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On special empirical processes of independence
Abdurahim Abdushukurov 1, Leyla Kakadjanova 2

1National University of Uzbekistan, Uzbekistan, a abdushukurov@rambler.ru
2National University of Uzbekistan, Uzbekistan, leyla tvms@rambler.ru

Consider a following model of experiments in which observed pairs are
consists of {(Xk, Ak) , k > 1}, where Xk are random elements defined on a
probability space (Ω,A,P) with values in a measurable space (X,B). Events
Ak have a common probability p ∈ (0, 1). Let δk = I (Ak) is indicator
of the event Ak. At the n− th step of experiments is observed a sample
S(n) = {(Xk, δk) , 1 6 k 6 n}. Each pair in the sample S(n) induced a statisti-
cal model with sample space X⊗{0, 1}, σ-algebra of sets of the form B×D and
induced distribution Q∗ (B ×D) = P (Xk ∈ B, δk ∈ D), where B ∈ B, D ⊂
{0, 1}. Define submeasures Q1 (B) = Q∗ (B × {1}), Q0 (B) = Q∗ (B × {0})
and Q (B) = Q∗ (B × {0, 1}) = Q0 (B) + Q1 (B), B ∈ B and its esti-

mates Q1n (B) = 1
n

n∑
k=1

δkI (Xk ∈ B) , Q0n (B) = 1
n

n∑
k=1

(1− δk)I (Xk ∈ B) ,

Qn (B) = 1
n

n∑
k=1

I (Xk ∈ B) = Q0n (B) + Q1n (B) for all B ∈ B. Consider the

hypothesis H of independence of Xk and Ak for each k > 1 .
We consider general classes of specially normalized empirical processes of

independence indexed by the class F of measurable functions f : X→ R. For
a signed measure G and function f ∈ F denote the integral

Gf =

∫
X

f dG.

Define F - indexed empirical process Gn : F ∈ R as:

f 7→ Gnf =
√
n (Qn −Q) f = n−

1/2

n∑
k=1

(f (Xk)−Qf), f ∈ F .

Note that Gnf = G0nf + G1nf , where Gjnf =
√
n (Qjn −Qj) f, j = 0, 1.

Donsker-type theorems provide a general conditions on F , under which

Gnf ⇒ Gf in l∞(F), (1)

where l∞(F) - the space of all bounded functions f : X→ R equipped with the
supremum - norm ‖f‖F and ⇒ means the weak convergence. Limiting field
{Gf, f ∈ F} called Q - Brownian bridge. In connection with the problem of
testing the hypothesis H, we introduce F - processes Λf = Q1f−pQf, Λnf =
= Q1nf − pnQnf, f ∈ F and

∆nf =

∫
X

fd∆n =

(
n

pn (1− pn)

)1/2

(Λn − Λ) f, f ∈ F . (2)
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One of important properties of the process (2) is its convergence to the same
Q-Brownian bridge {Gf , f ∈ F} under validity of H .

To present the basic theorems we define the complexity or entropy of class
F . Bracketing (or covering) number N[ ] (ε,F ,Lq (Q)) is the minimum number
of ε - brackets in Lq(Q) needed to cover F (see Shorack and Wellner [1], Van
der Vaart and Wellner [2]):

N[ ] (ε,F ,Lq (Q)) = min

{
k : for some f1, ..., fk ∈ Lq (Q) ,
F ⊂ ∪

i,j
[fi, fj ] : ‖fj − fi‖Q,q 6 ε.

For weak convergence of F - indexed empirical processes (2) we need the
integral of the metric entropy with bracketing to be

J
(q)

j[ ] (δ) = Jj[ ] (δ;F ;Lq (Qj)) =

δ∫
0

(Hjq (ε))1/2dε, j = 0, 1, for 0 < δ < 1,

where Hjq (ε) = logN[ ] (ε,F ,Lq (Qj)) is metric entropy of class F in Lq(Qj),
j = 0, 1. We introduce the following conditions:

(i) Let the class F such that

F ⊂ L2(Qj) and J(2)

j[ ]
(1) <∞, j = 0, 1. (3)

Theorem 1. Under the conditions (3) for n→∞

∆nf ⇒ ∆f in l∞(F), (4)

where {∆f, f ∈ F} is a Gaussian field with zero mean and under validity of
the hypothesis H, it coincides in distribution with Q - Brownian bridge.

Now concider case of random sample size. Let the sequence Nn
of Poisson r.v.-s with mean n. Suppose that sequences {Nn, n ≥ 1} and
{(Xk, δk), k ≥ 1} are independent. Let

{
∆∗Nnf, f ∈ F} be sequence of

normalized empirical processes of independence obtained from (2) by replacing
upper index n of all summation to a random sequence Nn .
Theorem 2. Under the conditions (3) at n→∞

∆∗Nnf ⇒ ∆∗f in l∞(F), (5)

where by hypothesis H, ∆∗f
d
= W(f), f ∈ F . Here {W(f), f ∈ F} is Brownian

sheet.

References

1. G. R. Shorack, J. A. Wellner. Empirical processes with applications to
statistics, 1986, John Wiley&Sons.
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High level subcritical branching processes in a random
environment

Valeriy Afanasyev 1

1Steklov Mathematical Institute, Russia, viafan@mail.ru

Let {ξn, n ∈ N0} be a branching process in a random environment (BPRE)
defined by a sequence of independent and identically distributed (random) gen-
erating functions {fn (s) , n ∈ N}. Note that ξn is the size of the nth generation
(we assume that ξ0 = 1). The generating function fn (s), s ∈ [0, 1], defines the
reproduction law for the particles in the (n− 1)th generation, n ∈ N.

Assuming that f ′1 (1) ∈ (0,+∞) a.s., we set Xi = ln f ′i (1) for i ∈ N.
Note that the random variables X1, X2, . . . are independent and identically
distributed. Introduce the associated random walk S0 = 0, Sn =

∑n
i=1 Xi,

n ∈ N.
Suppose that the process {ξn} is subcritical, i.e. EX1 < 0, and there exists

a positive number κ such that

E exp (κX1) = 1, E (|X1| exp (κX1)) < +∞. (1)

Condition (1) is classical for random walks with negative drift and allows one
to pass to conjugate random walk with positive drift. In addition, we assume
that

E (ξ1 ln (ξ1 + 1) exp ((κ − 1)X1)) < +∞, (2)

and if κ ≥ 1, then there exists a number p > κ such that

E (ξp1 exp ((κ − p)X1)) < +∞. (3)

Introduce the first passage time of the process {ξn} to a level x > 1:

Tx = min {n : ξn > x} ,

and the lifetime of the process {ξn}:

T = min {n : ξn = 0} .

In [1] and [2], the author showed that if conditions (1)-(3) are satisfied,
then

P (Tx < +∞) ∼ c0x−κ ,{
Tx
lnx

∣∣∣∣ Tx < +∞
}

P→ 1

a
,

5
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T

lnx

∣∣∣∣ Tx < +∞
}

P→ 1

a
− 1

b

as x→ +∞, where c0 is a positive constant, a = E (X1 exp (κX1)), b = EX1.
In addition, we assume that

E
(
X2

1 exp (κX1)
)
< +∞. (4)

Set σ2 = E
(
X2

1 exp (κX1)
)
− a2. Let B = {B (t) , t ∈ [0, 1]} be a standard

Brownian motion. The following functional limit theorem for the first passage
time to different levels is valid.

Theorem 1. If {ξn, n ∈ N0} is a subcritical BPRE and conditions (1)-(4)
hold, then {

Txt − t lnx/a

σa−3/2
√

lnx
, t ∈ [0, 1]

∣∣∣∣ Tx < +∞
}

D→ B

as x → +∞, where the symbol
D→ means convergence in distribution in the

space D [0, 1] with the Skorokhod topology.

Also the following functional limit theorem for the size of different genera-
tions is valid.

Theorem 2. If {ξn, n ∈ N0} is a subcritical BPRE and conditions (1)-(4)
hold, then {

ln ξbty/ac − ty
σ
√
y/a

, t ∈ [0, 1)

∣∣∣∣∣ Texp y < +∞

}
D→ B

as y → +∞.
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Statistical analysis of queueing system
with regenerative input

Larisa Afanasyeva 1, Elena Bashtova 2

1Moscow State University, Russia, lafanaseva@yandex.ru
2Moscow State University, Russia, bashtovaelena@rambler.ru

We focus on statistical estimations of parameters of queueing systems with
regenerative input flow. One can find the definition of regenerative flow in [1].
Regenerative flow represents natural generalization of many kinds of flows con-
sidering in the queueing theory. Besides, a regenerative flow has some useful
properties that make it possible to investigate various applied models. Un-
fortunately, for queueing systems with rather complicated input flows it is
impossible (with rare exceptions) to obtain explicit expressions of their oper-
ating characteristics such as average queue length, average waiting time and
so on. Therefore the proof of the theorems concerning stability conditions ang
heavy traffic situation becomes important. There is a whole series of such re-
sults obtained in resent years. We cite as an example a theorem related to
a single-server queueing system. This theorem were proved in [1] We use the
following notation

• τi is the length of the ith regeneration period; µ = Eτi, σ
2
τ = Varτi

• ξi is the number of customers entering the system during the ith regen-
eration period; a = Eξi, σ

2
ξ = Varξi

• λ = a/µ; rξ,τ = cov(ξ, τ)

• ηi is the service time of the ith customer; b = Eηi, σ
2
β = Varηi

• N(u) - renewal process generated by the sequence {τi}∞i=1,

• q(t) and W (t) are the processes of queue length and waiting time respec-
tively

Theorem 1. Let {X(u)u > 0} be a regenerative flow and
Eξ2+δ

1 < ∞, Eτ2+δ
1 < ∞ for some δ > 0. Then the normalized

processes qT (tT )/
√
T and WT (tT )/

√
T C-converge on any finite interval

[0; h] to diffusion processes with reflecting zero boundary and coefficients
(b−1, b2σ2

W )and(1, σ2
W ), respectively.Here

σ2
W =

σ2
β

b
+
b

λ
σ2
x

and

σ2
x =

σ2
ξ

µ
+
a2σ2

τ

µ3
− 2arξ,τ

µ2
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For practical applications of this theorem and analogous results for more
complicated systems obtained, e.g., in [1,2] it is necessary to estimate the
parameters σ2

x and λ. The consistent estimate of intensity λ is of the form

λ̂(t) =
X(t)

t
.

Now we would like to estimate the coeffitient σ2
x. If the both processes

{X(u), N(u), u ∈ (0, t]} are observable one can apply classical methods for
estimation the parameters a, µ, σ2

ξ , σ2
τ , rξ,τ . Problem arise when only process

X(t) is observable. Thus it is necessary to use another approach. Choosing
some A > 0 we denote

Zn(A) = X(kA)−X((k − 1)A), k = 1, 2, . . . ,

∆̂n =
1

nA

n∑
k=1

(Zk(A)− λ̂(nA)A)2.

Theorem 2. Let {X(u)u > 0} be a regenerative flow and

Eξ2+δ
1 < ∞, Eτ2+δ

1 < ∞ for some δ > 0. Then ∆̂n is consistent estimate for
coefficient σ2

x as A→∞ and n→∞.

Further we discuss different ratios between n and A and consider some
examples.

Acknowledgements. This work is partially supported by the RFBR grant
13-01-00653.
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Limit theorems for queuing system with an infinite
number of servers

Afanasyeva Larisa 1, Bashtova Elena 2, Chernavskaya Ekaterina 3

1Moscow State University, Russia, afanas@mech.math.msu.su 2Moscow State Uni-
versity, Russia, bashtovaelena@rambler.ru 3Moscow State University, Russia, Cher-
navskayaak@mail.ru

This article focuses on the system with an infinite number of servers. Ar-
riving customers form a doubly stochastic Poisson process(DSPP) A(t), which
is defined as follows [2]:

A(t) = A∗(Λ(t))

where {A∗(t), t ≥ 0}− is a standard Poisson process, and {Λ(t), t ≥ 0}−
is a stochastic process with non-decreasing right-continuous trajectories not
depending on A∗(t), Λ(0) = 0.

Condition 1. The process Λ(t) has the following form Λ(t) =
t∫

0

λ(y, ω)dy,

where λ(y)− is a non-negative bounded stationary stochastic process such that

|r(x)| = |cov(λ(0), λ(x))| ≤
{
c0 for 0 < x < a,
c0x
−α for x ≥ a.

(1)

Here α > 0 and c0, a− are certain positive constants.
We denote Eλ(t) = λ.
The process Λ(t) is called the leading process and λ(t) is the intensity of doubly
stochastic Poisson process {A(t), t ≥ 0)}.

The service times of customers form a sequence {ηi}∞i=1 of independent
identically distributed random variables with a distribution function B(x).
We denote B(x) = 1−B(x).
Condition 2. For some positive constants c1, c2, t0

c1t
−∆ ≤ B(x) ≤ c2t−∆, 0 < ∆ < 1, (2)

for all t ≥ t0.
It follows from (2) that

∫∞
0
xdB(x) =∞.

Let q(t) be the number of customers in the system at time t. We would
like to study asymptotic behavior of the process q(t) as t→∞. The analogous
problem was considered in [1] for a system GI/GI/∞.

The main focus of this paper is to examine the process q(t), which is the
number of customers in the system at time t.

Using the properties of the DSPP [2], we obtain the formula for the prob-
ability distribution of q(t).

P (q(t) = k) = E

(
e−ρ(t)

(ρ(t))k

k!

)
, (3)

9
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where ρ(t) =
∫ t

0
B(t− x)λ(x)dx.

Conditions 1 and 2 allow us to find estimates for Eρ(t) and V arρ(t). For
the first moment we get

λc1t
1−∆ ≤ Eρ(t) ≤ λc2t1−∆. (4)

The estimation for V arρ(t) follows from the next lemma.

Lemma 1 Suppose that conditions 1 and 2 are fulfilled. Then for any 0 <
γ < 1, δ > 0 there exists a positive constant C, such that for sufficiently large
t the following inequality holds

V arρ(t)

C
≤ tγ+δ + t1+γ−α ln t+ tδ(α−1)+γ ln t+ tδ(α−1)+1−2∆ ln t. (5)

With these estimations it becomes possible to prove the following limit theo-
rems. Let β(t) =

∫ t
0
B(x)dx, so that Eρ(t) = λβ(t).

Theorem 1 If α > ∆ and conditions 1,2 are fulfilled then for any fixed t

q(t)− λβ(t)√
λβ(t)

d→N (0, 1),

as t→∞.

Theorem 2 If α > 2∆− 1 and conditions 1,2 are fulfilled, then

q(t)

λβ(t)

p→ 1,

as t→∞.

Also we give two corollaries of these theorems.

Corollary 1 Let λ(t) be a stationary bounded regenerative process, with
F (t) ≤ ct−α−1 as a distribution function of regeneration period. Then

• Theorem 1 holds for α > ∆,

• Theorem 2 holds for α > 2∆− 1.

Corollary 2 Let the input flow A(t) be a Markov-modulated process, and its
control Markov chain be a birth and death process with λj = jλ, µj = jµ,
j ≥ 0, µ > λ. Then for any α > 0 and 0 < ∆ < 1 Theorems 1 and 2 are
fulfilled.

