Systems and Means of Informatics
2014, Volume 24, Issue 4, pp 6385
RECENT WORKS IN THE FIELD OF MODELING INFORMATION FLOWS IN CONTEMPORARY HIGHFREQUENCY FINANCIAL APPLICATIONS
 V. Yu. Korolev
 A. Yu. Korchagin
 I. A. Sokolov
 A. V. Chertok
Abstract
Some results of recent studies in the field of modeling information flows in contemporary highfrequency financial systems and applications are discussed. In particular, the microscale model proposed by the authors is considered. Within the framework of this model, the order flows are described by doubly stochastic Poisson processes (also called Cox processes) which take account of the random character of intensities. To study the evolution of the limit order book (the current list of all active buy and sell orders), the models are proposed for the processes of number of orders imbalance and order flows imbalance having the form of twosided risk processes, special compound Cox processes. These processes are sensitive indicators of the current state of the limit order book and provide the possibility to interpolate dynamics of the market between price changes, say, to trace toxicity of the order flow. The paper presents a review of main results obtained by application of these models.
[+] References (28)
 Parlour, Ch. A. 1998. Price dynamics in limit order markets. Rev. Financ. Stud. 11 (4):789816.
 Foucault, T. 1999. Order flow composition and trading costs in a dynamic limit order market. J. Financ. Mark. 2:99134.
 Goettler, R., C. Parlour, and U. Rajan. 2005. Equilibrium in a dynamic limit order market. J. Financ. 60:21492192.
 Avellaneda, M., and S. Stoikov. 2008. Highfrequency trading in a limit order book. Quant. Financ. 8:217224.
 Rosu, I. 2009. A dynamic model of the limit order book. Rev. Financ. Stud. 22:46014641.
 Cont, R., S. Stoikov, and R. Talreja. 2010. A stochastic model for order book dynamics. Oper. Res. 58(3):549563.
 Cont, R., A. Kukanov, and S. Stoikov. The price impact of order book events. Available at: http://ssrn.com/abstract=1712822 (accessed November 5, 2014).
 Cont, R., A. Kukanov, and S. Stoikov. 2014. The price impact of order book events. J. Financ. Economet. 12(1):4788.
 Gorshenin, A., A. Doynikov, V. Korolev, and V. Kuzmin. 2012. Statistical properties of the dynamics of order books: Empirical results. Applied Problems in Theory of Probabilities and Mathematical Statistics Related to Modeling of Information Systems: Abstracts of VI Workshop (International). Moscow: IPI RAS. 3151.
 Korolev, V., A. Chertok, A. Korchagin, and A. Gorshenin. 2013. Veroyatnostno statisticheskoe modelirovanie informatsionnykh potokov v slozhnykh finansovykh sis temakh na osnove vysokochastotnykh dannykh [Probability and statistical modeling of information flows in complex financial systems based on highfrequency data]. Informatika i ee Primeneniya  Inform. Appl. 7 (1): 1221.
 Chertok, A., V. Korolev , A. Korchagin, and S. Shorgin. 2014 (in press). Modeling highfrequency nonhomogeneous order flows by compound Cox processes. Financ. Eng. Available at: http://ssrn.com/abstract=2378975 (accessed January 14, 2014).
 Bening, V., and V. Korolev. 2002. Generalized Poisson models and their applications in insurance and finance. Utrecht, VSP. 434 p.
 Korolev, V.Yu., V.E. Bening, and S.Ya. Shorgin. 2011. Matematicheskie osnovy teorii riska [Mathematical foundations of the risk theory]. Moscow: Fizmatlit. 620 p.
 Korolev, V.Yu., A.V. Chertok, A. Yu. Korchagin, and A.I. Zeifman. 2014 (in press). Modeling highfrequency order flow imbalance by functional limit theorems for twosided risk processes. Applied Mathematics Computation. Available at: http://arxiv.org/abs/1410.1900 (accessed November 5, 2014).
 Korolev V., and I. Shevtsova. 2012. An improvement of the BerryEsseen inequality with applications to Poisson and mixed Poisson random sums. Scand. Actuar. J. 2:81105 (available online since June 4, 2010).
