Informatics and Applications
2025, Volume 19, Issue 3, pp 19-26
RISK ESTIMATE FOR THE BLOCK THRESHOLDING METHOD OF SOLVING INVERSE STATISTICAL PROBLEMS WITH DATA ON A RANDOM GRID
Abstract
Wavelet analysis methods are widely used to solve inverse statistical problems for inverting linear homogeneous operators. The advantage of these methods is their computational efficiency and the ability to adapt to both the operator type and local features of the estimated function. To suppress the noise in the observed data, threshold processing of the expansion coefficients of the observed function over the wavelet basis is used. One of the most effective is the block thresholding method in which the expansion coefficients are processed in groups that allows taking into account information about neighboring coefficients. Sometimes, the nature of the data is such that observations are recorded at random times. If the sample points form a variation series constructed from a uniform distribution sample over the data recording interval, then the use of threshold processing procedures is adequate and does not worsen the quality of the estimates obtained. The paper analyzes the estimate of the mean square risk of the block thresholding method and shows that under certain conditions, this estimate is strongly consistent and asymptotically normal.
[+] References (21)
- Engl, H. W., M. Hanke, and A. Neubauer. 1996. Regularization of inverse problems. Mathematics and its applications ser. Dordrecht: Kluwer Academic Publs. Vol. 375. 330 p.
- Donoho, D., and I. M. Johnstone. 1994. Ideal spatial adaptation via wavelet shrinkage. Biometrika 81(3):425- 455. doi: 10.1093/biomet/81.3.425.
- Donoho, D., and I. M. Johnstone. 1995. Adapting to unknown smoothness via wavelet shrinkage. J.Am. Stat. Assoc. 90:1200-1224. doi: 10.1080/01621459. 1995.10476626.
- Donoho, D., and I. M. Johnstone. 1998. Minimax estimation via wavelet shrinkage. Ann. Stat. 26(3):879-921. doi: 10.1214/aos/1024691081.
- Hall, P, G. Kerkyacharian, and D. Picard. 1999. On the minimax optimality of block thresholded wavelet estimators. Stat. Sinica 9:33-49.
- Cai, T. 1999. Adaptive wavelet estimation: A block thresholding and oracle inequality approach. Ann. Stat. 28(3):898-924. doi: 10.1214/aos/1018031262.
- Cai, T, and L. Brown. 1998. Wavelet shrinkage for nonequispaced samples. Ann. Stat. 26(5):1783-1799. doi: 10.1214/aos/1024691357.
- Cai, T, and L. Brown. 1999. Wavelet estimation for samples with random uniform design. Stat. Probabil. Lett. 42:313-321. doi: 10.1016/S0167-7152(98)00223-5.
- Chicken, E. 2003. Block thresholding and wavelet estimation for nonequispaced samples. J. Stat. Plan. Infer. 116(1):113-129. doi: 10.1016/S0378-3758(02)00238-0.
- Kudryavtsev, A. A., and O. V. Shestakov. 2011. Asimptotika otsenki riska pri veyglet-veyvlet razlozhenii nablyudaemogo signala [The average risk assessment of the wavelet decomposition of the signal]. T-Comm: Telekommunikatsii i transport [T-Comm: Telecommunications and Transport] 5(2):54-57. EDN: OPHYQN.
- Eroshenko, A.A., and O. V. Shestakov. 2014. Asymptotic normality of estimating risk upon the wavelet- vaguelette decomposition of a signal function in a model with correlated noise. Moscow University Computational Mathematics Cybernetics 38(3):110-117. doi: 10.3103/ S0278641914030042. EDN: UEUPKZ.
- Eroshenko, A. A., A. A. Kudryavtsev, and O. V. Shestakov. 2015. Limit distribution of a risk estimate using the vaguelette-wavelet decomposition of signals in a model with correlated noise. Moscow University Computa- tionalMathematics Cybernetics 39(1):6-13. doi: 10.3103/ S0278641915010021. EDN: UFLCXN.
- Donoho, D. 1995. Nonlinear solution of linear inverse problems by wavelet-vaguelette decomposition. Appl. Comput. Harmon. A. 2(2):101-126. doi: 10.1006/acha. 1995.1008.
