical results]. Pervaya milya [Last Mile] 10(1):30{33.
- Dudin, A. N., V. I. Klimenok, and V. M. Vishnevsky. 2020. Mathematical models and methods of investigation of hybrid communication networks based on laser and radio technologies. The theory of queuing systems with correlated flows. Cham: Springer. 241-306. doi: 10.1007/978-3-030-32072-025.
- Alqurashi, F.S., S. Abdeljabar, A. Trichili, and M.-S. Alouini. 2024. Overcoming maritime connectivity challenges with hybrid RF/FSO links. TechRxiv. 6 p. doi: 10.36227/techrxiv.173014148.88314248/v1.
[+] About this article
Title
ASSESSMENT OF THE AVAILABILITY OF ATMOSPHERIC OPTICAL COMMUNICATIONS IN VARIOUS REGIONS OF THE RUSSIAN FEDERATION
Journal
Systems and Means of Informatics
Volume 35, Issue 2, pp 61-80
Cover Date
2025-05-20
DOI
10.14357/08696527250205
Print ISSN
0869-6527
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
optical communication; free space communication; atmospheric optical communication; communication channel availability
Authors
S. Yu. Kazantsev  , M. V. Sapozhnikov  , D. N. Terekhin  , Yu. B. Mironov  ,
and B. M. Shabanov
Author Affiliations
 Moscow Technical University of Communications and Informatics, 8A Aviamotornaya Str., Moscow 111024, Russian Federation
 National Research Center "Kurchatov Institute," 1 Acad. Kurchatov Sq., Moscow 123182, Russian Federation
|