References
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Asymptotic analysis of a heterogeneous multi-server
system with renewal-type service interruptions

Larisa Afanasyeva 1, Andrey Tkachenko 2

1Moscow State University, Russia, afanas@mech.math.msu.su
2National Research University Higher School of Economics, Russia,
tkachenko av@hse.ru

This study is focused on a multi-server queueing system with a regener-
ative input flow. We assume that every server may has distinct service time
distribution and they are not always available for operations. Servers’ inter-
ruptions may result from different reasons, such as resource sharing, servers
breakdowns and repairs, and servers vacations. Systems with unreliable servers
have been intensively investigated for a long time. The main point was focused
on the single-server case. The framework of problems and their solutions are
presented in (Krishnamoorthy et al., 2012). In this study some generalizations
of queueing models with service interruptions are investigated. Firstly, the in-
put flow is assumed to be regenerative. The class of regenerative processes
contains most of fundamental flows that are exploited in queueing theory in-
cluding recurrent, semi-Markov, Markov-modulated, Markov arrival process
and others (see, e.g. (Afanasyeva, Bashtova, 2014)). Secondly, the breakdowns
of the servers may occur at any time even if they are not occupied by cus-
tomers. Consecutive moments of breakdowns are defined by a renewal process.
We consider the preemptive resume service discipline (discipline D1) as well as
the preemptive repeat different service discipline (discipline D2). In the former
case, the service continues after interruption whereas service is repeated from
the beginning with different independent service time in the latter case. For
the models the necessary and sufficient conditions of stability and functional
limit theorems are established. The key element of our analysis is the coupling
of processes under consideration. This method is based on the strong regener-
ation property of the input flow and renewal structure of processes describing
the servers’ breakdowns (Afanasyeva, Bashtova, 2014). We also employ very
effective approach based on the constructions of so-called autonomous system
(Whitt, 2002).

Now we describe our models. Let X(t) be a regenerative input flow to the

system Sd (d = 1, 2) with intensity λ = limt→∞
X(t)
t

, where d = 1 if the service

discipline is D1 and d = 2 if it is D2. The system Sd has m heterogeneous
servers. By Bi(t), i = 1,m denote a distribution function of service times
{ηin}∞n=1 by the ith server, bi is its’ mean, and Hi(t) is a renewal process

11
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defined by {ηn}∞n=1. Suppose that working periods of the ith server {u(1)
in }
∞
n=1

are random variables with mean a
(1)
i and u

(1)
in = v

(1)
in + v

(2)
in , where v

(1)
in has

exponential distribution. Periods of the ith server reconstructions {u(2)
in }
∞
n=1

are random variables with mean a
(1)
2 . By Qd(t) (d = 1, 2) denote the number

of customers in the system Sd. Let us formulate main results that hold under
some not restrictive conditions.

Theorem 1. The process Qd(t) is ergodic iff ρd < 1, (d = 1, 2), where

ρ1 =
λ

µ1
, µ1 =

m∑
i=1

a
(1)
i

(a
(1)
i + a

(2)
i )bi

, for discipline D1,

ρ2 =
λ

µ2
, µ2 =

m∑
i=1

EHi(u
(1)
i )

(a
(1)
i + a

(2)
i )

, for discipline D2.

For functional limit theorems we introduce the following scaled processes

Qdn(t) =
Qd(nt)− (λ− µd)nt

σQd
√
n

,

where σQd is some constant.

Theorem 2. If ρd > 1 (ρd = 1), then the process Qdn(t) weakly converges to
a standard Brownian motion (absolute value of a standard Brownian motion)
on any finite interval [0, v] as n→∞.

Acknowledgements. This work was partially supported by RFBR grant
13-01-00653.
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Ergodic theorem for a single-server queue in a random
environment

Serik Aibatov 1

1Moscow State University, Russia, aybatov.serik@gmail.com

We consider one-channel queue with an unreliable server. The input A(t) is
supposed to be a regenerative flow with points of regeneration {θj}∞j=1, θ0 = 0.
The definition and properties of this flow can be found in [2].

The service times are defined by the sequence {ηj}∞j=1 of i.i.d.r.v.’s with d.f.
B(x) and finite moment b = Eηj . Besides, sequence {ηj}∞j=1 does not depend
on A(t).

Let X(t) be the total service time of customers arriving at the system

during time interval [0, t), i.e. X(t) =
∑A(t)
j=1 ηj . Then X(t) is also regenerative

flow with the same points of regeneration as process A(t).
The server can be failed, its breaks and interval between recoveries depend

on a stochastic process U(t) that is an ergodic Marcov chain not depending
on X(t) with set of states E = (0, 1, . . . ).

When process U(t) achieves the state i(i ∈ E) the working server fails with
probability αi ≥ 0 and broken server recovers with probability βi ≥ 0.

It is assumed that there are states of process U(t) - i0 and i1, such that
αi0 > 0, βi1 > 0.

Let W (t) be the workload process. Then the following relation takes place

W (t) = sup
0≤u≤t

(W (0) + Z(t), Z(t)− Z(u))

where Z(t) = X(t)−Y (t), and Y (t) =
∫ t

0
e(s)ds, where e(s) = 1 if server in the

working state at moment t and e(t) = 0 otherwise. It means that stochastic
process N(t) = {e(t), U(t)} is a random environment for W (t) (see for example
[1]).

We note that N(t) is ergodic Markov chain and π = limt→∞ P(e(t) = 1).
The coefficient traffic of the system is given by the ρ = λb

π
.

Theorem 1. If ρ ≥ 1 then W (t)
P−−−→

t→∞
∞ and if ρ < 1 then

limt→∞ P(W (t) ≤ x) = F (x) exists and F (x) is nonsingular d.f.
The proof is based on results from [1] for cyclic queues. Some examples are

also give.

Acknowledgements. The author expresses his deep gratitude to Profes-
sor L.G. Afanasyeva for formulation of the problem and for useful discussion.
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In [1] we investigated portfolios with transaction costs for one-period deter-
ministic model and derived the portfolio price return formula. As it mentioned
in [1] unlike one-period transaction with a single asset, the scheme for calcu-
lation the real net return on a one-period portfolio transaction has a number
of features. The aim of this work is to investigate analogous problems under
uncertainty.

Let us introduce some notation. Suppose that we have n assets A1, . . . , An.
Let Rk (rk = E(Rk) resp.) denotes the random price return (expected price
return resp.) on Ak. The portfolio will be denoted by the vector of asset weights

xT = (x1, . . . , xn):
n∑
k=1

xk = 1. If there are no commission costs, it is well

known [2–5] that the portfolio return R(x) (expected return r(x) resp.) is the
weighted average of the individual asset returns (expected returns resp.):

R(x) = R1x1 + . . . , Rnxn, r(x) = r1x1 + . . . , rnxn.

It follows that the portfolio variance of return or risk is given by V (x) = xTCx,
where C is the covariance matrix of asset returns. In the future, we need the
concept of the investor’s utility function U(x), which is defined as a linear
function of the mean and variance of the portfolio: U(x) = r(x) − θ

2
V (x),

where θ is the investor’s risk tolerance.
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Now consider the portfolio x with commission α. Then the random portfolio
price return Rα(x) and the expected portfolio price return rα(x) are defined
respectively by the formulas

Rα(x) =

n∑
k=1

(xk − α|xk|)Rk − 2α||x||

1 + α||x|| =

R(x)− α
n∑
k=1

(2 +Rk)|xk|

1 + α||x|| , (1)

rα(x) =

n∑
k=1

(xk − α|xk|)rk − 2α||x||

1 + α||x|| =

r(x)− α
n∑
k=1

(2 + rk)|xk|

1 + α||x|| . (2)

Here ||x|| =
n∑
k=1

|xk|. Note that R0(x) = R(x) and r0(x) = r(x). From (1) it

follows that the portfolio variance of return or risk is given by

Vα(x) =
x̃TCx̃

(1 + α||x||)2
=

1

(1 + α||x||)2
(V (x)− 2α|x|TCx+ α2|x|TC|x|), (3)

where x̃T = (x1 − α|x1|, . . . , xn − α|xn|), |x|T = (|x1|, . . . , |xn|). Note that
V0(x) = V (x).

Define the the portfolio utility function by Uα(x) = rα(x)− θ
2
Vα(x).

In what follows we distinguish between two portfolio types (models). The
first model we call the Black’s model. For this model it is assumed only the
budget constraint x1 + . . .+ xn = 1.The second model we call the Markowitz
model. It differs from Black’s model by the additional constraints xi > 0
(short positions are prohibited ). It is significant that unlike the ideal case
when α = 0 the task of choosing the optimal portfolio for Black’s model is
unsmooth. Furthermore, it may happen that the minimal variance portfolio
and the portfolio with maximum utility without commission have positive
returns, but these portfolios with the commission have negative returns.

Formulas (1) and (2) can be simplified for the Markowitz model. Namely

rα(x) = aαr(x)− βα, Vα(x) = aαV (x), Uα(x) = aαU(x)− βα.

where aα = 1−α
1+α

, βα = 2α
1+α

. Moreover, we have

aαr − βα 6 rα(x) 6 aαr − βα,

where r = min{r1, . . . , rn}, r = max{r1, . . . , rn}. According to these formulas,
the minimal variance portfolio and the portfolio with maximum utility don’t
dependent on the commission.
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Parameter estimation for subcritical Heston models
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Heston models have been extensively used in financial mathematics since
one can well-fit them to real financial data set, and they are well-tractable
from the point of view of computability as well. Hence parameter estimation
for Heston models is an important task.

In the talk we study conditional least squares estimators (CLSEs) and least
squares estimators (LSEs) for Heston models{

dYt = (a− bYt) dt+ σ1

√
Yt dWt,

dXt = (α− βYt) dt+ σ2

√
Yt
(
% dWt +

√
1− %2 dBt

)
,

t ≥ 0, (1)

where a > 0, b, α, β ∈ R, σ1 > 0, σ2 > 0, % ∈ (−1, 1), and (Wt, Bt)t≥0

is a 2-dimensional standard Wiener process. We investigate only the so-called
subcritical case, i.e., when b > 0. It is well-known that in this case the process
(Yt)t≥0, which is just the Cox–Ingersoll–Ross process, is ergodic. We consider
a CLSE and LSE of (a, b, α, β) based on discrete time observations of the
process (Xt, Yt)t≥0, when the parameters σ1, σ2 and % are assumed to be
known.

We use the method of conditional least squares, which was first applied to
the CIR process by Overbeck and Rydén [1]. We estimate a suitably trans-
formed parameter vector (c, d, γ, δ), for which the estimation error can be writ-
ten as a sum of martingale differences. The strong consistency and the asymp-
totic normality follow from this fact using the strong law of large numbers and
the central limit theorem for square-integrable martingales. The asymptotic
covariance matrix is derived for the estimation errors of (c, d, γ, δ) as well as
the estimation errors of the original parameters (a, b, α, β).

16



XXXII International Seminar on Stability Problems for Stochastic Models

We also introduce a plausible set of estimators based on the ordinary least
squares method, show that they are not consistent, and we derive their strong
limit.
Acknowledgments. This research was supported by the European Union and
the State of Hungary, co-financed by the European Social Fund in the frame-
work of TÁMOP-4.2.4.A/ 2-11/1-2012-0001 National Excellence Program.
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First a Feller type diffusion approximation is derived for random step func-
tions formed from a critical, positively regular multi-type continuous state and
continuous time branching processes with immigration (CBI processes). Based
on this result, the asymptotic behavior of the conditional least squares estima-
tors of the offspring means for a 2-type critical doubly symmetric positively
regular CBI process is described.

In the proofs, moment formulas and moment estimations play a crucial role,
which are based on an identification of a multi-type CBI process as a pathwise
unique strong solution of certain stochastic differential equation with jumps,
see Barczy at. al [2], where a generalization of Yamada-Watanabe results for
stochastic differential equations with jumps is used, see Barczy at. al [1].
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4.2.4. A/2-11-1-2012-0001, National Excellence Program – ”Elaborating and
operating an inland student and researcher personal support system”. The
project was subsidized by the European Union and co-financed by the Euro-
pean Social Fund.
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Martin kernel for fractional Laplacian in narrow cones

Krzysztof Bogdan 1
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For d ≥ 2 and 0 < Θ < π, we consider the right circular cone of angle Θ:

ΓΘ =
{
x = (x1, . . . , xd) ∈ Rd : xd > |x| cos Θ

}
.

The Martin kernel of the fractional Laplacian ∆α/2, 0 < α < 2, for ΓΘ is
the unique continuous function M ≥ 0 on Rd, such that M is smooth on ΓΘ,
∆α/2M = 0 on ΓΘ, M = 0 on ΓcΘ, and M(1, 0, . . . , 0) = 1. It is known that M
is β-homogeneous:

M(x) = |x|βM(x/|x|), x ∈ Rd \ {0},

where β = β(d, α,Θ) ∈ (0, α). For instance, β = α/2 for the half-space, i.e.
for Θ = π/2. The homogeneity degree β is crucial for precise asymptotics
of nonnegative harmonic functions of ∆α/2 in cones. Also, the critical ex-
ponent of integrability of the first exit time of the corresponding isotropic
α-stable Lévy processes from Γθ is simply p0 = β/α, which is a long-
standing motivation to study β. In fact, the Martin, Green and heat kernels
of ∆α/2 for ΓΘ enjoy explicit elementary estimates in terms of β. Denote
Bd,α = Γ

(
d+α

2

)
π−3/2 sin

(
πα
2

)
B
(
1 + α

2
, d−1

2

)
/Γ
(
d−1+α

2

)
, where Γ and B are

the Euler gamma and beta functions, respectively. Here is our main result:

β(d, α,Θ) � α−Bd,αΘd−1+α as Θ→ 0.

This resolves a decade-old puzzle. An application to the classical Laplacian in
a complement of a plane slit by a cone is also given. The paper is available on
arXiv. It is a joint work with Bart lomiej Siudeja (University of Oregon) and
Andrzej Stós (Université Blaise Pascal, Clermont-Ferrand).
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Gaussian estimates for Schrödinger perturbations
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A perturbation series is an explicit method of constructing new semigroups
or fundamental solutions. It is thus of the interest to obtain its upper and lower
bounds.

We propose a new general method of estimating Schröodinger perturba-
tions of transition densities using an auxiliary transition density as a majorant
of the perturbation series. We present applications to Gaussian bounds by
proving an optimal 4G Theorem for the Gaussian kernel, the inequality which
is a non-trivial extension of the so called 3G or 3P Theorem (as well known, 3P
fails in its primary form for the Gaussian kernel). Further applications concern
transition denisty of 1/2 stable subordinator.

The talk is based on the paper [1] and other recent results.
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Discrete-time insurance models and their stability
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It is well known that the classical Cramér-Lundberg model and its numer-
ous modifications attract attention of many researchers since the beginning of
the last century. The primary task of any insurance company is satisfaction
of the customers claims therefore the main subject of investigation was and
still is the ruin probability, see, e.g., Yang et al. [5]. That means the reliability
approach dominates in actuarial mathematics.

