Systems and Means of Informatics
2025, Volume 35, Issue 2, pp 31-44
ON UNIVERSAL STATE MODELS FOR TRACKING AND NAVIGATION TASKS OF UNMANNED MOVING OBJECTS
Abstract
To state most navigation problems, it is necessary to correctly formulate the problem of filtering the state of a stochastic dynamic system by indirect observations. If navigation is performed in a noncooperative scenario where the observed object and the measuring system do not interact, a priori information about the motion model is either limited to simple descriptions of the target and environmental conditions, or is absent altogether. For such cases, the article suggests several universal models that require minimum information about the parameters of a moving object. The models are based on simple motion at a constant speed. The lack of information about this speed complements navigation with the task of identifying it. The direction of movement is set to the average speed, which can vary from trajectory to trajectory, including depending on the coordinates of the object at the time of detection. The uncertainty of motion is modeled by several variants of additive (correlated and uncorrelated) disturbances that simulate chaotic motion while maintaining the general direction. A more complex model assumes a periodic change in the average speed of motion, which is analogous to motion with a piecewise constant velocity.
Such changes in the motion model are modeled by the Poisson flow of events. It is noted that even in the presence of a priori information about this flow, the task of navigation is accompanied by an extremely difficult task of identification, since it is required to estimate the changed average speed over a short observation interval. Typical examples of calculated trajectories are given.
[+] References (22)
- Dremlyuga, G. P., and Yu. L. Ivanov. 2004. Bespilotnye letatel'nye apparaty: Sostoyanie i tendentsii razvitiya [Unmanned aerial vehicles: Status and development trends]. Moscow: Varyag. 176 p.
- Mohsan, S. A. H., M. A. Khan, F. Noor, I. Ullah, and M. H. Alsharif. 2022. Towards the unmanned aerial vehicles (UAVs): A comprehensive review. Drones 6(6):147. 27 p. doi: 10.3390/drones6060147.
- Ehlers, F., ed. 2020. Autonomous underwater vehicles: Design and practice (radar, sonar & navigation). London, U.K.: SciTech Publishing. 592 p.
- Burns, L.D., and C. Shulgan. 2018. Autonomy: The quest to build the driverless car - and how it will reshape our world. HarperCollins. 368 p.
- Bar-Shalom, Y., X.-R. Li, and T. Kirubarajan. 2002. Estimation with applications to tracking and navigation: Theory, algorithms and software. New York, NY: John Wiley & Sons. 592 p. doi: 10.1002/0471221279.
- Genike, A. A., and G. G. Pobedinskiy. 2004. Global'nye sputnikovye sistemy opredeleniya mestopolozheniya i ikh primenenie v geodezii [Global satellite positioning systems and their application in geodesy]. Moscow: Kartgeotsentr. 354 p. EDN: QKGWEB.
- Hofmann-Wellenhof, B., H. Lichtenegger, and E. Wasle. 2007. GNSS - Global navigation satellite systems: GPS, GLONASS, Galileo, and more. Vienna: Springer. 518 p. doi: 10.1007/978-3-211-73017-1.
- Hodges, R. 2011. Underwater acoustics: Analysis, design and performance of sonar. New York, NY: Wiley. 384 p.
- Kebkal, K. G., and A. I. Mashoshin. 2017. AUV acoustic positioning methods. Gy- roscopy Navigation 8:80{89. doi: 10.1134/S2075108717010059.
- Miller, A., B. Miller, and G. Miller. 2018. AUV navigation with seabed acoustic sensing. Australian & New Zealand Control Conference Proceedings. IEEE. 166{171. doi: 10.1109/ANZCC.2018.8606561.
- Miller, A., B. Miller, and G. Miller. 2019. On AUV control with the aid of position estimation algorithms based on acoustic seabed sensing and DOA measurements. Sensors - Basel 19(24):5520. 21 p. doi: 10.3390/s19245520.
