Informatics and Applications
2025, Volume 19, Issue 3, pp 10-18
STABILIZATION OF THE TRAJECTORY OF A LINEAR SYSTEM WITH JUMPING DRIFT UNDER INTEGER CONTROL CONSTRAINTS
Abstract
An integer-valued version of the stabilization problem for a linear stochastic differential system is considered where the drift evolves in a jumping manner determined by a Markov chain. The control objective is formalized via a quadratic cost functional. Depending on the conditions, both the full information case (the state of the chain is known) and the indirect observation case (the system state serves as an indirect observation of the unknown chain state) are possible. A distinguishing feature of the formulation lies in the integer constraints on the admissible control values. Unlike the previously solved unconstrained problem, the existence conditions for a solution are not satisfied in the "integer" formulation; therefore, an e-optimal solution is investigated. An e-optimal control can be obtained by discretizing the optimal solution of the unconstrained problem and applying mixed-integer nonlinear programming. However, the stochastic nature of the problem and the large number of switching scenarios prevent the guaranteed computational feasibility of solving it using dynamic programming. For practical implementation, a relaxation method is used: a heuristic approximation is computed as the result of an integer transformation of the e-optimal control in the unconstrained problem. Three variants of such transformations are proposed. A numerical experiment was conducted using the same applied model as in previous works on unconstrained control (position dynamics of a simple mechanical actuator). The results primarily confirm the applicability of the proposed solutions in terms of the stabilization objective and also allow for a comparison of the nature of the relaxation strategies.
[+] References (17)
- Belotti, P., C. Kirches, S. Leyffer, J. Linderoth, J. Luedtke, and A. Mahajan. 2013. Mixed integer nonlinear optimization. Acta Numer. 22:1-131. doi: 10.1017/ S0962492913000032.
- Sahinidis, N. V. 2019. Mixed-integer nonlinear programming 2018. Optim. Eng. 20:301-306. doi: 10.1007/s11081- 019-09438-1.
- Pontryagin, L. S., V G. Boltyanskii, R. V Gamkrelidze, and E. F. Mishchenko. 1962. The mathematical theory of optimal processes. New York, London: John Wiley & Sons. 360 p.
- Bellman, R. E. 1957. Dynamic programming. Princeton, NJ: Princeton University Press. 342 p.
- Wonham, W M. 1965. Some application of stochastic differential equations to optimal nonlinear filtering. SIAM J. Control 2(3):347-369. doi: 10.1137/0302028.
- Bosov, A. V. 2021. Upravlenie lineynym vykhodom markovskoy tsepi po kvadratichnomu kriteriyu [Linear output control of Markov chains by the quadratic criterion]. Informatika i ee Primeneniya - Inform. Appl. 15(2):3-11. doi: 10.14357/19922264210201. EDN: EZECOE.
- Bosov, A. V. 2022. Upravlenie lineynym vykhodom markovskoy tsepi po kvadratichnomu kriteriyu. Sluchay polnoy informatsii [Linear output control of Markov chain by square criterion. Complete information case]. Informatika i ee Primeneniya - Inform. Appl. 16(2):19-26. doi: 10.14357/19922264220203. EDN: FEQKUN.
- Bosov, A.V. 2022. Stabilization and tracking of the trajectory of a linear system with jump drift. Automat. Rem. Contr. 83(4):520-535. doi: 10.1134/S0005117922040026.
- Bregman, L. M. 1967. The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comp. Math. Math. 7(3):200-217. doi: 10.1016/0041- 5553(67)90040-7. EDN: XLNZWV.
- Roubicek, T. 2020. Relaxation in optimization theory and variational calculus. 2nd ed. De Gruyter ser. in nonlinear analysis and applications. Berlin: Walter de Gruyter GmbH. Vol. 4. 581 p. doi: 10.1515/9783110590852.
- Fleming, W H., and R. W. Rishel. 1975. Deterministic and stochastic optimal control. New York, NY: Springer-Verlag. 222 p. doi: 10.1007/978-1-4612-6380-7.
- Sager, S. 2005. Numerical methods for mixed-integer optimal control problems. Tonning: Der Andere Verlag. 219 p.
- Bortakovsky, A. S. 2021. The necessary conditions for optimal hybrid systems of variable dimensions. J. Comput. Sys. Sc. Int. 60(6):883-894. doi: 10.1134/ S1064230721060058. EDN: YBJIUW.
- Fuller, A. T. 1960. Relay control systems optimized for various performance criteria. IFAC Proceedings Volumes 1(1):520-529. doi: 10.1016/S1474-6670(17)70097-3.
- Sukhinin, B. V., and V.V. Surkov. 2021. Fenomen Fullera v teorii i praktike optimal'nogo upravleniya [Phenomenon by Fuller in theory and practice of the optimum control]. J. Advanced Research Technical Science 2(23):94-99. doi: 10.26160/2474-5901-2021-23-94-99. EDN: VBLUGF.
- Chyba, M., and T. Haberkorn. 2006. Autonomous underwater vehicles: Singular extremals and chattering. Systems, control, modeling and optimization. Eds. F Ceragioli, A. Dontchev, H. Furuta, K. Marti, and L. Pandolfi. IFIP International Federation for Information Processing ser. Boston, MA: Springer. 202:103-113. doi: 10.1007/0-387- 33882-9-10.
- Borisov, A. V. 2020. Chislennye skhemy fil'tratsii markovskikh skachkoobraznykh protsessov po diskretizovannym nablyudeniyam II: sluchay additivnykh shumov [Numerical schemes of Markov jump process filtering given discretized observations II: Additive noise case]. Informatika i ee primeneniya - Inform. Appl. 14(1):17-23. doi: 10.14357/19922264200103. EDN: BDUYGW.
[+] About this article
Title
STABILIZATION OF THE TRAJECTORY OF A LINEAR SYSTEM WITH JUMPING DRIFT UNDER INTEGER CONTROL CONSTRAINTS
Journal
Informatics and Applications
2025, Volume 19, Issue 3, pp 10-18
Cover Date
2025-10-10
DOI
10.14357/19922264250302
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
stabilization of a linear system; quadratic cost functional; dynamic programming; feedback control; Wonham filter; mixed-integer nonlinear programming; relaxation method; mechanical actuator
Authors
A. V. Bosov
Author Affiliations
 Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|