However, being a corporation, the insurance company has the secondary
but very important task of paying dividends to its shareholders. The seminal
paper by De Finetti [3] introduced the dividend problem, thus initiating the
cost approach, see also, Bulinskaya [1]. To avoid ruin insurer can use rein-
surance and capital injections. In such a situation insurers (or the company
shareholders) are interested in minimization of additional costs. This research
direction became very popular in the last decade. We are going to study some
new models of this type. Since reinsurance treaties are usually bought at the
end of financial year it is reasonable to consider discrete time models, see, e.g.,
the review by Li et al. [4] and references therein.
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One of the models treated in the talk takes into account various types
of reinsurance (proportional and nonproportional ones) and capital injections
entailed by bank loans and/or investments in risky assets. It is also supposed
that the claim process is described by a sequence of random variables. In the
simplest case we deal with nonnegative independent identically distributed
random variables. Insurance and reinsurance premiums are calculated accord-
ing to the mean value principle with safety loading λ and µ respectively.

At first we establish the optimal control, that is, the parameters of rein-
surance treaty minimizing the objective function (total expected discounted
costs during the planning horizon of n periods).

It is necessary as well to verify the model stability with respect to small
fluctuations of system parameters and perturbations of underlying processes.
So, the next step is to carry out the sensitivity analysis, see, e.g., Bulinskaya
[2]. We use the local and global technique, in particular, provide the global
sensitivity indices GI of parameters λ and µ. Two examples of the graphs for
these indices as functions of parameters relative errors k, calculated by means
of Wolfram Mathematica 8 software, are given by Fig. 1 and Fig. 2.

Figure 1: Sensitivity indices, µ fixed.

Figure 2: Sensitivity indices, λ fixed.

To estimate the impact of claim process distribution on optimal control
we use probability metrics introduced in Zolotarev [6] and various stochastic
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orders.
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Identification of significant factors

Alexander Bulinski 1

1Moscow State University, Russia, bulinski@yandex.ru

In a number of stochastic models a random response variable Y depends
on some (in general random) factors X1, . . . , Xn. In medical and biological
studies Y can describe the health state of a patient and X = (X1, . . . , Xn)
includes the genetic factors characterizing changes in DNA structure, e.g.,
SNP (single nucleotide polymorphisms), and non-genetic ones, for example,
arterial pressure, obesity index etc. The challenging problem is to determine
the collection of indices α = (k1, . . . , kr) where 1 ≤ k1 < . . . < kr ≤ n
such that Y depends ”essentially“ on Xα = (Xk1 , . . . , Xkr ) and the impact of
complementary set of factors Xi, i /∈ {k1, . . . , kr}, can be viewed as negligible
in a sense. This problem is important for analysis of risk factors of complex
diseases, for instance, diabetes, myocardial infarction and others. Often one
employs the binary response variable Y taking values −1 and 1. In medicine
Y = 1 and Y = −1 can correspond to the states sick or healthy, respectively. In
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pharmacology two values of Y can indicate efficiency or non-efficiency of some
drug. Clearly, for many applications it is important to consider nonbinary
response. The identification of significant factors when Y takes values in a
finite set is the goal of this talk based on papers [1]-[3].

There are complementary approaches to the problem mentioned above.
Among diverse statistical methods employed here we mention the principle
component analysis, logic and logistic regressions, LASSO and various machine
learning techniques. We concentrate on the new MDR (multifactor dimension-
ality reduction) method developed in [1]–[3]. The quality of Y prediction by
means of f(Xα), where f is nonrandom function, is described by the specified
error functional Err(f). It involves a penalty function ψ allowing to consider
the importance of predicting different values of Y . The joint law of the re-
sponse and factors is unknown. Therefore it is natural that statistical inference
is based on the error functional estimates constructed by prediction algorithm
(involving i.i.d. observations (Y i, Xi) where Law(Xi, Y i) = Law(X,Y ) for
i = 1, . . . , N) and K−cross-validation procedure.

One of our main results is the criterion of strong consistency of the proposed
estimates enabling one to identify the collection of significant factors. The
strong consistency plays an important role as the comparison of estimated
prediction errors for functions of different collections of factors is performed.
Moreover, statistical estimates of unknown penalty function are used as well.
We also introduce the regularized versions of these estimates and establish
for them the central limit theorem (CLT). A statistical variant of our CLT
allows us to indicate the approximate confidence intervals for unknown error
functional. To conclude we discuss the importance of collections of factors
following Schwender et al. [4].

Acknowledgements. The work is partially supported by RFBR grant
13-01-00612.

References

1. Bulinski, A., Butkovsky, O., Sadovnichy, V., Shashkin, A., Yaskov, P.,
Balatskiy, A., Samokhodskaya, L., Tkachuk, V. Statistical methods of
SNP data analysis and applications. Open Journal of Statistics. 2012,
vol. 2, No. 1, p. 73–87.

2. Bulinski, A.V. To the foundations of the dimensionality reduction
method for explanatory variables. Zapiski Nauchnyh Seminarov POMI.
2012, vol. 408, p. 84–101 (in Russian; English translation: Journal of
Mathematical Sciences).

3. Bulinski A.V., Rakitko A.S. Estimation of nonbinary random response.
Doklady Mathematics. 2014, vol. 455, No. 6, p. 623–627.

4. Schwender, H., Ruczinski, I., Ickstadt, K. Testing SNPs and sets of SNPs

22



XXXII International Seminar on Stability Problems for Stochastic Models

for importance in association studies. Biostatistics. 2011, vol. 12, No. 1,
p. 18–32.
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The availability of high frequency data on transactions, quotes and order
flow in electronic order-driven markets has revolutionized data processing and
statistical modeling techniques in finance and brought up new theoretical and
computational challenges. Market dynamics at the transaction level cannot be
characterized solely in terms the dynamics of a single price and one must also
take into account the interaction between buy and sell orders of different types
by modeling the order flow at the bid price, ask price and other levels of the
limit order book - aggregated collection of outstanding orders from buyers and
sellers. Dynamics of limit order book is defined by three types of orders: limit
orders (intention to buy or sell at a certain price), market orders (intention to
buy or sell at the best price immediately) and cancel orders (which cancel one
of previously placed limit order).

In [1] we use compound Cox processes to model order flows taking into
account the stochastic nature of its intensities. We fix a time interval [0;T ]
which is short enough so that the average parameters of the distributions of
sizes of incoming orders could be assumed known within this interval. We
consider the order imbalance process ([2]) in the form

Q(t) =
∑N+(t)
i=1 X+

i −
∑N−(t)
j=1 X−i ,

where X+
i are identically distributed sizes of buy orders, X−i are identically

distributed sizes of sell orders, N+(t) and N−(t) are the counting processes for
the arrivals of buy and sell orders. The stochastic structure of the intensities
of these counting processes is modeled by doubly stochastic Poisson processes
(Cox processes) N+(t) = N+

1 (Λ+(t)) and N−(t) = N−1 (Λ−(t)), where N+
1 (t)

and N−1 (t) are two standard Poisson processes with unit intensities, Λ+(t) and
Λ−(t) are some non-decreasing right-continuous functions such that Λ+(0) =
Λ−(0) = 0 and Λ+(∞) = Λ−(∞) =∞.

In real practice the intensities of order flows are not independent, so we
assume that Λ+(t) = α+(t)L(t) and Λ−(t) = α−(t)L(t), where L(t) is a ran-
dom measure playing the role of external informational background, α+(t) and
α−(t) are multipliers describing the reaction degree of buyers and sellers to
this background.
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Lemma 1. If the random variables X+
1 , X

+
2 , ..., X

−
1 , X

−
2 , ... and the stochas-

tic processes N−1 (t), N+
1 (t) and L(t) are independent, then for each t > 0 the

order imbalance process Q(t) has a compound mixed Poisson distribution:

P
(
Q(t) < x

)
= P

(∑N(t)
j=1 Xt,j < x

)
, x ∈ R,

where N(t) = N1

(
Λ(t)

)
, Λ(t) =

(
α+(t)+α−(t)

)
L(t), N1(t) is a standard Pois-

son process independent of the process L(t) and Xt,1, Xt,2, . . . are identically
distributed random variables with the common characteristic function

ft(s) ≡ EeisXt,1 =
α+(t)f+(s)

α+(t) + α−(t)
+

α−(t)f−(−s)
α+(t) + α−(t)

, s ∈ R,

where f+(s) and f−(s) are the characteristic functions of X+
1 and X−1 respec-

tively. Moreover, for each t > 0 the random variables N1(t),Λ(t), Xt,1, Xt,2, . . .
are independent.

Consider a sequence of order flow imbalance processes of the form

Qn(t) =
∑N

(n)
1 (Λn(t))

j=1 X
(n)
t,j , t > 0,

For simplicity we will write Qn, Nn, Λn and Xn,j instead of Qn(t), Nn(t),

Λn(t) and X
(n)
t,j respectively.

Theorem 1. Assume that there exist an infinitely increasing sequence
{kn}n>1 of natural numbers and finite numbers µ ∈ R and σ > 0 such that the
randomized order sizes Xn,j satisfy the condition

P(Xn,1 + . . .+Xn,kn < x) =⇒ Φ
(x− µ

σ

)
when n→∞.

The convergence
P
(
Qn < x

)
=⇒ F (x)

takes place with some distribution function F (x) if and only if there exists a
distribution function A(x) such that A(0) = 0, the distribution function F (x)
is representable in the form

F (x) =

∫ ∞
0

Φ
(x− µz
σ
√
z

)
dA(z),

and
P(Λn < xkn) =⇒ A(x).
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Probability density function of myogram noise and its
role in localization of brain activity sources

Margarita Dranitsyna 1, Tatiyana Zakharova 2, Valeriya
Allakhverdiyeva 3, Elena Chshenyavskaya 4

1Moscow State University, Russia, margarita13april@mail.ru
2Moscow State University, Russia, tvzaharova@mail.ru
3Moscow State University, Russia, allahverdiyeva27@gmail.com
4Moscow State University, Russia, elena24051993@mail.ru

Main task of our research was to explore characteristics of myogram rest
domains and determine relevant parameters and distribution. Accelerometer
signals were used to identify bounds of such rest intervals. These signal records,
accelerometer and myogram, are usually recorded simultaneously so they can
be easily fitted.

According to the obtained histograms an assumption was made that win-
dow variance of myogram responses within rest interval have gamma distribu-
tion with time-varying parameters. Probability density function in this case
is:

fX(x) =

{
(x− c)k−1 e−(x−c)/θ

θk Γ(k)
, x > c

0, x < c
,

where Γ(k) is the gamma function evaluated at k.
The mean and variance is defined as kθ+ c and kθ2 respectively. Based on

our distribution assumption the parameters of each rest domain were chosen.
Figure 1 and Figure 2 show histograms of parameters k and θ.

Figure 1: Parameter k. Figure 2: Parameter θ.
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Myogram signals are associated with relevant magnetoencephalogram sig-
nals so an associative filter can be built up. Recognized characteristics of
myogram noise makes it possible to refine the algorithm of reference points
identification. These reference points are applied to magnetoencephalogram
signals, that enables to select a principal sensor and utilize developed earlier
algorithm based on Independent Component Analysis (ICA) and obtain ana-
lytical solutions of inverse problem (IP). In MEG context IP can be defined
as:

Bt = GJt +Nt,

where: Bt ∈ RNsensors is the random vector representing the measured data at
time t; G is the lead-field matrix; JtRNpoints is the random vector representing
the sources distribution at time t; Nt ∈ RNsensors is the noise in the model.

The two main steps of proposed IP solving algorithm are:

• application ICA to raw MEG data, as a result decomposing relevant in-
dependent signal sources and separation multi-dipole model into several
monodipole models;

• employing the analytical formula based on Biot Savart equation to ob-
tained independent components as for monodipole models.

Hence assuming gamma distribution of myogram responses window vari-
ance within rest interval more precise model can be constructed to be dealt
with. Our future investigation refers to improvement of rest bounds search
algorithm, and also to refinement and fitting of distribution parameters.
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On asymptotic normality of risk estimate for Wavelet
and Wavelet-Vaguelette decompositions of a signal with

a correlated noise

Alexander Eroshenko 1, Oleg Shestakov 2

1Moscow State University, Russia, aeroshik@gmail.com
2Moscow State University, The Institute of Informatics Problems of The Russian
Academy of Sciences, Russia, oshestakov@cs.msu.su

Statistical wavelet methods are widely used in the processing of noised
signals and images, which are usually given as discrete observations:

Yi = fi + ei. (1)

Wavelet decomposition of a signal function f ∈ L2(R) is the series f =∑
j,k∈Z〈f, ψjk〉ψjk, where ψjk(t) = 2j/2ψ(2jt−k), and ψ(t) is a mother wavelet

(the family {ψjk}jk∈Z forms an orthonormal basis in L2(R)). The index j is
called the scale, and the index k – the shift. We can choose such function ψ
that has a sufficient number of vanishing moments and continuous derivatives,
and also satisfies some other regularity conditions (see [1]). The signal func-
tion f ∈ L2(R) must also possess certain properties: it should have support in
some finite interval and should be uniformly Lipschitz with an exponent γ > 0.
We consider the model (1) with a correlated noise: {ei, i ∈ Z} is a stationary
Gaussian process with a covariance sequence rk = cov(ei, ei+k), a zero mean
and a variance σ2.

After discrete wavelet transform applied to (1) we may obtain two models
depending on the rate of decay of the covariance sequence: short range and
long range dependencies. The first one is (up to some constant) equivalent to
the models with uncorrelated noise, studied in [2]. The second model is:

Xjk = µjk + 2
(J−j)(1−α)

2 zjk, where zjk = 2
j(1−α)

2

∫
ψjkdBH , (2)

j = 1, . . . , J, k = 1, . . . , 2j , 0 < α < 1 is a decay parameter of the model, and
µjk are discrete wavelet coefficients of the target function f (without noise).

Using a soft-thresholding procedure (see [2]), one can construct estimates
for target functions(signals, images and so on). The presence of noise leads
to the errors in these estimates. We can not calculate these errors strictly
because they depend on unknown ”clean” wavelet-coefficients, but we can
estimate them:

R̂J(f) =

J−1∑
j=0

2j−1∑
k=0

F [X2
jk, Tj , σj ],

where F [x, T, σ] = (x − σ2)1(|x| 6 T 2) + (σ2 + T 2)1(|x| > T 2). Within the
model (2) framework we proved that for α > 1/2, γ > (4α − 2)−1 and the
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soft-thresholding procedure with a ”universal” threshold Tj = σj
√

2 ln 2J (σj
is a variance of empirical wavelet-coefficients on the j-th scale) there is a
convergence in distribution:

R̂J(f)−RJ(f)

DJ
⇒ N(0, 1), J →∞, where D2

J = Cα2J , (3)

and the constant Cα depends only on α and the chosen wavelet basis.
In addition, we proved the consistency of the risk estimate for the soft-

thresholding with a ”universal” threshold. For 0 < α < 1, γ > 0, and b >
1− α+ α(2γ + 1)−1 we have

R̂J(f)−RJ(f)

2bJ
P−→ 0, J →∞. (4)

There is also a number of important applied problems where data is
observed indirectly, for example, telecommunication traffic analysis, plasma
physics, computer tomography and so on. They are described by the following
data model:

Yi = (Kf)i + ei, (5)

where K is some linear homogeneous operator in L2 with a parameter β, f is a
signal function, ei is a correlated Gaussian noise with a zero mean. We employ
”wavelet-like” functions {ξjk} (vaguelettes, see [3]), such that [Kf, ξjk] =<
f, ψjk >. Applying the discrete vaguelette transform, we obtain a model of
discrete empirical vaguelette-coefficients:

Xjk = µjk + 2J(1−α)/2wjk, where wj,k =

∫
ξjkdBH , (6)

j = 1, . . . , J, k = 1, . . . , 2j , 0 < α < 1 is a model parameter, and µjk are
discrete vaguelette-coefficients without a noise.

