Informatics and Applications
2025, Volume 19, Issue 2, pp 35-44
MATHEMATICAL SUPPORT FOR MONITORING OF STATES AND NUMERICAL CHARACTERISTICS OF NETWORK CONNECTION BASED ON COMPOUND STATISTICAL INFORMATION
- A. V. Borisov
- Yu. N. Kurinov
- R. L. Smeliansky
Abstract
The paper focuses on the application of optimal filtering methods to estimate the current qualitative states and numerical characteristics of a TCP link. The available statistical information includes measurements of round-trip times, jitter, and the flows of packet losses and timeouts. The evolution of the link state is modeled using a special class of Markov jump processes where one set of components defines the qualitative state of the channel while the other represents its quantitative characteristics. The proposed stochastic model and measurement structure enable the filtering ofboth the state and characteristics of the TCP link, yielding estimates that are optimal in both the class of linear and arbitrary transformations of the available observations. A numerical example is provided to validate the accuracy of these estimates.
[+] References (21)
- RFC 9000 - QUIC: A UDP-based multiplexed and secure transport. IETF doi: 10.17487/RFC9000. Available at: https://www.rfc-editor.org/rfc/rfc9000 (accessed May 26, 2025).
- Jones, L. 2020. Microsoft's in-house QUIC connections library is now open source. WinBuzzer. Available at: https://winbuzzer.com/2020/04/29/microsofts-in-house-quic-connections-library-is-now-open-source- xcxwbn/ (accessed May 26, 2025).
- Machora, L. 2024. A survey of transmission control protocol variants. World J. Advanced Research Reviews 21(03):1828-1853. doi: 10.30574/wjarr.2024.21.3.0886.
- Murkonen, T. 2024. Performance, privacy, and security issues of TCP/IP at the application layer: A comprehensive survey GSC Advanced Research Reviews 18(3):234-264. doi: 10.30574/gscarr.2024.18.3.0106.
- Low, S., F Paganini, and J. Doyle. 2002. Internet congestion control. lEEEContr. Syst. Mag. 22(1):28-43. doi: 10.1109/37.980245.
- Polese, M., F. Chiariotti, E. Bonetto, et al. 2019. A survey on recent advances in transport layer protocols. IEEE Commun. Surv. Tut. 21(4):3584-3608. doi: 10.1109/COMST.2019.2932905.
- Al-Saadi, R., G. Armitage, J. But, and Ph.Branch. 2019. A survey of delay-based and hybrid TCP congestion control algorithms. IEEE Commun. Surv. Tut. 21(4):3609- 3638. doi: 10.1109/COMST.2019. 2904994.
- Lorincz, J., Z. Klarin, and J. Ozegovi, 2021. A comprehensive overview of TCP congestion control in 5G networks: Research challenges and future perspectives. Sensors - Basel 21(13):4510. 41 p. doi: 10.3390/s21134510.
- Korbi, Y., M. F. Zhani, and J. Kaippallimalil. 2024. Congestion control in Wi-Fi networks - state of the art, performance evaluation, and key research directions. IEEE Access 12:94972-94989. doi: 10.1109/ACCESS. 2024.3425271.
- Borisov, A., A. Bosov, G. Miller, and I. Sokolov. 2021. Partial diffusion Markov model of heterogeneous TCP link: Optimization with incomplete information. Mathematics 9(14):1632. 31 p. doi: 10.3390/math9141632.
- Jacobson, V. 1998. Congestion avoidance and control. ACM SIGCOMM Comp. Com. 18(4):314-329. doi: 10.1145/52325.52356.
- Mathis, M., J. Semke, J. Mahdavi, etal. 1997. The macroscopic behavior of the TCP congestion avoidance algorithm. ACM SIGCOMM Comp. Com. 27(3):67-82. doi: 10.1145/263932.264023.
- Cheng, Y., N. Cardwell, N. Dukkipati, and P Jha. 2021. The RACK-TLP loss detection algorithm for TCP IETF. RFC 8985. Available at: https://www.rfc- editor.org/rfc/rfc8985 (accessed May 26, 2025).
- Borisov, A. V., Yu. N. Kurinov, and R. L. Smelyansky. 2024. Veroyatnostnyy analiz klassa markovskikh skachkoobraznykh protsessov [Probabilistic analysis of a class of Markov jump processes]. Informatika i ee primeneniya - Inform. Appl. 18(3):30-37. doi: 10.14357/ 19922264240304. EDN: XPVTGJ.
- Borisov, A. V., Yu. N. Kurinov, and R. L. Smelyansky. 2024. Fil'tratsiya sostoyaniy klassa markovskikh skachkoobraznykh protsessov po raznorodnym nablyudeniyam s additivnymi shumami [Filtering of a class of Markovjump processes by heterogeneous observations with additive noises]. Informatika ieeprimeneniya - Inform. Appl. 18(4):10-18. doi: 10.14357/19922264240402. EDN: FEMNQL.
- Borisov, A. 2024. Filtering of hidden Markov renewal processes by continuous and counting observations. AIMS Mathematics 9(11):30073-30099. doi: 10.3934/ math.20241453.
- Borisov, A.V. 2020. Chislennye skhemy fil'tratsii markovskikh skachkoobraznykh protsessov po diskretizovannym nablyudeniyam II: sluchay additivnykh shumov [Numerical schemes of Markov jump process filtering given discretized observations II: Additive noise case]. Informatika i ee primeneniya - Inform. Appl. 14(1):17-23. doi: 10.14357/19922264200103. EDN: BDUYGW
- Borisov, A.V. 2022. Obshchiy poryadok approksimatsii otsenok fil'tratsii sostoyaniy markovskikh skachkoobraznykh protsessov po diskretizovannym nablyudeniyam [Total approximation order for Markov jump process filtering given discretized observations]. Informatika i ee primeneniya - Inform. Appl. 16(4):8-13. doi: 10.14357/19922264220402. EDN: ASRYJD.
- Kalman, R. E., and R. S. Bucy. 1961. New results in linear filtering and prediction theory. J. Basic Eng. - T. ASME 83(1):95-108. doi: 10.1115/1.3658902.
- Draper, N., and H. Smith. 1998. Applied regression analysis. 3rd ed. Wiley ser. in probability and statistics. John Wiley & Sons, Inc. 736 p. doi: 10.1002/9781118625590.
- Borisov, A.V. 2025. Fil'tratsiya sostoyaniy i parametrov spetsial'nykh markovskikh skachkoobraznykh protsessov po kosvennym nablyudeniyam bez shuma [Filtering of states and parameters of special Markov jump processes via indirect perfect observations]. Informatika i ee primeneniya - Inform. Appl. 19(1):25-32. doi: 10.14357/ 19922264250104. EDN: MZAJVZ.
[+] About this article
Title
MATHEMATICAL SUPPORT FOR MONITORING OF STATES AND NUMERICAL CHARACTERISTICS OF NETWORK CONNECTION BASED ON COMPOUND STATISTICAL INFORMATION
Journal
Informatics and Applications
2025, Volume 19, Issue 2, pp 35-44
Cover Date
2025-07-10
DOI
10.14357/19922264250205
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
special Markov jump process; optimal filtering estimate; stochastic differential observation system; Kushner-Stratonovich equation; Kalman-Bucy filter
Authors
A. V. Borisov  , Yu. N. Kurinov  , and R. L. Smeliansky
Author Affiliations
 Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
 M. V. Lomonosov Moscow State University, 1-52 Leninskie Gory, GSP-1, Moscow 119991, Russian Federation
|