Informatics and Applications
2025, Volume 19, Issue 2, pp 17-26
A MODIFIED EXTENDED KALMAN FILTER BY THE LINEAR PSEUDOMEASUREMENT METHOD
- A. V. Bosov
- I. V. Uryupin
Abstract
The paper proposes a modification of the linear pseudomeasurement method for the Extended Kalman Filter. It is intended for use in a typical discrete stochastic observation system model. The modified filter allows one to use both bearing measurements of a moving object and range measurements. To form linear pseudomeasurements, linearization of trigonometric functions of bearing measurements and approximation (minimax or integral) of measurement errors and linearization errors are performed. The range of applied tasks solved by the modified filter includes typical navigation tasks, in particular, those solved for autonomous aircraft and underwater vehicles. Experimental calculations were performed for a model example describing the movement of an autonomous aircraft observed by a stationary radar system.
[+] References (20)
- Bar-Shalom, Y., X.-R. Li, and T. Kirubarajan. 2002. Estimation with applications to tracking and navigation: Theory, algorithms and software. New York, NY: John Wiley & Sons. 592 p. doi: 10.1002/0471221279.
- Liptser, R. S., and A. N. Shiryaev. 1974. Statistika sluchaynykh protsessov (nelineynaya fil'tratsiya i smezhnye voprosy) [Statistics of random processes (nonlinear filtering and related problems)]. Moscow: Nauka. 696 p.
- Kalman, R. E. 1960. A new approach to linear filtering and prediction problems. J. Basic Eng. - T. ASME 82(1):35-45. doi: 10.1115/1.3662552.
- Bernstein, I., and B. Friedland. 1966. Estimation of the state of a nonlinear process in the presence of nongaussian noise and disturbances. J. Frankl. Inst. 281(6):455-480. doi: 10.1016/0016-0032(66)90434-0.
- Perea, L., J. How, L. Breger, and P Elosegui. 2007. Nonlinearity in sensor fusion: Divergence issues in EKF,
modified truncated GSF, and UKF AIAA Guidance, Navigation and Control Conference and Exhibit Proceedings. AIAA. Art. 6514. 16 p. doi: 10.2514/6.2007-6514.
- Ljung, L. 1987. System identification: Theory for the user. Hoboken, NJ: Prentice Hall. 519 p.
- Hashemi, R., and S. Engell. 2016. Effect of sampling rate on the divergence of the extended Kalman filter for a continuous polymerization reactor in comparison with particle filtering. IFAC-PapersOnLine49(7):365-370. doi: 10.1016/j.ifacol.2016.07.363.
- Bosov, A. V., and G. B. Miller. 2019. Conditionally minimax nonlinear filter and unscented Kalman filter: Empirical analysis and comparison. Automat. Rem. Contr. 80(7): 1230-1251. doi: 10.1134/S0005117919070026. EDN: KCFBWK.
- Bosov, A. V., and G. B. Miller. 2019. O razvitii kontseptsii uslovno-minimaksnoy nelineynoy fil'tratsii: modifitsirovannyy fil'tr i ego analiz [On the conditionally minimax nonlinear filtering concept development: Filter modification and analysis]. Informatika i ee Primeneniya - Inform. Appl. 13(2):7-15. doi: 10.14357/19922264190202. EDN: XZDVEV.
- Lingren, A. G., and K. F. Gong. 1978. Position and velocity estimation via bearing observations. IEEE T. Aero. Elec. Sys. AES-14(4):564-577. doi: 10.1109/TAES.1978. 308681.
- Kolb, R. C., and F H. Hollister. 1967. Bearings-only target motion estimation. 1stAsilomar Conference on Circuits Systems Proceedings. 935-946.
- Lin, X., T. Kirubarajan, Y. Bar-Shalom, and S. Maskell. 2002. Comparison of EKF, pseudomeasurement, and particle filters for a bearing-only target tracking problem. Proc. SPIE 4728:240-250. doi: 10.1117/12.478508.
- Amelin, K. S., and A. B. Miller. 2013. An algorithm for refinement of the position of a light UAV on the basis of Kalman filtering of bearing measurements. J. Commun. Technol. El. 59(6):622-631. doi: 10.1134/ S1064226914060047. EDN: SJVPPV.
- Miller, A. B., and B. M. Miller. 2014. Tracking of the UAV trajectory on the basis of bearing-only observations. 53rd IEEE Conference on Decision and Control Proceedings IEEE. 4178-4184. doi: 10.1109/cdc.2014.7040040.
- Miller, A. B., and B. M. Miller. 2015. Stochastic control of light UAV at landing with the aid of bearing-only observations. Proc. SPIE 9875:987529. 10 p. doi: 10.1117/ 12.2228544.
- Miller, A. B., and B.M. Miller. 2018. Underwater target tracking using bearing-only measurements. J. Commun. Technol. El. 63(6):643-649. doi: 10.1134/ s1064226918060207. EDN: YBUDBB.
- Miller, A., B. Miller, and G. Miller. 2019. On AUV control with the aid of position estimation algorithms based on acoustic seabed sensing and DOA measurements. Sensors - Basel 19(24):5520. 21 p. doi: 10.3390/s19245520.
- Morris, J. 1976. The Kalman filter: A robust estimator for some classes of linear quadratic problems. IEEE T. Inform. Theory 22(5):526-534. doi: 10.1109/TIT.1976.1055611.
- Bosov, A. V. 2025. Analiz ispol'zovaniya doplerovskikh izmereniy dlya identifikatsii parametrov dvizheniya po nablyudeniyam so sluchaynymi zapazdyvaniyami [Doppler measurements application analysis to identify motion parameters from observations with random delays]. Informatika i ee Primeneniya - Inform Appl. 19(1):33-43.doi: 10.14357/19922264250105. EDN: MZKWCI.
- Sims, F., D. Lainiotis, and D. Magill. 1969. Recursive algorithm for the calculation of the adaptive Kalman filter weighting coefficients. IEEE T. Automat. Contr. 14(2):215-218. doi: 10.1109/TAC.1969.1099155.
[+] About this article
Title
A MODIFIED EXTENDED KALMAN FILTER BY THE LINEAR PSEUDOMEASUREMENT METHOD
Journal
Informatics and Applications
2025, Volume 19, Issue 2, pp 17-26
Cover Date
2025-07-10
DOI
10.14357/19922264250203
Print ISSN
1992-2264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
discrete stochastic observation system; linear pseudomeasurement; Extended Kalman Filter; target tracking; radar observations
Authors
A. V. Bosov  and I. V. Uryupin
Author Affiliations
 Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 44-2 Vavilov Str., Moscow 119333, Russian Federation
|