In the framework of this model we proved an asymptotic normality of the
risk estimate for α+2β > 1/2, γ > (4(α+2β)−2)−1 and the soft-thresholding
procedure with a ”universal” threshold Tj =

√
2 ln 2jσj :

R̂J(f)−RJ(f)

DJ
⇒ N(0, 1), J →∞, D2

J = C̃2J(1+4β), (7)

where C̃ depends only on α, β, and the chosen wavelet basis.

References

1. Johnstone I. M. Wavelet shrinkage for correlated data and inverse prob-
lems: adaptivity results // Statistica Sinica, 1999, Vol. 9, No. 1, P. 51–83.

2. Donoho D., Johnstone I. M. Adapting to Unknown Smoothness via
Wavelet Shrinkage // J. Amer. Stat. Assoc., 1995, Vol. 90, P. 1200–1224.

28



XXXII International Seminar on Stability Problems for Stochastic Models

3. Donoho D. Nonlinear solution of linear inverse problems by wavelet-
vaguelette decomposition // Applied and computational harmonic anal-
ysis, 1995, No. 2, P. 101–126.

The asymptotic behaviour of a random graph model
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A general random graph evolution mechanism is defined (see Fazekas and
Porvázsnyik [4], Fazekas and Porvázsnyik [5]). The evolution is based on inter-
actions of N vertices. Besides the interactions of the new vertex with the old
ones, interactions among old vertices are also allowed. Moreover, both preferen-
tial attachment and uniform choice are possible. Our model is a generalization
of the three-interactions model introduced in Backhausz and Móri [3].

A vertex in our graph is characterized by its degree and its weight. The
weight of a given vertex is the number of the interactions of the vertex. The
asymptotic behaviour of the graph is studied. Scale-free properties both for
the degrees and the weights are proved. A random graph is called scale-free, if
pk ∼ Ck−γ , as k →∞, where p1, p2, . . . is the asymptotic degree distribution
of the graph. It turns out that in our model any exponent γ in (2,∞) can be
achieved. Asymptotic results are obtained for the degree and the weight of a
fixed vertex. Moreover, the maximal degree and the maximal weight are also
studied. The proofs are based on discrete time martingale theory.

Some numerical results are also presented. Using computer simulation, our
model is compared with the original Barabási-Albert preferential attachment
rule and the Cooper-Frieze model, see Barabási and Albert [1], Cooper and
Frieze [2].

Acknowledgements. The research was supported by the TÁMOP-
4.2.2.C-11/1/KONV-2012-0001 project. The project has been supported by
the European Union, co-financed by the European Social Fund.
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A practical solution of the fat tail problem in financial
markets

Yuri Gabovich 1

1Paloma Partners, USA, ygabovic@paloma.com

Logarithms of stock returns Yn = ln(Sn/S0) over a span of n time intervals
can be represented as a sum Yn = X1+. . .+Xn of smaller-intervals′ log-returns
Xj , j = 1, . . . , n. In quantitative finance Yn are usually assumed to be normally
distributed. However, the observed tails of the empirical cumulative distribu-
tion function (c.d.f.) Fn(t) of Yn are usually much ”fatter” than the tails of
a normal distribution Φ(t) with the same parameters of location and scale.
The ”Fat Tail” phenomenon continued to puzzle for decades and attracted a
lot of attention (the recent financial crisis is an example). In order to better
explain the tails of Fn, researchers used a gamut of approaches: mixtures of
normal distributions, stable distributions, different stochastic processes′ mod-
els ([9,10]). A particularly important case for investors is the annual log-return
Yn that consists of n = 253 daily log-returns Xj . Historical data observations
show that (for properly normalized Y253) the probabilities of six-standard-
deviations (6σ) losses are quite substantial:

Pr {Y253 < −6σ} = F253(−6σ) ≈ 0.27 ∗ 10−2

while the corresponding value for a normal random variable is much smaller:
Φ(−6σ) ≈ 10−9

The ”fatness” ratio F253(−6σ)/Φ(−6σ) ≈ 2.7 ∗ 106 is huge, investors face
6-sigma losses 2.7 million times more frequently than ”promised” by CLT
and the corresponding normal distribution. The following two major ques-
tions worry investors and specialists in the quantitative finance:
Question 1. Why the observed tails are so ”fat”?
Question 2. Is there a way to make the tails thinner?

A short answer to the first question is that the observed tails are rather fit
than fat. Indeed, rewrite Fn(t) as:

Fn(t) = [Fn(t)− Φ(t)] + Φ(t)
A careful inspection that uses known estimates of the rate of convergence

in CLT , shows that for n = 253 and for typical daily log-returns Xj in finan-
cial markets, the first term may dominate the second term by a factor of 107:
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|Fn(t)− Φ(t)| � Φ(t)
It means that in order to properly estimate tails of Fn(t), the [Fn(t) − Φ(t)]
term may not be ignored, the rate of convergence in CLT should be taken
into account very seriously. The use of known methods [1,2,3,6,8] that provide
upper bounds for |Fn(t) − Φ(t)|, combined with the assumption of indepen-
dency of daily log-returns[5,7] allowed to build estimates[11] that proved to be
consistent with the empirical market data.

The answer to the second question is yes, there is a way; the corresponding
methodology[11] consists of the two parts:
Part 1. Truncate Xj , so that |Xj | < M . Practically, in finance, the trun-
cation is equivalent to the construction of synthetic instruments through a
self-financing strategy that includes options.
Part 2. Estimate the tails of the sums of the newly created bounded random
variables using a proper set of concentration inequalities, including, in partic-
ular, Hoeffding′s inequality [4].

The observed tails of the sums of thus constructed instruments proved to
be consistent with the estimates based on the proposed set of concentration
inequalities and turned out to be much thinner than the tails of the sums of
the original instruments.

References

1. V. M. Zolotarev. A sharpening of the inequality of Berry-Esseen.
Zeitschrift fr Wahrscheinlichkeitstheorie und Verwandte Gebiete, 1967,
Vol. 8, Issue 4, p. 332-342

2. V. Yu. Korolev, I. G. Shevtsova. On the upper bound for the absolute
constant in the Berry-Esseen inequality. Theory of Probability and its
Applications, 2010, vol. 54 No. 4, p. 638-658.

3. I. G. Shevtsova. On the absolute constants in the BerryEsseen type in-
equalities for identically distributed summands. Moscow State Univer-
sity, 2011.

4. W. Hoeffding, Probability inequalities for sums of bounded random vari-
ables, J. Amer. Statist. Assoc., 1963, vol. 58, p. 13–30.

5. Paul A. Samuelson. Proof That Properly Anticipated Prices Fluctuate
Randomly. Industrial Management Review. 1965, Spring.

6. S. Nagaev. Some limit theorems for large deviations. Theory of Proba-
bility and its Applications, 1965, vol. 10, p. 214–235.

7. Robert Merton. Continuous-Time Finance. BlackWell Publishers, 1990.

31



XXXII International Seminar on Stability Problems for Stochastic Models

8. V. Nikulin. An Algorithm to Estimate a Nonuniform Convergence Bound
in the Central Limit Theorem. Department of Mathematics, University
of Queensland, Brisbane, Australia, 2010.

9. E. Jondeau. Financial Modeling Under Non-Gaussian Distributions.
Springer-Verlag London Limited, 2007.

10. V. Yu. Korolev. Probability-statistical methods of decomposition of
volatility of chaotic processes. Moscow State University, 2011.

11. Y. Gabovich. On the Question of the Fat Tails in Financial Markets.
Paloma Partners, 2013.

On Harnack inequality for unimodal Lévy processes

Tomasz Grzywny 1
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We present some recent results about isotropic unimodal Lévy processes
on Rd (i.e. rotation invariant Lévy process with the absolutely continuous
Lévy measure which density is radially non-increasing). For instance the scale
invariant Harnack inequality holds for harmonic functions with respect to an
isotropic unimodal Lévy process with the characteristic exponent ψ satisfying
some scaling condition. We derive sharp estimates of the potential measure and
capacity of balls, and further, under the assumption that ψ satisfies the lower
scaling condition, sharp estimates of the potential kernel of the underlying
process. This allows us to establish the Krylov-Safonov type estimate. Further
we show Hölder regularity properties for harmonic functions.

References

1. T. Grzywny. On Harnack inequality and Hölder regularity for
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Application of Dirichlet mixture of normals in growth
curve models
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In our research, we present growth curve models with an auxiliary variable
which contains an uncertain data distribution based on mixtures of standard
components, such as normal distributions. The multimodality of the auxil-
iary random variable motivates and necessitates the use of mixtures of normal
distributions in our model. We have observed that Dirichlet process priors,
composed of discrete and continuous components, are appropriate in address-
ing the two problems of determining the number of components and estimating
the parameters simultaneously and are especially useful in the aforementioned
multimodal scenario. A model for the application of Dirichlet mixture of nor-
mals (DMN) in growth curve models under Bayesian formulation is presented
and algorithms for computing the number of components, as well as estimating
the parameters are also rendered. The simulation results show that our model
gives improved goodness of fit statistics over models without DMN and the
estimates for the number of components and for parameters are reasonably
accurate.

We present growth curve models with auxiliary variables containing uncer-
tain data distributions based on mixtures of standard components and using
normal distributions in our simulation example. The results (from the algo-
rithm we have developed) show that our model is useful in estimating the
number of components in the mixture normals, the probabilities from which
the auxiliary variables arise as well as the means of the normal distributions
in the components of the mixture normals. The estimates and goodness of
fit statistics (adjusted R2) in our simulating example show that models with
DPP can outperform those models without DPP. We do not state the universal
applicability of our model with only one simulation example but it suffices in
showing the advantages of using our model especially in scenarios with some
specific multimodal distributions from data.
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Fractional Laplacian with frift

Tomasz Jakubowski 1
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For α ∈ (1, 2) we consider the equation ∂tu = ∆α/2u− b · ∇u. We consider
various classes of vector fields b and resulting fundamental solutions of the
given equation p̃. As the result we show that p̃ is comparable to the transition
density of the isotropic stable process.

Decay of eigenfunctions for nonlocal Schrödinger
operators

Kamil Kaleta 1, 2

1University of Warsaw, Poland, kkaleta@mimuw.edu.pl
2Wroclaw University of Technology, Poland, kamil.kaleta@pwr.edu.pl

The decay of eigenfunctions at infinity for Schrödinger operators

H = −∆ + V,

where V is a suitably chosen external potential, has been widely studied for
many years. Its rate describes the localization of a quantum particle in a
physical space. An explicit form of eigenfunctions is known only in few specific
cases. Assuming that ϕ ∈ L2(Rd) is an eigenfunction of H, i.e., Hϕ = λϕ, and
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V is sufficiently regular potential, a basic question is how rapid is the decay of
ϕ(x) in function of V when |x| → ∞. For pinning potentials, i.e., V (x)→∞ as
|x| → ∞, the decay is known to be typically exponential or faster. For instance,
if V (x) � |x|β , β ≥ 1, and ϕ0 corresponds to the eigenvalue λ0 := inf specH
(the so-called ground state eigenfunction), we have

ϕ0(x) � |x|−
β
4

+
(d−1)

2 e
− 2

2+β
|x|1+

β
2
, |x| ≥ 1.

Similar questions, motivated by the problems in a relativistic quantum
mechanics, appears in the case of the so-called nonlocal Schrödinger operators

H = −L+ V,

where L is a nonlocal operator being the generator of the jump Lévy process.
The most interesting example seems to be the relativistic Hamiltonian L =
−
√
−∆ +m+m, m > 0, the generator of the relativistic Lévy motion.
I will present the recent results on the pointwise bounds at infinity of the

eigenfunctions for a wide class of operators L and signed potentials V (x)→∞,
|x| → ∞, possibly singular. These estimates explicitly depend on the density of
the Lévy measure of the process generated by L and the growth of V at infinity.
For the ground state eigenfunction (which is known to be strictly positive) they
are even two-sided and sharp. Our methods are mainly probabilistic (stochastic
Feynman-Kac type representation of the semigroup e−tH) and are based on a
precise analysis of the jumps of the process and some specific self-improving
estimates iterated infinitely many times. These tools allow us to derive the
sharp bounds even in the case of Lévy measures that are exponentially localized
at infinity.

I will also discuss some interesting consequences and applications of these
results such as properties of domination (the semigroup e−tH and other eigen-
functions) by the ground state eigenfunction, the asymptotic behaviour of the
semigroup e−tH for large t (intrinsic ultracontractivity-type properties), the
asymptotic behaviour of paths of the related ground state-transformed jump
processes (integral tests of the Kolmogorov type, LILs etc.).

The talk is based on a joint work with J. Lőrinczi (Loughborough Univer-
sity).
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The bounds of the convergence rate for unreliable
queuing network

Elmira Yu. Kalimulina 1
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elmira.yu.k@gmail.com

In this paper we consider a Jackson type network with unreliable devices.
The network consists of m, (m <∞) nodes, each node is a queuing system of
M/G/1 type. It is assumed that the flow of requests, coming into the network,
is the Poisson process with parameter λ(t). With probability r0i the request
is sent to the i- th node ,

∑m
i=1 r0i ≤ 1, where it is proccessed with intensity

µi(ni) , ni - the number of requests in the i- th node . Devices in the network
may break down or repair with some intensity, depending on the number of
already broken down devices. Devices may break down and repair as an isolated
event or in groups simultaneously. In this paper we will formulate results on
the bounds of convergence rate for such network.

Acknowledgements. This work was supported by RFBR grant 14-07-
31245.

Stable measure of dependence for network analysis
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Network models are popular tools for financial market analysis Tum-
minello M., Aste T., Matteo T.D., Mantegna R.N. [1], Boginsky V.,Butenko
S.,Pardalos P. [2]. The network model is a complete weighted graph in which
nodes corresponds to a stocks and weights of edges between nodes are equal to
value of measure of similarity (dependence) of stocks behavior. The most pop-
ular measure of dependence of the random variables used in network analysis
is the classic Pearson correlation. It is well known that for a multivariate nor-
mal distribution covariance matrix is a sufficient statistics Anderson T.W. [3].
However the assumption of multivariate normal distribution of real data is
not satisfied. In particular multivariate distributions of real data of stock re-
turns have a more heavy tails, than multivariate normal distribution Shiryaev
A.N. [4].
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In Bautin G.A., Kalyagin V.A., Koldanov A.P., Koldanov P.A., Pardalos
P.M. [5] sign correlation is used as an alternative measure of dependence. This
measure is based on the probability of coincidence of the random variables
signs. It is shown that such a measure is appropriate for the market network
analysis, has a simple interpretation, can be generalized to any number of
random variables and has a connection to the Pearson correlation in the case
of normal distribution. In Bautin G.A., Kalyagin V.A., Koldanov A.P. [6] these
measures are compared for different models of financial market.