- Miller, A., B. Miller, and G. Miller. 2021. Navigation of underwater drones and integration of acoustic sensing with onboard inertial navigation system. Drones 5(3):83. doi: 10.3390/drones5030083.
- Bosov, A. V. 2023. Observation-based filtering of state of a nonlinear dynamical system with random delays. Automat. Rem. Contr. 84(6):671{684. doi: 10.1134/ s0005117923060036. EDN: GVWEAB.
- Bosov, A. 2023. Tracking a maneuvering object by indirect observations with random delays. Drones 7(7):468. 17 p. doi: 10.3390/drones7070468.
- Bosov, A. V. 2023. Optimal'naya fil'tratsiya sostoyaniya nelineynoy dinamicheskoy sistemy po nablyudeniyam so sluchaynymi zapazdyvaniyami [Nonlinear dynamic system state optimal filtering by observations with random delays]. Informatika i ee Primeneniya - Inform. Appl. 17(3):8{ 17. doi: 10.14357/19922264230302. EDN: CFVYJM.
- Bosov, A. V. 2024. AUV positioning and motion parameter identification based on observations with random delays. Automat. Rem. Contr. 85(12): 1024{1040. doi: 10.1134/S0005117924700413. EDN: PLPFMZ.
- Popova, M.S., and V.V. Strijov. 2015. Vybor optimal'noy modeli klassifikatsii fizicheskoy aktivnosti po izmereniyam akselerometra [Selection of optimal physical activity classification model using measurements of accelerometer]. Informatika i ee Primeneniya - Inform. Appl. 9(1):76-86. doi: 10.14357/19922264150107. EDN: TVXFFL.
- Sinitsyn, I.N. 2015. Analiticheskoe modelirovanie protsessov v dinamicheskikh sistemakh s tsilindricheskimi besselevymi nelineynostyami [Analytical modeling of processes in dynamical systems with cylindric Bessel nonlinearities]. Informatika i ee Primeneniya - Inform. Appl. 9(4):37-47. doi: 10.14357/1992264150404. EDN: TBABEC.
- Nikishin, D. A. 2024. Modelirovanie dinamicheskikh geoob"ektov na osnove kontseptsii fazovoy variantnosti [An approach to modeling dynamic geoobjects based on the concept of phase variation]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 34(2):95-106. doi: 10.14357/08696527240207. EDN: GCJQET.
- Sinitsyn, I.N. 2024. Metody veroyatnostnogo i statisticheskogo modelirovaniya neyavnykh stokhasticheskikh sistem [Probabilistic and statistical modeling methods for implicit stochastic systems]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 34(3):48-66. doi: 10.14357/08696527240305. EDN: RTNRUZ.
- Krivenko, M. P. 2024. Modelirovanie vkhodnogo potoka rabochikh nagruzok vychislitel'nogo klastera LANL Mustang [Modeling of the input flow of LANL Mustang computing cluster workloads]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 34(3):109-122. doi: 10.14357/08696527240308. EDN: FRSPMK.
- Uryupin, I.V. 2024. Razrabotka programmnogo kompleksa modelirovaniya effektivnosti v aviatransportnoy sisteme Rossii [Development of a software package for modeling efficiency in the Russian air transport system]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 34(3):136-146. doi: 10.14357/08696527240310. EDN: VMQRRH.
[+] About this article
Title
ON UNIVERSAL STATE MODELS FOR TRACKING AND NAVIGATION TASKS OF UNMANNED MOVING OBJECTS
Journal
Systems and Means of Informatics
Volume 35, Issue 2, pp 31-44
Cover Date
2025-05-20
DOI
10.14357/08696527250203
Print ISSN
0869-6527
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
navigation; target tracking; unmanned moving vehicles; stochastic dynamic observation system; additive disturbances; Markov chains; Poisson event flow
Authors
I. V. Uryupin
Author Affiliations
 Federal Research Center "Computer Science and Control", Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|