Informatics and Applications
2025, Volume 19, Issue 2, pp 27-34
COMPLEX STATISTICAL CRITERION CONDITIONALLY OPTIMAL FILTERING METHODS FOR OBSERVABLE IMPLICIT STOCHASTIC SYSTEMS
Abstract
Paper is devoted to exact and approximate based on complex statistical criterion (CSC) conditionally- optimal filtering (COF) methods for continuous and discrete observable implicit non-Gaussian stochastic systems (StS) reducible to explicit. Survey of COF based on mean square criterion for explicit and implicit StS and CSC COF for explicit StS is given. Reduction methods for smooth and discontinuous implicit functions are presented.
The CSC COF exact synthesis methods for reducible differential, regression, and autoregression StS are developed.
For reduced StS with additive Gaussian noises and statistically linearized implicit functions generalization of Kalman and Kalman-Bucy filters is considered. Some future generalizations of exact and approximate CSC COF are mentioned.
[+] References (18)
- Sinitsyn, I. N. 2024. Metody uslovno-optimal'noy fil'tratsii i ekstrapolyatsii v nablyudaemykh neyavnykh stokhasticheskikh sistemakh [Conditionally optimal filtering and extrapolation methods for observable implicit stochastic systems]. Informatika i ee Primeneniya - Inform. Appl. 18(4):2-9. doi: 10.14357/19922264240401. EDN: TFPJYK.
- Sinitsyn, I. N. 2024. Uslovno-optimal'naya fil'tratsiya i ekstrapolyatsiya v neyavnykh differentsial'nykh gaussovskikh stokhasticheskikh sistemakh pri avtokorrelirovannoy pomekhe v nablyudeniyakh [Conditionally optimal filtering and extrapolation for differential Gaussian implicit stochastic systems at autocorrelated noise in observations]. Informatika i ee Primeneniya - Inform. Appl. 18(4):19-25. doi: 10.14357/19922264240403. EDN: CVUETK.
- Sinitsyn, I. N. 2024. Diskretnoe uslovno-optimal'noe otsenivanie v neyavnykh nablyudaemykh stokhasticheskikh sistemakh [Discrete conditionally-optimal estimation in observable implicit stochastic systems]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 34(4): 16-30. doi: 10.14357/08696527240402. EDN: TLHYYA.
- Sinitsyn, I. N. 2025. Metody normal'noy uslovno- optimal'noy fil'tratsii dlya nablyudaemykh neyavnykh stokhasticheskikh sistem [Normal conditionally-optimal filtering methods for implicit stochastic systems]. Informatika iee Primeneniya - Inform. Appl. 19(1):44-51. doi: 10.14357/19922264250106. EDN: TEPFUE.
- Sinitsyn, I. N., and V. I. Shin. 1992. Conditionally optimal filtering of processes in stochastic differential systems by complex statistical criteria. Dokl. Math. 44(2):554-557.
- Sinitsyn, I.N., V.I. Shin, and E. R. Korepanov. 1993. Teoriya uslovno-optimal'noy fil'tratsii stokhasticheskikh protsessov po slozhno-statisticheskim kriteriyam [Theory of conditionally optimal filtering of stochastic processes according to complex statistical criteria]. Sistemy i Sredstva Informatiki - Systems and Means of Informatics 5:106- 120.
- Sinitsyn, I. N. 2007. Fil'try Kalmana i Pugacheva [Kalman and Pugachev filters]. 2nd ed. Moscow: Logos. 776 p.
- Pugachev, V. S. 1962. Teoriya sluchaynykh funktsiy i ee primenenie k zadacham avtomaticheskogo upravleniya [Theory of random functions and its application to automatic control problems]. 3rded. Moscow: Fizmatlit. 884 p.
- Pugachev, V. S., and I. N. Sinitsyn. 2001. Stochastic systems. Theory and applications. Singapore: World Scientific. 908 p.
- Sinitsyn, I. N. 2023. Kanonicheskie predstavleniya sluchaynykh funktsiy. Teoriya i primeneniya [Canonicalexpansions of random functions. Theory and applications]. 2nd ed. Moscow: TORUS PRESS. 816 p.
- Kolmanovskiy, V. B., andV. R. Nosov. 1981. Ustoychivost' i periodicheskie rezhimy reguliruemykh sistem s posledstviem [Stability and periodic modes of regulated systems with consequences]. Moscow: Nauka. 448 p.
- Finogenko, I.A. 1983. O neyavnykh funktsional'no- differentsial'nykh uravneniyakh v banakhovom prostranstve [On implicit functional differential equations in a Banach space]. Dinamika nelineynykh sistem [Dynamics of nonlinear systems]. Novosibirsk: Nauka. 151-164.
- Azbelev, N. V., V. P. Maksimov, and L. F. Rakhmatulina. 1991. Vvedenie v teoriyu funktsional'no-differentsial'nykh uravneniy [Introduction to the theory of functional differential equations]. Moscow: Nauka. 277 p.
- Borisov, A. 1998. Optimal filtering in systems with degenerate noises in observations. Automat. Rem. Contr. 59(11): 1526-1537. EDN: LFDCVH.
- Bosov, A. V. 2022. Upravlenie lineynym vykhodom markovskoy tsepi po kvadratichnomu kriteriyu. Sluchay polnoy informatsii [Linear output control of Markov chain by square criterion. Complete information case]. Informatika i ee Primeneniya - Inform. Appl. 16(2):19-26. doi: 10.14357/19922264220203. EDN: FEQKUN.
- Konovalov, M. G., and R. V. Razumchik. 2022. Sintez upravleniya dvumernym sluchaynym bluzhdaniem s etalonnym statsionarnym raspredeleniem [Controllingabounded two-dimensional Markov chain with a given invariant measure]. Informatika i ee Primeneniya - Inform. Appl. 16(2):109-117. doi: 10.14357/19922264220214.EDN: WVMOBH.
- Bosov, A. V. 2023. Issledovanie robastnosti chislennykh approksimatsiy fil'tra Vonema [Robustness investigation of the numerical approximation of the Wonham filter]. Informatika i ee Primeneniya - Inform. Appl. 17(2):41-49. doi: 10.14357/19922264230206. EDN: BGILKR.
- Bosov, A.V. 2023. Optimal'naya fil'tratsiya sostoyaniya nelineynoy dinamicheskoy sistemy po nablyudeniyam so sluchaynymi zapazdyvaniyami [Nonlinear dynamic system state optimal filtering by observations with random delays]. Informatika i ee Primeneniya - Inform. Appl. 17(3):8-17. doi: 10.14357/19922264230302. EDN: CFVYJM.
[+] About this article
Title
COMPLEX STATISTICAL CRITERION CONDITIONALLY OPTIMAL FILTERING METHODS FOR OBSERVABLE IMPLICIT STOCHASTIC SYSTEMS
Journal
Informatics and Applications
2025, Volume 19, Issue 2, pp 27-34
Cover Date
2025-07-10
DOI
10.14357/19922264250204
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
conditionally-optimal (in Pugachev sense) filter; normal approximation method (NAM); normal suboptimal filter (NSOF); stochastic process (StP); stochastic system (StS)
Authors
I. N. Sinitsyn
Author Affiliations
 Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|