In the present report connection between Pearson correlation and sign
correlation is investigated for elliptically contoured distributions. A mixture
of multivariate normal distribution and multivariate Student distribution is
considered as a model of simultaneous behavior of stock returns of financial
market. Stability of statistical estimations of Pearson and sign correlations is
compared for the model. Some structural characteristics of complete weighted
graph, namely minimal spanning tree Tumminello M. [1], market graph Bo-
ginsky V., Butenko S., Pardalos P. [2], are considered. Construction problem
of these characteristics as multiple decision statistical procedure is formulated
Koldanov A.P., Koldanov P.A., Kalyagin V.A., Pardalos P.M. [7]. Stability
of such procedures is measured by conditional risk Lehmann E.L., Romano
J.P. [8]. It is shown that statistical procedures based on sign correlation are
stable with respect to parameters of mixture of multivariate normal distribu-
tion and multivariate Student distribution.
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Multivariate CAPM: Estimation and Testing
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Classical linear model is not good for analysis of modern securities mar-
kets. In classical model the error term has multivariate normal distribution
with zero mean and covariance matrix which is proportional to unit matrix,
i.e. the components are uncorrelated and has the equal variances. Many real
measurements show that it is not true.

In our report we consider the following model:

Yt = Xt · θ + εt , t = 1, 2, . . . .

We assume that the error term εt has the properties:
1) εt has multivariate Student distribution with dependent components,
2) random vectors εt follow multivariate GARCH model,
3) time series εt has the property of long range dependence.
This model is very different from classical one and the ordinary statistical

procedures don’t work.
We propose some new methods for estimation of parameters of this model

and testing hypothesis and investigate their properties.
Next we apply this model for analysis of Russian securities market.
Analogous models were considered in [1] and [2].
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Estimation of ruin probability in the collective risk
model with investments

Yury Khokhlov 1, Yulia Dubinina 2, Ellina Gafurova 3
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In our model we assume that insurance company capital R(t) at the mo-
ment t can be discribed by classical Cramer-Lundberg process:

R(t) = u+ ct−
N(t)∑
j=1

Zj = u+ ct− P (t) , (1)

where u – size of initial capital of the company, (N(t), t ≥ 0) – homogeneous
Poisson process, {Zj} – sequence of independent identically distributed posi-
tive random variables.

As usually we assume that the insurance company invests its capital in
risk and riskless securities. The dynamics of these securities is described by
following equations:

dS(t) = S(t)(µdt+ σdW (t)) , (2)

dB(t) = rB(t)dt , (3)

where S(t) – the price of risky securities at the t, µ – mean return, σ – volatility,
W (t) – standard Brownian motion, B(t) – the price of bonds at the moment
t, r – riskless rate (0 < r < µ).

We assume that insurance company invests the part α(t) in risky securities
and the part 1 − α(t) in bonds. Then we have the following equation for the
capital of company:

dX(t) = [α(t)µ+ (1−α(t))rdt+α(t)σdW (t)] ·X(t) + dR(t) , X(0) = u . (4)

In what follows we consider the case α(t) = α = const and denote β =
αµ+ (1− α)r, γ = ασ. Then equation (4) can be written in the form:

dX(t) = [βdt+ γdW (t)] ·X(t) + dR(t) , X(0) = u . (5)

Now consider the auxiliary equation:

dC(t, s) = [βdt+ γdW (t)] · C(t, s) , t > s, C(s, s) = 1 . (6)

The solution of equation has the form:

C(t, s) = exp[(β − γ2/2)(t− s) + γ(W (t)−W (s))] , t ≥ s . (7)

(see [1]).
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We show that the solution of equation (5) can be written in the form:

X(t) = C(t, 0)u+ c ·
∫ t

0

C(t, s)ds−
N(t)∑
j=0

Zj · C(t, νj) , (8)

where νj are the moments of jumps of the process (N(t), t ≥ 0).
In the classical Cramer-Lundberg model without investments for ruin prob-

ability ψ(u) was obtained the following representation:

ψ(u) =
e−R·u

M (e−R·R(τ)|τ <∞)
, (9)

where τ is the moment of ruin and R > 0 is the positive solution of the
equation:

λ+ c · r = λ ·MZ(r) , (10)

here MZ(r) – moment generating function of r.v. Zj . (see [2]).
From this result we get well known Lundberg inequality:

ψ(u) ≤ e−R·u .

In our report using paper [3] we propose some lower and upper estimates
for ψ(u).
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Estimation of ruin probability in multivariate collective
risk model
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We consider the following multivariate analog of classical collective risk
model (see [1]):

~U(t) = (U1(t), . . . , Um(t)) = ~u+ ~c · t− ~S(t), t > 0,
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where ~u = (u1, . . . , um)) , ~c = (c1, . . . , cm) ∈ Rm, ck > 0 for all k = 1,m and
~S(t) = (S1)t), . . . , Sm(t) is the payments process.

We introduce the multivariate index i = (i1, . . . , im), whose components
ik receive two values: the value 1 when there are claims of kth type and the
value 0 otherwise. Let us denote by I the set of all possible values of the index
i and by Ik its subset that includes only such i whose the kth component is
equal to 1: Ik = {i ∈ I : ik = 1}.

For each index i, there is a random process N (i)(t), t ≥ 0, representing the
number of insurance cases up to the moment t whose claims have a structure
corresponding to the index i. For different i N (i)(t) are assumed to be indepen-
dent Poisson processes with parameters λ(i). Then the vector counting process
is defined by the following rule:

~N(t) = (N1(t), . . . , Nm(t)) = (
∑
i∈I1

N (i)(t), . . . ,
∑
i∈Im

N (i)(t)) .

Let (X
(i)
j ), j > 1 be a sequence of independent and identically distributed

random vectors in Rm+ , (εj , j > 1) be a sequence of independent random vari-

ables which take their values in I and P (εj = i) = λ(i)

λ
.

If N(t) =
∑
i∈I

N (i)(t) then it is easy to see that

~N(t) =

N(t)∑
j=1

εj .

Now we define the payments process in the following form:

Sk(t) =

N(t)∑
j=1

∑
i∈Ik

I(εj = i) ·X(i)
j,k .

Denote

X∗j,k =
∑
i∈Ik

I(εj = i) ·X(i)
j,k .

Let tj = s · rj , i.e. ~t = (t1, t2, . . . , tm)T = (s · r1, s · r2, . . . , s · rm)T , where
r1 < r2 < . . . < rm.

First we prove that random vector

~S∗(~t) =
~S(~t)−M(X∗j ) ◦ r · λ · s

√
λ · s

,

where a ◦ b = (a1 · b1, . . . , am · bm)T , has asymptotically (s→∞) multivariate
normal distribution with zero mean and covariance matrix Σ0, whose elements
have the form σp,q ·min(rp, rq).

41



XXXII International Seminar on Stability Problems for Stochastic Models

In one dimensional model it has been proved that ruin probability ψ(u, t)
can be approximated by

Φ

(
t− u · y0√
u · v0

)
· C · e−R·u ,

as u, t→∞, under condition that the quantity (t−u · y0)/
√
u · v0 is bounded,

where y0, v0, C, R are explicitely calculated constants (see [2], p. 137-141).
We get the analogous result in our multivariate model.
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On the limit distributions of the maximum tree size in a
conditional Poisson Galton–Watson forest
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We consider the set of realizations of a subcritical or critical homogeneous
Galton–Watson process starting with N particles such that the number of
offspring of each particle has a Poisson distribution with parameter λ. This
set is infinite and consists of rooted trees with a finite number of vertices.
The probability distribution on this set is induced by the branching process.
Such random forests are known as Galton–Watson forests. Let η(N) denote
the maximum tree size in a Galton–Watson forest. As N → ∞ for a subset
of trajectories with a known identical number of vertices limit distributions
of η(N) were obtained by Pavlov [1] using a generalized allocation scheme
(Kolchin, [2]). We derived similar results for a subset of trajectories such that
the number of vertices does not exceed n with different behavior of parameters
λ and n. In particular, the following assertion is true.

Theorem. Let N, r →∞ such as Nλr−1e(1−λ)r/
√

2πr3 → α, where α is
a positive number, N − n(1− λ) 6 C

√
N , 0 6 C <∞, 0 < λ1 6 λ 6 λ2 < 1.

Then for any fixed k

P
{
η(N) 6 r + k

}
→ exp

{
−
α
(
λe1−λ)k+1

1− λe1−λ

}
.

42



XXXII International Seminar on Stability Problems for Stochastic Models

For the conditional random forests in question the proved theorems gener-
alize the results obtained by Chuprunov and Fazekas [3].
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Asymptotics for the estimation of the offspring means in
critical two-type GWI processes
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The model is as follows. For each k, j ∈ Z+ and i, ` ∈ {1, 2}, the number
of individuals of type i in the kth generation will be denoted by Xk,i, the
number of type ` offsprings produced by the jth individual who is of type
i belonging to the (k − 1)th generation will be denoted by ξk,j,i,`, and the
number of type i immigrants in the kth generation will be denoted by εk,i.
Then [

Xk,1
Xk,2

]
=

Xk−1,1∑
j=1

[
ξk,j,1,1
ξk,j,1,2

]
+

Xk−1,2∑
j=1

[
ξk,j,2,1
ξk,j,2,2

]
+

[
εk,1
εk,2

]
, k ∈ N.

We distinguish 3 cases based on the spectral radius of the offspring mean
matrix

mξ :=

[
E(ξ1,1,1,1) E(ξ1,1,1,2)
E(ξ1,1,2,1) E(ξ1,1,2,2)

]
.

We focus our attention to the crtical case, that is when the spectral radius
of the above matrix equals 1. We propose an estimate for mξ based on the
conditional least squares method. We examine the asymptotic properties of
the estimates. We also discuss the possibility of applying the same method for
a more general model.
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Some product representations for random variables with
Weibull distribution and their applications
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Let γ > 0. The distribution of the random variable Wγ :

P
(
Wγ < x

)
=

{
1− e−x

γ

, x > 0,

0, x < 0,
(1)

is called the Weibull distribution with the shape parameter γ. It is called
after Waloddi Weibull (1887 – 1979), the Swedish scientist, who used this
distribution in 1939 for the statistical analysis of the strength of materials
[1, 2] and studied the properties of this distribution in [3]. However, Weibull
was not the first to study distribution (1). This distribution was introduced
in 1927 by Maurice Fréchet [4] as a limit law for extreme order statistics and
used by Paul Rosin, Erich Rammler and Karl Sperling in 1933 [5, 6] and John
Godolphin Bennett in 1936 [7] as a model for the coal particle size distribution.

The Weibull distribution is widely used in various applied problems, see,
e. g., [8–12]. Main applications of this distribution deal with survival analysis
and reliability theory where it is used as a lifetime distribution. It is also
worth noticing that in the papers [13, 14] the Weibull distribution was used as
a successful model for the asset returns regularities.

It is obvious that W1 is a random variable with the standard exponential
distribution function

P(W1 < x) = E(x) ≡
[
1− e−x

]
1(x > 0).

The Weibull distribution with γ = 2

P(W2 < x) =
[
1− e−x

2]
1(x > 0)

is called the Rayleigh distribution after John William Strutt, lord Rayleigh who
introduced this distribution within the framework of the problem of addition
of a large number of vibrations of the same pitch and of arbitrary phase [15].

Let X be a random variable with the standard normal distribution function
Φ(x):

P(X < x) = Φ(x) =

∫ x

−∞
ϕ(z)dz, ϕ(x) =

1√
2π
e−x

2/2, x ∈ R.
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Let Ψ(x), x ∈ R, be the distribution function of the maximum of the standard
Wiener process on the unit interval,

Ψ(x) = 2Φ
(

max{0, x}
)
− 1, x ∈ R.

It is easy to see that Ψ(x) = P(|X| < x). Therefore sometimes Ψ(x) is called
the half-normal distribution function.

The symbol
d
= will denote the coincidence of distributions.

Lemma 1. The relation

W1
d
=
√

2W1|X|

holds, where the random variables on the right-hand side are independent.

Theorem 1. Let γ > 0. For any k ∈ N we have

Wγ
d
= 2(2k−1−1)(2kγ)−1

W 2−kγ−1

1

(∏k

m=1
|Xm|1/2

m−1
)1/γ

,

where the random variables on the right-hand side are independent and
X1, X2, ... have the same standard normal distribution.

Corollary 1. Let γ > 0. We have

Wγ
d
=

(
2
∏∞

m=1
|Xm|1/2

m−1
)1/γ

,

where the random variables X1, X2, ... are independent and have the same stan-
dard normal distribution..

Corollary 2. For any k ∈ N we have

W1
d
= 2(2k−1−1)2−k

W
1/2k

1

∏k

m=1
|Xm|2

1−m
, W1

d
= 2

∏∞

m=1
|Xm|2

1−m
,

W2
d
= 2(2k−1−1)2−k−1

W
1/2k+1

1

∏k

m=1
|Xm|2

−m
, W2

d
=
√

2
∏∞

m=1
|Xm|2

−m
,

where the random variables on the right-hand sides are independent and
X1, X2, ... have the same standard normal distribution.

ByGα,θ(x) and gα,θ(x) we will respectively denote the distribution function
and the density of the strictly stable law with the characteristic exponent α
and parameter θ corresponding to the characteristic function

fα,θ(t) = exp
{
− |t|α exp

{
− iπθα

2
signt

}}
, t ∈ R,

where 0 < α 6 2, |θ| 6 θα = min{1, 2
α
− 1} (see, e. g., [16]).

In order to prove that any Weibull distribution with parameter γ ∈ (0, 1] is
a scale mixture of half-normal laws we first prove that any Weibull distribution
with parameter γ ∈ (0, 2] is a scale mixture of Rayleigh distributions.
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Lemma 2. For any γ ∈ (0, 2] we have

Wγ
d
= W2

√
ηγ/2,

where ηγ/2 = 2ζ−1
γ/2,1, and ζγ/2,1 is a random variable with one-sided strictly

stable density gγ/2,1(x) independent of W2.

Theorem 2. For any γ ∈ (0, 1], the Weibull distribution with parameter γ
is a scale mixture of half-normal laws:

Wγ
d
= |X|

√
2W1η2

γ ,

where ηγ = 2ζ−1
γ,1, and ζγ,1 is a random variable with one-sided strictly stable

density gγ,1(x), moreover, the random variables on the right-hand side are
independent.

Corollary 3. The Weibull distribution with parameter α = γ/2 ∈ (0, 1]
is a mixed exponential distribution:

e−x
α

= P(Wα > x) = P(W1 >
1
2
ζα,1x) =

∫ ∞
0

e−
1
2
zxgα,1(z)dz, x > 0.

Remark 1. The case γ ∈ (0, 1] is of special interest since the Weibull
distributions with such parameters occupy an intermediate position between
the laws with exponentially decreasing tails and Zipf–Pareto-type heavy-tailed
distributions.

Theorem 2 implies that if γ ∈ (0, 1], then

P(Wγ < x) = EΨ

(
x√

2W1η2
γ

)
=

∫ ∞
0

Ψ
( x
√
y

)
dHγ(y), x ∈ R,

where

Hγ(y) = P(2W1η
2
γ < y) = P

(
W1 <

1
8
yζ2
γ,1

)
=

= 1−
∫ ∞

0

exp
{
− 1

8
yz2}gγ,1(z)dz, y > 0. (2)

Corollary 4. Let ζα,1 be a random variable with the one-sided strictly
stable distribution with characteristic exponent α = 2−k, k ∈ N. Then

ζα,1
d
=
(

22k−2−1
∏k

m=1
|Xm|2

m
)−1

.

