Informatics and Applications
2017, Volume 11, Issue 2, pp 5058
MODELING THE SIGNALTOINTERFERENCE RATIO IN A MOBILE NETWORK WITH MOVING DEVICES
 Yu. V. Gaidamaka
 Yu. N. Orlov
 D. A. Molchanov
 A. K. Samuylov
Abstract
The goal of the study is to analyze the signaltointerference ratio (SIR) for devicetodevice interaction of devices communication in the 5th generation mobile networks, taking into account the movement of the receiving and transmitting devices in the service area. The SIR value at the receiver of the associated pair is studied as a timevarying random process, and the mathematical model of motion is given by a kinetic equation taking into account the given average speed of the devices, their spatial density, and the maximum allowable communication radius. The measures of performance quality were studied by numerical analysis using SIR simulation of a key channel. The measures are the following: the signal interruption probability for the receivertransmitter pair, the probability density function of the random variables for the duration of the availability period, and the period of absence of communication. It is shown that the signal interruption probability grows logarithmically as either the average device speed or the number of devices in the service area increases.
[+] References (18)
 Rong, Z., andT. S. Rappaport. 1996. Wireless communications: Principles and practice. 1st ed. Upper Saddle River, NJ: Prentice Hall. 641 p.
 Andrews, J. G., H. Claussen, M. Dohler, S. Rangan, and M. C. Reed. 2012. Femtocells: Past, present, and future. IEEE J. Sel. Area. Comm. 30(3):497508. doi: 10.1109/JSAC.2012.120401.
 Samuylov, A., Yu. Gaidamaka, D. Moltchanov, S. Andreev, andY. Koucheryavy. 2015. Randomtriangle: Abase line model for interference analysis in heterogeneous networks. IEEE Trans. Veh. Technol. 65(8):67786782. doi: 10.1109/TVT.2016.2596324.
 Gaydamaka, Yu. V., and A. K. Samuylov. 2009. Metod rascheta kharakteristik interferentsii dvukh vzaimodeyst vuyushchikh ustroystv v besprovodnoy geterogennoy seti [The method of calculation of the characteristics of the interference of two interacting devices in a wireless heterogeneous network]. Informatika iee Primeneniya  Inform. Appl. 9(1):914. doi:10.14357/19922264150102.
 Gaydamaka, Yu. V., S.D. Andreev, E. S. Sopin, K. E. Samouylov, and S. Ya. Shorgin. 2016. Analiz kharak teristik interferentsii v modeli vzaimodeystviya ustroystv
s uchetom sredy rasprostraneniya signala [Analysis of the characteristics of the interference in the model of interaction between devices taking into account the signal propagation environment]. Informatika i ee Primenen iya  Inform. Appl. 10(4):210. doi: 10.14357/19922264160401.
 Samuylov, A., A. Ometov, V. Begishev, R. Kovalchukov,
D. Moltchanov, Yu. Gaidamaka, K. Samouylov, S. Andreev, and Y. Koucheryavy. 2015. Analytical performance estimation of networkassisted D2D communications in urban scenarios with rectangular cells. Trans. Emerg. Telecommun. Technol. 28(2):29991299915. doi: 10.1002/ett.2999. (Version of record online: November 12, 2015.)
 Gong, Z., and M. Haenggi. 2014. Interference and outage in mobile random networks: Expectation, distribution, and correlation. IEEE Trans. Mobile Comput. 13:337349. doi: 10.1109/TMC.2012.253.
 Etezov, Sh., Yu. Gaidamaka, K. Samouylov, D. Moltchanov, A. Samuylov, S. Andreev, and E. Koucheryavy. 2016. On distribution of SIR in dense D2D deployments. 22nd European Wireless Conference Proceedings. VDE. 333337.
 Petrov, V., M. Komarov, D. Moltchanov, J. M. Jornet, and Y. Koucheryavy. 2017. Interference and SINR in millimeter wave and terahertz communication systems with blocking and directional antennas. IEEE Trans. Wireless Commun. 16:17911808.
 Baccelli, F, and B. Blaszczyszyn. 2010. Stochastic geometry and wireless networks. Found. Trends Netw. 3(34):249449.doi:10.1561/1300000006; 4(12):1312. doi:10.1561/1300000026.
 Haenggi, M. 2012. Stochastic geometry for wireless networks. Cambridge: Cambridge University Press. 298 p.
 Orlov, Yu. N., S. L. Fedorov, A. K. Samuylov, Yu. V. Gaidamaka, and D. A. Molchanov. 2017 (in press). Simulation of devices mobility to estimate wireless channel quality metrics in 5G networks. AIP Conference Proceedings: 12th Conference (International) ofNumerical Analysis and Applied Mathematics. New York, NY: AIP Publishing.
 3GPP LTE Release 10 & beyond (LTEAdvanced). December 2009. Available at: ftp://www.3gpp.org/ workshop/20091217_ITUR_IMTAdv_eval/docs/ pdf/ REV090006.pdf (accessed April 20, 2017).
 WiFi PeertoPeer (P2P) Technical Specification v1.7. WiFi Alliance, 2010. Available at: https://www.wih.
org/downloadsregisteredguest/WiFi_P2P_Technical_ Specification_vl.7.pdf/29559 (accessed April 20, 2017).
 Bosov, A. D., R. S. Kalmetiev, and Yu. N. Orlov.
2014. Modelirovanie nestatsionarnogo vremennogo rya da s zadannymi svoystvami vyborochnogo raspredeleniya [Sample distribution function construction for non stationary timeseries forecasting]. Matematicheskoe mo delirovanie [Mathematical Simulation] 26(3):97107.
 Orlov, Yu. N., and S. L. Fedorov. 2016. Generatsiya ne statsionarnykh traektoriy vremennogo ryada na osnove uravneniya FokkeraPlanka [Generation of nonstation ary trajectories of the time series based on the Fokker Planck equation]. Trudy MFTI [Proceedings of MIPT] 8(2):126133.
 Orlov, Yu. N., and S. L. Fedorov. 2016. Metody chislennogo modelirovaniya protsessov nestatsionarnogo sluchaynogo bluzhdaniya [Methods of a numerical simulation of nonstationary random walk]. Moscow: MFTI. 112 p.
 Tikhonov, V. I., and V. I. Khimenko. 1987. Vybrosy traek toriy sluchaynykh protsessov [Emissions of trajectories of randomprocesses]. Moscow: Nauka. 304 p.
[+] About this article
Title
MODELING THE SIGNALTOINTERFERENCE RATIO IN A MOBILE NETWORK WITH MOVING DEVICES
Journal
Informatics and Applications
2017, Volume 11, Issue 2, pp 5058
Cover Date
20170630
DOI
10.14357/19922264170206
Print ISSN
19922264
Publisher
Institute of Informatics Problems, Russian Academy of Sciences
Additional Links
Key words
wireless network; signaltointerference ratio; devicetodevice; stochastic geometry; motion model; kinetic equation; performance measure; signal interruption probability
Authors
Yu. V. Gaidamaka , ,
Yu. N. Orlov , D. A. Molchanov ,
and A. K. Samuylov
Author Affiliations
Peoples' Friendship University of Russia (RUDN University), 6 MiklukhoMaklaya Str., Moscow 117198, Russian Federation
Institute of Informatics Problems, Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 442 Vavilov Str., Moscow 119333, Russian Federation
Keldysh Institute of Applied Mathematics ofthe Russian Academy of Sciences, 4 Miusskaya Sq., Moscow 125047, Russian Federation