- Lee, N. 1997. Wavelet-vaguelette decompositions and homogeneous equations. West Lafayette, IN: Purdue University. PhD Thesis. 93 p.
- Abramovich, F., and B. W. Silverman. 1998. Wavelet decomposition approaches to statistical inverse problems. Biometrika 85(1):115-129. doi: 10.1093/biomet/85.1.115.
- Shestakov, O.V., and E. P Stepanov. 2023. Nelineynaya regulyarizatsiya obrashcheniya lineynykh odnorodnykh operatorov s pomoshch'yu metoda blochnoy porogovoy obrabotki [Nonlinear regularization of the inversion of linear homogeneous operators using the block thresholding method]. Informatika i ee Primeneniya - Inform. Appl. 17(4):2-8. doi: 10.14357/19922264230401. EDN: PGKKYE.
- Shestakov, O.V. 2019. Svoystva veyvlet-otsenok signalov, registriruemykh v sluchaynye momenty vremeni [Properties of wavelet estimates of signals recorded at random time points]. Informatika iee Primeneniya - Inform. Appl. 13(2):16-21. doi: 10.14357/19922264190203. EDN: SEYEXW.
- Shestakov, O.V. 2020. Asimptoticheskaya regulyarnost' veyvlet-metodov obrashcheniya lineynykh odnorodnykh operatorov po nablyudeniyam, registriruemym v sluchaynye momenty vremeni [Asymptotic regularity of the wavelet methods of inverting linear homogeneous operators from observations recorded at random times]. Informatika i ee Primeneniya - Inform. Appl. 14(1):3-9. doi: 10.14357/19922264200101. EDN: GJHMNK.
- Shestakov, O. V. 2024. Statisticheskie svoystva otsenki srednekvadratichnogo riska metoda blochnoy porogovoy obrabotki v zadachakh neparametricheskoy regressii so sluchaynoy setkoy [Statistical properties of the mean- square risk estimate for the block threshold processing method in nonparametric regression problems with a random grid]. Informatika i ee Primeneniya - Inform. Appl. 18(4):26-33.doi: 10.14357/19922264240404. EDN: WHZQPX.
- Shestakov, O. V. 2010. Approksimatsiya raspredeleniya otsenki riska porogovoy obrabotki veyvlet-koeffitsientov normal'nym raspredeleniem pri ispol'zovanii vyborochnoy dispersii [Normal approximation for distribution of risk estimate for wavelet coefficients thresholding when using sample variance]. Informatika i ee Primeneniya - Inform. Appl. 4(4):72-79. EDN: NULNZH.
- Shestakov, O.V. 2025. Reshenie obratnykh statisticheskikh zadach s pomoshch'yu metodov porogovoy obrabotki, dopuskayushchikh postroenie nesmeshchennoy otsenki srednekvadratichnogo riska [Solving inverse statistical problems using threshold processing methods that allow the construction of an unbiased estimate of the mean-square risk]. Informatika i ee Primeneniya - Inform. Appl. 19(1):74-81. doi: 10.14357/19922264250110. EDN: ZSIBDL.
[+] About this article
Title
RISK ESTIMATE FOR THE BLOCK THRESHOLDING METHOD OF SOLVING INVERSE STATISTICAL PROBLEMS WITH DATA ON A RANDOM GRID
Journal
Informatics and Applications
2025, Volume 19, Issue 3, pp 19-26
Cover Date
2025-10-10
DOI
10.14357/19922264250303
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
linear homogeneous operator; wavelets; block thresholding; unbiased risk estimate; random samples
Authors
O. V. Shestakov  ,  ,
Author Affiliations
 Department of Mathematical Statistics, Faculty of Computational Mathematics and Cybernetics, M. V Lomonosov Moscow State University, 1-52 Leninskie Gory, GSP-1, Moscow 119991, Russian Federation
 Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
 Moscow Center for Fundamental and Applied Mathematics, M.V. Lomonosov Moscow State University, 1 Leninskie Gory, GSP-1, Moscow 119991, Russian Federation
|