Let γ > 0. The symmetric two-sided Weibull distribution with parameter
γ is the distribution of the random variable W̃γ :

P
(
W̃γ < x

)
= 1

2
e−|x|

γ

1(x < 0) +
[
1− 1

2
e−x

γ ]
1(x > 0). (3)
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Distribution (3) was introduced in [17] as a heavy-tailed model for financial
risks. Further generalizations and references can be found in [18, 19].

It is easy to see that if Wγ is a random variable with Weibull distribution
(1) and Z is a random variable independent of Wγ taking the values −1 and

+1 with probabilities 1
2

each, then W̃γ
d
= ZWγ and hence, |W̃γ |

d
= Wγ .

From theorem 2 it obviously follows that

Wγ
d
= X

√
2W1η2

γ ,

where ηγ = 2ζ−1
γ,1, and ζγ,1 is a random variable with the one-sided strictly

stable density gγ,1(x), moreover, the random variables on the right-hand side
are independent.

Corollary 5. For any γ ∈ (0, 1], the symmetric two-sided Weibull distri-
bution with parameter γ is a scale mixture of normal laws:

P(W̃γ < x) = EΦ

(
x√

2W1η2
γ

)
=

∫ ∞
0

Φ
( x
√
y

)
dHγ(y), x ∈ R,

where

Hγ(y) = 1−
∫ ∞

0

exp
{
− 1

8
yz2}gγ,1(z)dz, y > 0.

It is obvious that W̃1 is a random variable with the Laplace distribution

L(x) ≡ P(W̃1 < x) = 1
2
ex1(x < 0) +

[
1− 1

2
e−x

]
1(x > 0).

It is easy to see that

W̃1
d
= X
√

2W1,

with the random variables on the right-hand side being independent (see, e.
g., [20], p. 578-579). Then Corollary 5 implies

Corollary 6. For any γ ∈ (0, 1], the symmetric two-sided Weibull distri-
bution with parameter γ is a scale mixture of the Laplace distributions:

P(W̃γ < x) = EL
(

1
2
xζγ,1

)
=

∫ ∞
0

L( 1
2
xy)gγ,1(y)dy, x ∈ R.

In what follows the symbol =⇒ denotes convergence in distribution.
Consider independent not necessarily identically distributed random vari-

ables Y1, Y2, ... with EYi = 0 and 0 < σ2
i = DYi < ∞, i > 1. For k ∈ N

denote
Sk = Y1 + ...+ Yk, Sk = max

16i6k
Si, Sk = min

16i6k
Si,

B2
k = σ2

1 + ... + σ2
k. Assume that the random variables Y1, Y2, ... satisfy the

Lindeberg condition: for any τ > 0

lim
k→∞

1

B2
k

∑k

i=1

∫
|x|>τBk

x2dP(Yi < x) = 0. (4)
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It is well known that under the above conditions we have

P

(
Sk
Bk

< x

)
=⇒ Ψ(x), P

(
Sk
Bk

< x

)
=⇒ 1−Ψ(−x), k →∞,

Let N1, N2, ... be nonnegative integer-valued random variables such that
for each k ∈ N the random variables Nk, Y1, Y2, ... are independent. For k ∈ N
set

SNk = Y1 + ...+ YNk , SNk = max
16i6Nk

Si, SNk = min
16i6Nk

Si

(for definiteness we assume that S0 = S0 = S0 = 0). Let {dk}k>1 be an
infinitely increasing sequence of positive numbers.

It is easy to see that the distribution function Hγ(x) is absolutely contin-
uous (the corresponding density has the form

hγ(x) =
1

8

∫ ∞
0

z2 exp
{
− 1

8
xz2}gγ,1(z)dz, x > 0).

Theorem 3. Let Wγ and W̃γ be random variables having respectively,
Weibull distribution (1) with shape parameter γ ∈ (0, 1] and symmetric two-
sided Weibull distribution (3) with the same parameter. Let Hγ(x) be the dis-
tribution function defined in (2). Assume that Lindeberg condition (4) holds
and Nk −→ ∞ in probability as k → ∞. Then, as k → ∞, the following
statements are equivalent:

SNk
dk

=⇒ W̃γ ;
SNk
dk

=⇒Wγ ;
SNk
dk

=⇒ −Wγ ;
|SNk |
dk

=⇒Wγ ;

sup
x

∣∣∣P(B2
Nk

d2
k

< x
)
−Hγ(x)

∣∣∣ −→ 0.

We also prove a criterion of convergence of the distributions of statis-
tics constructed from samples with random sizes to the symmetric two-sided
Weibull distribution.
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Société polonaise de Mathematique (Cracovie), 1927. Vol. 6. P. 93–116.

5. P. Rosin, E. Rammler. The laws governing the fineness of powdered coal //
Journal of the Institute of Fuel, 1933. Vol. 7. P. 29–36.

6. P. Rosin, E. Rammler, K. Sperling. Korngróßenprobleme des Kohlenstaubes
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In [1, 2] we use compound Cox processes to model order flows on financial
exchanges taking into account stochastic nature of its intensities. We consider
a time interval [0;T ] which is short enough so that the average parameters of
the distributions of sizes of incoming orders could be assumed known within
this interval. We consider well known order imbalance process ([3]) in the form

Q(t) =
∑N+

1 (α+Λ∗(t))

i=1 X+
i −

∑N−
1 (α−Λ∗(t))

j=1 X−i ,

whereX+
i are identically distributed sizes of buy orders,X−i are identically dis-

tributed sizes of sell orders, N+
1 (α+Λ∗(t)) and N−1 (α−Λ∗(t)) are the counting

processes for arrival of buy and sell orders and depending both on the process
Λ∗(t), the random measure playing role of external informational background,
α+ and α−, the reaction degree of buyers and sellers to this information (and
assumed constant within [0;T ]).

We show that process Q(t) is equal to process of the form∑N1(Λ(t))
j=1 Xj ,

where Λ(t) = (α+ + α−)Λ∗(t) and Xj have a common characteristic function.
For simplicity we put T = 1.

In order to introduce reasonable asymptotics which formalizes the condi-
tion of “infinite” growth of intensities of order flow, consider a sequence of
compound Cox processes of the form

Qn(t) =
∑N

(n)
1 (Λn(t))

i=1 Xn,i, t > 0, (1)

where {N (n)
1 (t), t > 0}n>1 is a sequence of Poisson processes with unit inten-

sities; for each n = 1, 2, ... the random variables Xn,1, Xn,2, ... are identically
distributed; for any n > 1 the random variables Xn,1, Xn,2, ... and the process

N
(n)
1 (t), t > 0, are independent; for each n = 1, 2, ... Λn(t), t > 0, is a sub-

ordinator, that is, a non-decreasing positive Lévy process, independent of the
process

Zn(t) =
∑N

(n)
1 (t)

i=1 Xn,i, t > 0, (2)

and such that Λn(0) = 0 and there exist δ ∈ (0, 1], δ1 ∈ (0, 1] and the constants
Cn ∈ (0,∞) providing for all t ∈ (0, 1] the validity of the inequality

EΛδn(t) 6 (Cnt)
δ1 . (3)
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Also assume that

P
(
Λn(1) < knx

) d−→ P(U < x), (4)

where U is a nonnegative random variable such that its distribution is not
degenerate in zero.

Denote an = EXn,1 and assume that

0 < mβ
n ≡ E|Xn,1|β <∞ for some β ∈ [1, 2] (5)

and for some kn ∈ N the convergence

P(Xn,1 + ...+Xn,kn < x)
d−→ H(x) (6)

takes place, where H(x) is some infinitely divisible distribution function.

Theorem 1. Let the compound Cox processes Qn(t) (see (1)) be lead by
non-decreasing positive Lévy processes Λn(t) satisfying conditions (3) and (4)
with some δ, δ1 ∈ (0, 1] and kn ∈ N. Assume that the random variables
{Xn,j}j>1 satisfy conditions (5) with the same kn and (6) with some β ∈ [1, 2].
Also assume that condition

K ≡ sup
n
Cδ1/δn mβ

n <∞

holds. Then order flow imbalance processes Qn(t) weakly converge in the Sko-
rokhod space D to the Lévy process Q(t) such that

E exp{isQ(1)} =

∫ ∞
0

(
h(s)

)u
dP(U < u), s ∈ R, (7)

where h(s) is the characteristic function corresponding to the distribution func-
tion H(x) in (6).
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Random sequences with independent random indexes play an important
role in modeling real processes in many fields. Most popular examples of the
application of these models usually deal with insurance and reliability the-
ory, financial mathematics and queuing theory, chaotic processes in plasma
physics where random sums are principal mathematical models. More general
randomly indexed random sequences arrive in the statistics of samples with
random sizes. Indeed, very often the data to be analyzed is collected or regis-
tered during a certain period of time and the flow of informative events each
of which brings a next observation forms a random point process, so that the
number of available observations is unknown till the end of the process of their
registration and also must be treated as a (random) observation.

The literature on random sequences with random indexes is extensive.
The mathematical theory of random sequences with random indexes is well-
developed. However, there still remain some unsolved problems. For example,
convenient conditions for the convergence of the distributions of general statis-
tics constructed from samples with random sizes to normal variance-mean
mixtures have not been found yet. At the same time, normal variance-mean
mixtures are widely used as mathematical models of statistical regularities in
many fields. In particular, in 1977–78 O. Barndorff-Nielsen [1, 2] introduced
the class of generalized hyperbolic distributions as a class of special univariate
variance-mean mixtures of normal laws in which the mixing is carried out in
one parameter since location and scale parameters of the mixed normal distri-
bution are directly linked. The range of applications of generalized hyperbolic
distributions varies from the theory of turbulence or particle size description
to financial mathematics, see [3]. Multivariate generalized hyperbolic distribu-
tions were introduced in the seminal paper [1] mentioned above as a natural
generalization of the univariate case. They were further investigated in [4] and
[5]. It is a convention to explain such a good adequacy of generalized hyper-
bolic models by that they possess many parameters to be suitably adjusted.
But actually, it would be considerably more reasonable to explain this phe-
nomenon by limit theorems yielding the possibility of the use of generalized
hyperbolic distributions as convenient asymptotic approximations.

Let m ∈ N. The vectors x = (x(1), . . . , x(m))> are elements of Rm, the
superscript > stands for the transpose of a vector or matrix. The scalar product
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in Rm will be denoted 〈·, ·〉: 〈x, y〉 = x>y = x(1)y(1) + . . .+x(m)y(m). As usual,
the Euclidean norm of x is ‖x‖ = 〈x, x〉1/2. If A is a real-valued (m×m)-square
matrix, then det(A) denotes the determinant of A. The (m×m)-identity matrix
is denoted I. To properly distinguish between the real number zero and the
zero vector, we write 0 ∈ R and 0 = (0, . . . , 0)> ∈ Rm. The notation Na,Σ

will be used for the m-dimensional normal distribution with mean vector a
and covariance matrix Σ. The distribution function of the one-dimensional
standard normal distribution will be denoted Φ(x),

Φ(x) =
1√
2π

∫ x

−∞
e−y

2/2dy, x ∈ R.

Assume that all the random variables and vectors considered below are de-
fined on one and the same probability space (Ω, F, P). The symbols Bm and
B+ will denote the Borel sigma-algebras of subsets of Rm and R+ ≡ [0,∞),

respectively. In what follows the symbols
d
= and =⇒ will denote coincidence

of distributions and weak convergence (convergence in distribution). We will
write L(X) to denote the distribution of a random vector X. A family {Xj}j∈N
of Rm-valued random vectors is said to be weakly relatively compact, if each
sequence of its elements contains a weakly convergent subsequence. As is
known, in the finite-dimensional case the weak relative compactness of a family
{Xj}j∈N is equivalent to its tightness limR→∞ supn∈N P(‖Xn‖ > R) = 0.

Let {Sn,k = (S
(1)
n,k, . . . , S

(m)
n,k )>}, n, k ∈ N, be a double array of Rm-valued

random vectors. For n, k ∈ N let an,k = (a
(1)
n,k, . . . , a

(m)
n,k )> ∈ Rm be non-

random vectors and bn,k ∈ R be real numbers such that bn,k > 0. The purpose
of the vectors an,k and numbers bn,k is to provide weak relative compactness
of the family of the random vectors

{
Yn,k ≡ b−1

n,k

(
Sn,k − an,k

)}
n,k∈N in the

cases where it is required.
Consider a family {Nn}n∈N of nonnegative integer random variables such

that for each n, k ∈ N the random variables Nn and random vectors Sn,k are
independent. Especially note that we do not assume the row-wise indepen-
dence of {Sn,k}k>1. Let cn = (c

(1)
n , . . . , c

(m)
n )> ∈ Rm be non-random vectors

and dn be real numbers, n ∈ N, such that dn > 0. Our aim is to study the
asymptotic behavior of the random vectors Zn ≡ d−1

n

(
Sn,Nn − cn

)
as n→∞

and find rather simple conditions under which the limit laws for Zn have the
form of normal variance-mean mixtures. In order to do so we first formulate
a somewhat more general result following the lines of [6], removing superflu-
ous assumptions, relaxing the conditions and generalizing the results of that
paper.

The characteristic functions of the random vectors Yn,k and Zn will be
denoted hn,k(t) and fn(t), respectively, t ∈ Rm. Let Y be an Rm-valued ran-
dom vector whose characteristic function will be denoted h(t), t ∈ Rm. In-

troduce the random variables Un = d−1
n bn,Nn . Let Vn = (V

(1)
n , . . . , V

(m)
n )>

where V
(k)
n = d−1

n (a
(k)
n,Nn

− c(k)
n ) is the kth component of the random vector
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d−1
n (an,Nn−cn). In what follows by Wn we will denote the (m+1)-dimensional

compound random vector Wn = (Un,V
>
n )> = (Un, V

(1)
n , . . . , V

(m)
n )>.

Consider the function

gn(t) ≡ Eh(Unt)ei〈t,Vn〉 =
∑∞
k=1e

i〈t,d−1
n (an,k−cn)〉h

(
d−1
n bn,kt

)
, t ∈ Rm. (1)

It can be easily seen that gn(t) is the characteristic function of the random
vector Un ·Y + Vn where the random vector Y is independent of the random
vector Wn.

In the double-array limit setting considered in this paper, to obtain non-
trivial limit laws for Zn we require the following additional coherency condition:
for any T ∈ (0,∞)

lim
n→∞

E sup
‖t‖6T

∣∣hn,Nn(t)− h(t)
∣∣ = 0. (2)

Remark 1. It can be easily verified that, since the values under the ex-
pectation sign in (2) are nonnegative and bounded (by two), then coherency
condition (2) is equivalent to that sup‖t‖6T

∣∣hn,Nn(t) − h(t)
∣∣ −→ 0 in proba-

bility as n→∞.

Lemma 1. Let the family of random variables {Un}n∈N be weakly relatively
compact. Assume that coherency condition (2) holds. Then for any t ∈ Rm we
have

lim
n→∞

|fn(t)− gn(t)| = 0.

Lemma 1 makes it possible to use the distribution defined by the charac-
teristic function gn(t) (see (1)) as an accompanying asymptotic approximation
to the distribution of the random vector Zn. In order to obtain a limit approx-
imation, we formulate and prove the following transfer theorem.