 Cont, R., and A. de Larrard. 2012. Order book dynamics in liquid markets: Limit theorems and diffusion approximations. Available at: http://ssrn.com/abstract=1757861 (accessed February 1, 2012).
 Madan, D.B., and E. Seneta. 1990. The variance gamma (V.G.) model for share market return. J. Bus. 63:511524.
 Eberlein, E., and U. Keller. 1995. Hyperbolic distributions in finance. Bernoulli 1(3):281299.
 Prause, K. 1997. Modeling financial data using generalized hyperbolic distributions. Freiburg: Universitat Freiburg, Institut fur Mathematische Stochastic. Preprint No. 48.
 Carr, P. P., D. B. Madan, and E. C. Chang. 1998. The variance gamma process and option pricing. Eur. Financ. Rev. 2:79105.
 Eberlein, E., U. Keller, and K. Prause. 1998. New insights into smile, mispricing and value at risk: The hyperbolic model. J. Bus. 71:371405.
 Eberlein, E., andK. Prause. 1998. The generalized hyperbolic model: Financial derivatives and risk measures. Freiburg: Universituat Freiburg, Institut fuur Mathematische Stochastic. Preprint No. 56.
 Shiryaev, A.N. Osnovy stohasticheskoy finansovoy matematiki [Basics of stochastic finance]. Moscow: Fazis. 1998. 512 p.
 Eberlein, E. 1999. Application of generalized hyperbolic Levy motions to finance. Freiburg: Universitat Freiburg, Institut fur Mathematische Stochastic. Preprint No. 64.
 Jacod, J., and A.N. Shiryaev. 2003. Limit theorems for stochastic processes. 2nd ed. Grundlehren der Mathematischen Wissenschaften. Berlin: SpringerVerlag. 288. 664 p.
 Korolev, V.Yu., and I. A. Sokolov. 2012. Skoshennye raspredeleniya St'yudenta, dispersionnye gammaraspredeleniya i ikh obobshcheniya kak asimptoticheskie ap proksimatsii [Skew Student distributions, variancegamma distributions, and their generalizations as asymptotic approximations]. Informatika i ee Primeneniya  Inform. Appl. 6(1):210.
 Korolev, V.Yu. 2013. Obobshchennye giperbolicheskie zakony kak predel'nye dlya raspredeleniy sluchaynykh summ [Generalized hyperbolic laws as the limit for distributions of random sums]. Teoriya Veroyatnostey i ee Primeneniya [Probability Theory and Its Applications] 58(1):117132.
 Zaks, L. M., and V.Yu. Korolev. 2013. Obobshchennye dispersionnye gamma raspredeleniya kak predel'nye dlya sluchaynykh summ [Variancegeneralizedgamma distributions as limit laws for random sums]. Informatika i ee Primeneniya  Inform. Appl. 7 (1): 105115.
[+] About this article
Title
RECENT WORKS IN THE FIELD OF MODELING INFORMATION FLOWS IN CONTEMPORARY HIGHFREQUENCY FINANCIAL APPLICATIONS
Journal
Systems and Means of Informatics
Volume 24, Issue 4, pp 6385
Cover Date
20131130
DOI
10.14357/08696527140404
Print ISSN
08696527
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
financial markets; highfrequency financial systems; limit order book; number of orders imbalance; order flows imbalance; doubly stochastic Poisson process; compound Cox process; normal variancemean mixture; twosided risk process; separation of mixtures; EMalgorithm; generalized variance gamma distribution; generalized gamma distribution; generalized hyperbolic distribution; generalized inverse Gaussian distribution
Authors
V. Yu. Korolev , ,
A. Yu. Korchagin ,
I. A. Sokolov ,
and A. V. Chertok ,
Author Affiliations
Faculty of Computational Mathematics and Cybernetics, M.V. Lomonosov Moscow State University, 152 Leninskiye Gory, GSP1, Moscow 119991, Russian Federation
Institute of Informatics Problems, Russian Academy of Sciences, 442 Vavilov Str., Moscow 119333, Russian Federation
Euphoria Group LLC, 9, bld. 1, of. 6 Arkhangelsky Lane, Moscow 101000, Russian Federation
