Informatics and Applications
2025, Volume 19, Issue 3, pp 27-35
OPTIMIZATION OF A TRAIN SPEED PROFILE BASED ON THE EXPECTED ACCIDENT DAMAGE CRITERION
- A. V. Borisov
- A. N. Ignatov
- V. A. Borisov
Abstract
The paper focuses on designing a freight train speed profile that minimizes the expected damage from various types of railway accidents. Total losses include both damage to a considered train and potential harm to trains on adjacent tracks. The probability functions for all accident types are parameterized by the route's topology and profile, i. e., its local slope and curvature. These probability functions, along with those describing the average financial loss per derailed car, treat train speed as a control variable. The speed profile is a solution to the constrained mathematical programming problem. It is represented as a piecewise constant function, remaining constant over each segment of the route with uniform slope or curvature. This profile satisfies both instantaneous geometric and integral time constraints. Since a piecewise constant speed profile looks physically unrealistic, the paper also proposes a method for transforming it into a profile with uniformly accelerated transitions. A numerical example is provided to illustrate how different loss functions and time constraints affect the choice of an optimal speed profile.
[+] References (16)
- Boctor, F. F., G. Laporte, and J. Renaud. 2003. Heuristics for the traveling purchaser problem. Comput. Oper Res. 30(4):491-504. doi: 10.1016/S0305-0548(02)00020-5.
- Khachai, M.Yu., and Yu. Yu. Ogorodnikov. 2019. Polynomial-time approximation scheme for the capacitated vehicle routing problem with time windows. P. SteklovI. Math. 307(S1):51-63. doi: 10.1134/S0081543819070058. EDN: MWXBYZ.
- Fluschnik, T., M. Morik, and M. Sorge. 2019. The complexity of routing with collision avoidance. J. Comput. Syst. Sci. 102:69-86. doi: 10.1016/j.jcss.2019.01.001.
- Mor, A., and M. G. Speranza. 2020. Vehicle routing problems over time: A survey. 4OR - Q. J. Oper. Res. 18(2):129- 149. doi: 10.1007/s10288-020-00433-2.
- Lazarev, A. A., and E. G. Musatova. 2012. Tselochislennye postanovki zadachi formirovaniya zheleznodorozhnykh sostavov i raspisaniya ikh dvizheniya [Integer formulations
of freight train design and scheduling problems]. Upravlenie bol'shimi sistemami [Large Scale Systems Control] 38:161-169. doi: 10.1134/S0005117913120084. EDN: PBXQQD.
- Forsgren, M., M. Aronsson, and S. Gestrelius. 2013. Maintaining tracks and traffic flow at the same time. J. Rail Transport Planning Management 3(3):111-123. doi: 10.1016/j.jrtpm.2013.11.001.
- Bosov, A. V., A. N. Ignatov, and A. V. Naumov. Algoritmy priblizhennogo resheniya zadachi naznacheniya "tekhnologicheskogo okna" na uchastkakh zheleznodorozhnoy seti [Algorithms for an approximate solution of the track possession problem on the railway network segment]. Informatika i ee Primeneniya - Inform. Appl. 15(4):3-11. doi: 10.14357/19922264210401. EDN: OPTRUD.
- Sokolov, I. A., Yu. A. Stepchenkov, Yu. G. Diachenko, and Yu. V. Rogdestvenski. 2022. Otsenka nadezhnosti sinkhronnogo i samosinkhronnogo konveyerov [Synchronous and self-timed pipeline's reliability estimation] Informatika i ee Primeneniya - Inform. Appl. 16(4):2-7. doi: 10.14357/19922264220401. EDN: GWXJHM.
- Malashenko, Yu. E., and I. A. Nazarova. 2025. Garantirovannye otsenki pokazateley rabotosposobnosti mnogopol'zovatel'skoy seti pri povrezhdeniyakh [Guaranteed estimates of the multiuser network performance indicators in case of damage]. Informatika i ee Primeneniya - Inform. Appl. 19(1):16-24. doi: 10.14357/19922264250103. EDN: MYHICH.
- Baranov, L. A., ed. 2011. Optimizatsiya upravleniya dvizheniem poezdov [Control optimization of train transportation]. Moscow: MIIT. 164 p. EDN: QNYRIV.
- Bagheri, M., F Saccomanno, and L. Fu. 2010. Effective placement of dangerous goods cars in rail yard marshaling operation. Can. J. Civil Eng. 37(5):753-762. doi: 10.1139/L10-015.
- Rahbar, M., and M. Bagheri. 2014. Risk assessment framework for the rail transport of hazardous materials: Formulation and solution. Transp. Res. Rec. 2411(1):90-95. doi: 10.3141/2411-11.
- Bosov, A. V., and A. N. Ignatov. 2023. O zadache otsenki i analiza riska transportnykh proisshestviy na rel'sovom transporte [On the problem of assessing and analyzing
traffic accidents risk on the rail transport]. Informatika i ee Primeneniya - Inform. Appl. 17(1):73-82. doi: 10.14357/19922264230110. EDN: SSMEEK.
- Zamyshliaev, A.M., A. N. Ignatov, A. I. Kibzun, and E. O. Novozhilov. 2018. O narushenii bezopasnosti dvizheniya, svyazannom s vykhodom v gabarit sosednego puti podvizhnykh edinits gruzovogo poezda, soshedshikh s rel'sov [On traffic safety incidents caused by intrusion of derailed freight cars into the operational space of an adjacent track]. Nadezhnost' [Dependability] 18(3):39- 45. doi: 10.21683/1729-2646-2018-18-3-39-45. EDN: YATOLJ.
- Zamyshliaev, A. M., A. N. Ignatov, A. I. Kibzun, and E. O. Novozhilov. 2018. Funktsional'naya zavisimost' mezhdu kolichestvom vagonov v skhode iz-za neispravnostey vagonov ili puti i faktorami dvizheniya [Functional dependency between the number of wagons derailed due to wagon or track defects and the traffic factors]. Nadezhnost' [Dependability] 18(1):53-60. doi: 10.21683/1729-2646- 2018-18-1-53-60.
- Nesterov, Y., and A. Nemirovski. 1994. Interior-point polynomial algorithms in convex programming. Philadelphia, PA: SIAM. 405 p.
[+] About this article
Title
OPTIMIZATION OF A TRAIN SPEED PROFILE BASED ON THE EXPECTED ACCIDENT DAMAGE CRITERION
Journal
Informatics and Applications
2025, Volume 19, Issue 3, pp 27-35
Cover Date
2025-10-10
DOI
10.14357/19922264250304
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
piecewise constant control; speed profile; expected damage; nonlinear optimization
Authors
A. V. Borisov  ,  , A. N. Ignatov  , and V. A. Borisov
Author Affiliations
 Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
 Moscow Center for Fundamental and Applied Mathematics, M.V. Lomonosov Moscow State University, 1 Leninskie Gory, GSP-1, Moscow 119991, Russian Federation
 Moscow Aviation Institute (National Research University), 4 Volokolamskoe Shosse, Moscow 125933, Russian Federation
|