Theorem 1. Assume that coherency condition (2) holds. If there exist a
random variable U and an m-dimensional random vector V such that the dis-
tributions of the (m+ 1)-dimensional random vectors Wn converge to that of
the random vector W = (U, V>)> :

Wn =⇒W (n→∞), (3)

then
Zn =⇒ Z

d
= U ·Y + V (n→∞). (4)

where the random vectors Y and W = (U, V>)> are independent.

It is easy to see that relation (4) is equivalent to that the limit law for
normalized randomly indexed random vectors Zn is a scale-location mixture
of the distributions which are limiting for normalized non-randomly indexed
random vectors Yn,k. Among all scale-location mixtures, variance-mean mix-
tures attract a special interest. To be more precise, we should speak of normal
variance-mean mixtures which are defined in the following way.
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An Rm-valued random vector X is said to have a multivariate normal mean-
variance mixture distribution if X

d
= a + Ub +

√
UAY, where a, b ∈ Rm, A

is a real (m ×m)-matrix such that the matrix Σ ≡ AA> is positive definite,
Y is a random vector with the standard normal distribution N0,I and U is
a real-valued, non-negative random variable independent of Y. Equivalently,
a probability measure F on (Rm, Bm) is said to be a multivariate normal
mean-variance mixture if

F (dx) =

∫ ∞
0

Nb+za, zΣ(dx)G(dz),

where the mixing distribution G is a probability measure on (R+, B+). In this
case we will sometimes write F = Nb+za, zΣ ◦G.

Let us see how these mixtures can appear in the double-array setting under
consideration. Assume that the centering vectors an,k and cn are in some sense
proportional to the scaling constants bn,k and dn. Namely, assume that there
exist vectors an ∈ Rm and bn ∈ Rm such that for all n, k ∈ N we have
an,k = d−1

n b2n,kan, cn = dnbn, and there exist finite limits a = limn→∞ an,

b = limn→∞ bn. Then under condition (3) Wn =
(
Un, (U2

nan + bn)>
)> =⇒(

U, (U2a + b)>
)> (n→∞), so that if in theorem 2 Y has the m-dimensional

normal distribution N0,Σ, then the limit law for Zn takes the form of the
normal variance-mean mixture Nb+za, zΣ ◦G with G being the distribution of
U2.

In order to prove a result that is a partial inversion of theorem 1, for
fixed random vectors Z and Y with the characteristic functions f(t) and h(t)
introduce the set W(Z|Y) containing all (m+ 1)-dimensional random vectors
W = (U, V>)> with U ∈ R and V ∈ Rm such that the characteristic function
f(t) can be represented as

f(t) = Eh(Ut)ei〈t,V〉, t ∈ Rm, (5)

and P(U > 0) = 1. Whatever random vectors Z and Y are, the set W(Z|Y) is
always nonempty since it trivially contains the vector (0,Z>)>. It is easy to

see that representation (5) is equivalent to that Z
d
= UY + V.

The set W(Z|Y) may contain more that one element. For example, if Y is

the random vector with standard normal distribution N0,I and Z
d
= T1 − T2

where T1 and T2 are independent random vectors with independent compo-
nents having the same standard exponential distribution, then along with the
vector

(
0, (T1−T2)>

)> the setW(Z|Y) contains the vector
(√
U,0>

)> where
U is a random variable with the standard exponential distribution. In this case
Z has the spherically symmetric Laplace distribution.

Let Λ(X1, X2) be any probability metric which metrizes weak convergence
in the space of (m + 1)-dimensional random vectors. An example of such a
metric is the Lévy–Prokhorov metric (see,e. g., [7]).
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Theorem 2. Let the family of random variables {Un}n∈N be weakly rel-
atively compact. Assume that coherency condition (2) holds. Then a random
vector Z such that

Zn =⇒ Z (n→∞)

with some cn ∈ Rm exists if and only if there exists a weakly relatively compact
sequence of random vectors W∗

n ≡ (U∗n, (V∗n)>)> ∈ W(Z|Y), n ∈ N, such that

lim
n→∞

Λ(W∗
n, Wn) = 0.

Remark 2. It should be noted that in [6] and some subsequent papers
a stronger and less convenient version of the coherency condition was used.
Furthermore, in [6] and the subsequent papers the statements analogous to
lemma 1 and theorems 1 and 2 were proved under the additional assumption
of the weak relative compactness of the family {Yn,k}n,k∈N.

Let {Xn,j}j>1, n ∈ N, be a double array of row-wise independent not
necessarily identically distributed random vectors with values in Rr, r ∈ N.
For n, k ∈ N let Tn,k = Tn,k(Xn,1, ...,Xn,k) be a statistic, i.e., a measurable
function of Xn,1, ...,Xn,k with values in Rm. For each n ≥ 1 we define a random
vector Tn,Nn by setting Tn,Nn(ω) ≡ Tn,Nn(ω)(Xn,1(ω), ...,Xn,Nn(ω)(ω)), ω ∈
Ω.

Let θn be Rm-valued vectors, n ∈ N. In this section we will assume that
the random vectors Sn,k have the form Sn,k = Tn,k−θn, n, k ∈ N. Concerning
the normalizing constants and vectors we will assume that there exist m-
dimensional vectors a, an, b, bn and positive numbers σn such that

an → a, bn → b (n→∞) (6)

and for all n, k ∈ N

bn,k = (σn
√
k)−1, dn = (σn

√
n)−1, an,k = (σnk)−1√nan, cn = (σn

√
n)−1bn

(7)
so that

Yn,k = σn
√
k(Tn,k − θn)−

√
n/kan and Zn = σn

√
n(Tn,Nn − θn)− bn.

As this is so, σ2
nI can be regarded as the asymptotic variance of Tn,k as k →∞

whereas the bias of Tn,k is
√
n(kσn)−1an.

Recall that the characteristic function of the normal distribution in Rm
with zero expectation and covariance matrix Σ is ϕ(t) = exp{− 1

2
t>Σt}, t ∈

Rm. In what follows we will assume that the statistic Tn,k is asymptotically
normal in the following sense: there exists a positive definite symmetric matrix
Σ such that for any T ∈ (0,∞)

lim
n→∞

E sup
‖t‖6T

∣∣hn,Nn(t)− exp{− 1
2
t>Σt}

∣∣ = 0, (8)
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where hn,k(t) is the characteristic function of the random vector Yn,k.

Theorem 3. Let the family of random variables {n/Nn}n∈N be weakly rel-
atively compact, the normalizing constants have the form (7) and satisfy con-
dition (6). Assume that the statistic Tn,k is asymptotically normal so that
condition (8) holds. Then a random vector Z such that

σn
√
n(Tn,Nn − θn)− bn =⇒ Z (n→∞)

exists if and only if there exists a distribution function G such that G(0) = 0,
the distribution F of Z has the form F = Nb+za, zΣ ◦G and

P(n/Nn < x) =⇒ G(x) (n→∞).

Remark 3. In limit theorems of probability theory and mathematical
statistics, centering and normalization of random variables and vectors are
used to obtain non-trivial asymptotic distributions. It should be especially
noted that to obtain reasonable approximation to the distribution of the basic
random variables (in our case, Tn,Nn), both centering and normalizing values
should be non-random. Otherwise the approximate distribution becomes ran-
dom itself and, say, the problem of evaluation of quantiles becomes senseless.

The class of normal variance-mean mixtures is very wide. For example, it
contains generalized hyperbolic laws with generalized inverse Gaussian mixing
distributions, in particular, (a) symmetric and non-symmetric (skew) Student
distributions (including Cauchy distribution), to which there correspond in-
verse gamma mixing distributions; (b) variance gamma (VG) distributions) (in-
cluding symmetric and non-symmetric Laplace distributions), to which there
correspond gamma mixing distributions; (c) normal\\inverse Gaussian (NIG)
distributions to which there correspond inverse Gaussian mixing distributions,
and many other types. Along with generalized hyperbolic laws, the class of
normal variance-mean mixtures contains symmetric strictly stable laws with
strictly stable mixing distributions concentrated on the positive half-line, gen-
eralized exponential power distributions and many other types.

Generalized hyperbolic distributions demonstrate exceptionally high ade-
quacy when they are used to describe statistical regularities in the behavior of
characteristics of various complex open systems, in particular, turbulent sys-
tems and financial markets. There are dozens of dozens of publications dealing
with models based on univariate and multivariate generalized hyperbolic dis-
tributions. Therefore below we will concentrate our attention on limit theorems
establishing the convergence of the distributions of statistics constructed from
samples with random sizes to multivariate generalized hyperbolic distributions.

In order to do so, recall the definition of the generalized inverse Gaus-
sian distribution GIGν,µ,λ on B+. The density of this distribution is denoted
pGIG(x; ν, µ, λ) and has the form

pGIG(x; ν, µ, λ) =
λν/2

2µν/2Kν

(√
µλ
) · xν−1 · exp

{
− 1

2

(µ
x

+ λx
)}
, x > 0.
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Here ν ∈ R,
µ > 0, λ > 0, if ν < 0,

µ > 0, λ > 0, if ν = 0,

µ > 0, λ > 0, if ν > 0,

Kν(z) is the modified Bessel function of the third kind with index ν,

Kν(z) =
1

2

∫ ∞
0

yν−1 exp
{
− z

2

(
y +

1

y

)}
dy, z ∈ C, Re z > 0.

The class of generalized inverse Gaussian distributions is rather rich and
contains, in particular, both distributions with exponentially decreasing tails
(gamma-distribution (µ = 0, ν > 0)), and distributions whose tails demon-
strate power-type behavior (inverse gamma-distribution (λ = 0, ν < 0), in-
verse Gaussian distribution (ν = − 1

2
) and its limit case as λ → 0, the Lévy

distribution (stable distribution with the characteristic exponent equal to 1
2

and concentrated on the nonnegative half-line, the distribution of the time for
the standard Wiener process to hit the unit level)).

In the final part of his seminal paper [1], O. Barndorff-Nielsen defined
the class of multivariate generalized hyperbolic distributions as the class of
special normal variance-mean mixtures. Namely, let Σ be a positive definite
(m × m)-matrix with det(Σ)=1, a and b be m-dimensional vectors. Then
the m-dimensional generalized hyperbolic distribution GHν,µ,λ,a,b,Σ on Bm is
defined as

GHν,µ,α,a,b,Σ = Nb+zΣa, zΣ ◦GIG(ν, µ,
√
α2−〈a,Σa〉).

Due to the restrictions imposed on the parameters of the generalized inverse
Gaussian distribution, the parameters of generalized hyperbolic distribution
must fit the conditions ν ∈ R, α, µ ∈ R+ and

µ > 0, 0 6 〈a,Σa〉 6 α2, if ν < 0,

µ > 0, 0 6 〈a,Σa〉 < α2, if ν = 0,

µ > 0, 0 6 〈a,Σa〉 < α2, if ν > 0,

The corresponding distribution density pGH(x; ν, µ, α,a, b,Σ) has the form

pGH(x; ν, µ, α,a, b,Σ) =

=
(α2−〈a,Σa〉)ν/2

(2π)m/2αν−m/2µν/2Kν

(√
µ(α2−〈a,Σa〉)

)√(〈x−b,Σ−1(x−b)〉+µ)ν−m/2×

×Kν−m/2
(
α
√
〈x−b,Σ−1(x−b)〉+µ

)
exp{〈a, x−b〉}, x ∈ Rm.

Theorem 4. Let the family of random variables {n/Nn}n∈N be weakly rela-
tively compact, the normalizing constants have the form (7) and satisfy condi-
tion (6) with some a, b ∈ Rm. Assume that the statistic Tn,k is asymptotically
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normal so that condition (8) holds with some symmetric positive definite matrix
Σ. Then the distribution of a statistic Tn,Nn constructed from the sample with
random size Nn weakly converges, as n→∞, to an m-dimensional generalized
hyperbolic distribution:

L
(
σn
√
n(Tn,Nn − θn)− bn

)
=⇒ GHν,µ,α,Σ−1a,b,Σ

if and only if

L
(
n−1Nn

)
=⇒ GIG−ν,λ,µ (9)

with λ =
√
α2 − 〈a,Σa〉.

This theorem is a straightforward corollary of theorem 3 with the account
of a simply verifiable fact that if L(ξ) = GIGν,µ,λ, then L(ξ−1) = GIG−ν,λ,µ.

Theorem 4 can serve as convenient explanation of the high adequacy of
generalized hyperbolic Lévy distributions as models of statistical regularities
in the behavior of stochastic systems. Moreover, they directly link the mixing
distribution in the representation of a generalized hyperbolic distribution with
the random sample size which is determined by the intensity of the flow of
informative events generating the observations.

According to theorem 4, for example, to obtain the limit multivariate asym-
metric Student distribution for Tn,Nn it is necessary and sufficient that in (9)
the mixing distribution is the gamma distribution. To obtain the multivariate
variance gamma limit distribution for Tn,Nn it is necessary and sufficient that
in in (24) the mixing distribution is the inverse gamma distribution. In partic-
ular, for Tn,Nn to have the limit multivariate asymmetric Laplace distribution
it is necessary and sufficient that the limit distribution for n−1Nn is inverse
exponential.
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Dilemmas of robust analysis of economic data streams
Daniel Kosiorowski 1

1Cracow University of Economics, Poland, daniel.kosiorowski@gmail.com

Data streams (streaming data) consist of transiently observed, temporally
evolving multidimensional data sequences that challenge our computational
and/or inferential capabilities. In the Economics, data streams are among
others related to fraud detection in retail banking (credit card transactions),
financial markets or electricity consumption monitoring, public eye or social
networks monitoring, and the Internet users behaviours exploring. Analysis of
the economic data streams introduces several new challenges to the statistical
analysis involving need for online processing and online inference, and tempo-
ral adaptivity of our decision schemes in the face of unforeseen changes, both
smooth and abrupt, in the underlying data generation mechanism.

Due to existence of outliers in the economic data sets, robust statistical
procedures are used more and more often. Unfortunately, a great part of good
robust statistical procedures are computationally and/or memory very inten-
sive. Due to certain substantive conceptual issues related to a notion of an
influential majority of the data – a great part of good robust statistical pro-
cedures do not allow for their recursive formulation in a similar manner as in
cases of the mean vector, the covariance matrix or the least squares regression.
Due to our pour knowledge of general laws ruling economic phenomena – an
usage of well known Kalman filter machinery is computationally infeasible.

In this paper we study possibilities of overcoming these substantial compu-
tational difficulties related to robust analysis of the economic data stream. We
introduce models for the economic data streams basing on well known models
for multiregime time series with random as well as deterministic switching.
Then we discuss several strategies for reducing complexity of robust analysis
of the data stream. The considered strategies involve using so called micro-
clusters, robust binning of the data and using representative objects for the
systems basing on inspection of their trajectories. Within the paper we dis-
cuss advantages and disadvantages of usage of statistical tools offered by the so
called data depth concept (i.e.,e.g., local depths, depths for functional data).

Data depth concept was originally introduced as a way to generalize the
concepts of median and quantiles to the multivariate framework. A depth
function D(·, F ) associates with any x ∈ Rd a measure D(x, F ) ∈ [0, 1] of its
centrality w.r.t. a probability measure F ∈ P over Rd or w.r.t. an empirical
measure Fn ∈ P calculated from a sample Xn. The larger the depth of x, the
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more central x is w.r.t. to F or Fn. The most celebrated examples of the depth
known in the literature are Tukey and Liu depth. For our purposes, the most
interesting depth seems to be the weighted Lp depth. The weighted Lp depth
WLpD(x;F ) of a point x ∈ Rd,d > 1 being a realization of some d dimensional
random vector X with distribution F , is defined as

WLpD(x;F ) =
1

1 + Ew(‖x−X‖p)
,

where E denotes the expectation, w is a suitable weight function on [0,∞),
and ‖·‖p stands for the Lp norm. Fig. 1 presents the sample contour plot for

the L2 depth.
We discuss possibilities of recursive and/or distributed formulation of se-

lected robust multivariate statistical procedures and show their properties us-
ing very big financial data sets as well as simulation studies.

Figure 1: Sample L2 depth contour plot (DepthProc package).
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Problems in calculating of the moments and the
distribution function of the ladder height
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1Saint-Petersburg State Politechnical University, CC FEB RAS, Russia, ta-
tianala@list.ru
2Sobolev Institute of Mathematics SB RAN, Russia, nagaev@math.nsc.ru

The problem of approximate calculation of the moments and the distribu-
tion function of the ladder height is considered. Algorithms are proposed for
calculating the moments by the formulas from [5], including the algorithm for
finding solutions of the Frobenius equation [8]. Chebyshev’s method is applied
to restore the distribution function via continued fractions.

Metod of moments. Chebyshev concluded an expression of approxi-
mately value for distribution function in context known moments of a ran-
dom variable in [1-3]. It includes functions of continued fractions, the explicit
formulas of it are presented in [6] and expressed in terms of the moments.

The moments of the ladder height. In [5] an expression of calculation
of moments of the ladder height Z+ is concluded by Fa di Bruno’s formula [8].
Under a condition a step has a distribution N(0, σ2), σ = 1, m > 0, it looks
like

EZm+1
+ =

(m+ 1)!√
2

∑
{jkj}m1

m∏
j=1

(
1

kj !

(gj
j!

)kj)
,

where explicit form of values gi can be deduced according [7].

gi = −(i− 1)!
cos πi

4

2i−1iπi/2

∞∑
n=1

1

ni/2
, i > 3;

g1 =
K√
2π
, K :

n∑
m=1

1√
m

= 2
√
n−K +O(

1√
n

); g2 =
1

4
.

Calculations. In [4] Sonin has shown that the inaccuracy of Chebyshev
metod decreases like 1/n in case of normal distributed random value, where n
is number of known moments. The calculations for the ladder height confirm
it if n = 18, 26. Thus, necessity of calculating at least 100 moments is obvi-
ous. Besides, this metod is very susceptible to precision of calculations. Used
algorythm can’t be realized even by super-computer, if n > 28. The other
algorythm is in process now.
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On multi-channel networks approximation by the
Ornstein-Uhlenbeck process
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The main model in question is a stochastic [Mt|M |∞]r-network consisting
of r service nodes. From the outside a non-homogeneous Poisson flow of calls
νi(t) with the leading function Λi(t), i = 1, 2, ..., r, arrives at the i-th node.
Each of these ”r” nodes operates as a multi-channel stochastic system. If
the call arrives at such a system then its service immediately begins. The
service time in the i-th node is exponentially distributed with parameter µi,
i = 1, 2, ..., r. After completion of service in the i -th node the call arrives
to the j-th node with probability pij and leaves the network with probability
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pir+1 = 1 −
r∑
j=1

pij . Let us note P = ‖pij‖r1 as the switching matrix of the

network. An additional node numbered ”r+1” is interpreted as ”output” from
the network.

We will define the service process in the network as an r-dimensional
process Q(t) = (Q1(t), ..., Qr(t))

′, where Qi(t) is the number of calls in the
i-th node at the moment of time t. Our main purpose is to study the condi-
tions under which the process Q(t) may be approximated by the r-dimentional
Ornstein-Uhlenbeck process.

We will assume that characteristics of the [Mt|M |∞]r-network depend on
a series parameter n in such a way:

Condition 1. limn→∞ nµ
(n)
i = µi > 0, i = 1, 2, ..., r.

Condition 2. For any T > 0, we have

sup
t∈[0,T ]

∣∣∣n−1Λ(n)(nt)− λt
∣∣∣ = o(n−1/2),

where λ = (λ1, λ2, ..., λr)
′, λi > 0, i = 1, 2, ..., r and λ1 + λ2 + ...+ λr 6= 0.

Clearly, if the Condition 2 is hold then random flows νi(t), i = 1, 2, ..., r, in
the time-scale nt are close to the stationary Poisson flow with the parameter λi.
Taking into account both Conditions 1 and 2 means that [Mt|M |∞]r-network
operates in a heavy traffic regime.

For the initial state of the network provided that it is open (spectral radius
of the matrix P is strictly less than 1) we will demand the implementation of
the following condition:

Condition 3. Q
(n)
i (0) =

[
nθi/µi +

√
nξ

(0)
i

]
, i = 1, 2, ..., r,

where θ′ = (θ1, ..., θr) = λ′(I − P )−1, I = ‖δij‖r1 is the identity matrix,

ξ(0) = (ξ
(0)
1 , ..., ξ

(0)
r )′ ∈ Rr is a fixed vector and [.] is the integer part.

Now we are ready to present the main result of the work.
Theorem 1. Let for the [Mt|M |∞]r- network with the spectral radius

strictly less than 1 the Conditions 1-3 be hold. Then for any finite interval
[0, T ] the sequence of stochastic processes

ξ(n)(t) = n−1/2
(
Q(n)(nt)− n(θ/µ)

)
, (θ/µ)′ = (θ1/µ1, ..., θr/µr),

converges, in the uniform topology, to the Ornstein-Uhlenbeck diffusion ξ(0)(t)
(ξ(0)(0) = ξ(0)) with a drift vector A(x) = (P ′ − I)∆(µ)x and a diffusion
matrix B = ∆(θ)(P − I) + (P ′ − I)∆(θ), where ∆(z) = ‖ziδij‖r1 is a diagonal
matrix with the vector z′ = (z1, ..., zr) on the principal diagonal.

The proof is based on the method developed in the work [1].
In closing we will consider networks with variable parameters of input

flows λi(t) (Λi(t) =
∫ t

0
λi(u)du), i = 1, 2, ..., r, that are periodically varied:

λi(nTi + u) = λi(u), for n = 1, 2, ..., 0 6 u 6 Ti. It is not difficult to show

that for such models the Condition 2 is hold under λi(t) =
∫ Ti

0
λi(u)du, i =
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1, 2, ..., r, and therefore we can use the theorem 1 to construct the Ornstein-
Uhlenbeck approximate process.
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Forest fire on configuration random graphs
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The study of random graphs’ robustness to different types of breakdowns
has been one of the important trends in the field of random graphs (see e.g.
Durret [1], Norros and Reittu [2]). Here we consider random graphs’ resilience
from the viewpoint of node survival. This aspect branched off the studies of
forest fire propagation models (see e.g. Bertoin [3], Drossel and Schwabl [4]),
as well as modeling of banking system defaults (Arinaminparty et al. [5]).

We consider configuration random graphs (see Durret [1], Hofstad [6]) of
N nodes numbered from 1 to N with node degrees ξ1, ξ2, . . . , ξN drawn inde-
pendently from a given distribution. This distribution defines the number of
enumerated stubs for each node. The graph is constructed by joining all the
stubs pairwise equiprobably to form links. In order to form all links one stub
is added to a random node if the sum of node degrees is odd. We consider two
types of node degree distributions leading to two graph types: power-law and
Poisson random graphs with parameters τ > 1 and λ > 0, respectively.

We view graph nodes as trees on a confined area of a real forest placed in
the vertices of a square lattice sized 100×100. Links connect nodes in a closest
neighbour manner. The link exists if a fire can propagate between neighbour-
ing nodes. Thus, in a fully packed lattice every inner node has 8 adjacent
neighbours. An average node degree m is related to the parameters of power-
law and Poisson node degree distributions through Riemann zeta function as
m = ζ(τ) = λ. Therefore we consider graphs which sizes N ≤ 10000 depend
on node degree distribution parameters. Fire propagation starts from either
a node with the highest degree (target fire start) or an equiprobably chosen
node (random fire start) spreading to neighbouring nodes with an initially set
probability 0 < p ≤ 1. The aim of the work is to find the best topology of
configuration random graph that saves maximum of nodes in case of a fire.

We performed computer simulations of fire propagation for both graph
types in two fire start cases: random and target. These simulations allowed
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us to find the optimal values of node degree distribution parameters τ and λ
that ensure maximum survival of graph nodes as well as to derive regression
relationships between the number of survivor nodes g, the node degree distri-
bution parameter (τ or λ) and the probability of fire transition p. The results
for power-law graph models are given in Leri and Pavlov [7].

Both power-law and Poisson graph models showed to be more resilient to
random fire start than to targeted ignition. We also compared the number
of survivor nodes under the same initial state conditions (values of N and
p) for both graph types. In the case of a random fire start the power-law
graph topology allows more trees to survive than the Poisson node degree
distribution. However when a fire starts through lightning striking the tree
with the highest number of links the topology that will give the highest node
survival depends on both the fire transition probability p and the initial graph
size N .
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On improper priors and conditional sampling
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It is well known that improper priors in Bayesian statistics may lead to
proper posterior distributions and useful inference procedures. This motivates
the presentation of an elementary theoretical frame for statistics that includes
improper priors, consisting in a relaxation of Kolmogorov’s axioms to allow
infinite mass. The theory gives an alternative to common ad hoc arguments
which are not based on an underlying theory, and it leads to simple explana-
tions of apparent paradoxes described in the literature. The role of improper
distributions in fiducial statistics and conditional sampling will be discussed
in particular.
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On structure of periodically correlated sequences
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Let T ≥ 1 be a fixed positive integer. A periodically correlated sequence
of period T is a a sequence x(n), n ∈ Z, in a Hilbert space such that
its autocorrelation function R(n,m) = (x(n), x(m)) has the property that
R(n,m) = R(n + T,m + T ), n,m ∈ Z. Probabilists may think about a se-
quence of second-order random variables with mean zero and the autocorre-
lation function defined as R(n,m) = Ex(n)x(m). A periodically correlated
sequence with period T = 1 is called stationary. A basic fact in the theory
of stationary sequences states that every stationary sequence is of the form
x(n) = Unx, where Un is a unitary representation of the group of integers Z.
It turns out that the structure of periodically correlated sequences involves an
interplay of two unitary representations: a representation Un of Z and a rep-
resentation V λ of the group Λ = {2πk/T : k = 0, 1, . . . , T − 1} regarded as a
subgroup of the torus [0, 2π). To be more precise we will show that a sequence
(x(n)) is periodically correlated with period T if and only if there are a Hilbert
K (usually larger than the space spanned by (x(n))), a vector x ∈ K, and two
unitary operators U and V in K, such that V T = I, V U = e−2πi/TUV , and

x(n) = (1/T )

T−1∑
j=0

e−2πijn/TUnV jx, n ∈ Z.
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The triple (U, V, x) above is unique in the sense of unitary equivalence.

The theorem reveals a surprising relation between periodically correlated
sequences and the canonical commutation relation. We will discuss some con-
sequences of this theorem in both theory of periodically correlated sequences
and in abstract harmonic analysis.

Thank you.
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Spectral analysis and modeling of non-Gaussian
processes of structural plasma turbulence
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Within researches of the low-frequency plasma fluctuations lying in ranges
of frequencies to 100 MHz, the status of strong structural low-frequency turbu-
lence was revealed [1,2].This turbulence is described by mathematical model of
non-uniform casual wandering with continuous time, namely twice stochastic
Poisson process differently called by generalized Cox process [3].
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For the purpose of definition of number of the processes forming struc-
tural turbulence, the analysis of increments of density of probabilities of low-
frequency plasma fluctuations was carried out. The following stage of re-
searches it was necessary to pass to the analysis of frequency ranges [4],
as the range gives the chance to define instability type, the mechanism of for-
mation of turbulence, the mechanism of its saturation to make quantitative
estimates of structures (ion-sound solitons and drift vortices) etc. However the
analysis of such ranges Fourier analysis traditional methods be impossible,
for example, robast Fourier-spectrum of ion-sound structural turbulence can
is approximated by different models [5]: from Kolmogorov-Obukhova model
to shot noise. The main complexity of identification of stochastic processes
of structural turbulence on a broadband range was that at known number of
processes, the form of harmonics into which the peak range could be divided,
remained the unknown.

We developed an empirical approach to the analysis of broadband ranges of
the low-frequency structural plasma turbulence, based on aprioristic assump-
tions about number of processes, their scales (estimated of histograms) and a
Gaussian form spectral a component. Steady ranges of low-frequency turbu-
lence [6] are interpreted as density of some unknown probability distribution
[7]. The program created for the bootstrap analysis of the harmonics, which
implements the described algorithm. Such empirical approach allowed divide
Fourier-spectra of low-frequency plasma turbulence into components. On fig.1
the complex range of the turbulence measured by Doppler reflectometry in
stellarator L-2M is shown. In this range allocated three harmonics (over ex-
perimental noise) that have a characteristic Doppler frequency shifts. Shift
of the main harmonic is connected with radial electric field, i.e. is defined by
plasma poloidal rotation speed (or plasma fluctuations). Doppler shifts of other
associated with phase velocities of two types of structural plasma turbulence.

In the report it is shown [8] that on a gradient of density of plasma in
stellarator L-2M (r/a=0.9...0.95) can exist both electronic-temperature gradi-
ent (ETG), and ion-temperature gradient (ITG) instabilities. The linear dis-
persion equations for drift instabilities of both types are presented in [9]. On
fig.2 dependencies increments on wave number for two instabilities that initiate
corresponding structural turbulence are given. Phase velocities of fluctuations
which result from development of these instabilities, are directed on electronic
and ionic drift of particles in a magnetic field of a stellarator. As seen on fig.
1 in a range except a harmonic connected with poloidal rotation of plasma,
allocated two more harmonics, which correspond to fluctuations of a rotating
in opposite directions, which corresponds to the direction of the electron and
ion drift. Such researches were carried out for three various modes of exis-
tence of plasma in L-2M with current heating and electronic-cyclotron heating
(two capacities 200 and 400 kW). These modes are different conditions on
the buildup of the instability and the phase velocity fluctuations. In all modes
it was possible to allocate the components connected with poloidal rotation

69



XXXII International Seminar on Stability Problems for Stochastic Models

Figure 1: Robust turbulent spectrum of Doppler reflectometry diagnostics de-
composed into 6 components. 3 components were over experimental noise. The
solid line represents the average spectrum, the dotted lines show the three main
spectral components.

of plasma (is defined by radial electric field), and phase velocity of structural
turbulence of two types (are defined by instabilities of ETG and ITG).

The carried-out successful description of probabilistic and spectral char-
acteristics of low-frequency plasma turbulence allowed to set a correct task
about modeling of structural turbulence by system of the stochastic differ-
ential equations. These equations should consider casual processes with the
density which has been set in the form of a final mix of probabilistic distri-
butions. Such comprehensive approach will allow to carry out comparison of
models of plasma processes (for example, drift dissipative and ion-sound insta-
bility processes, gradient instabilities, etc.) with characteristics of the received
stochastic processes.

Acknowledgements. This work is executed with grant support by the
Russian Federation Presidential Grant (No. MK-5607.2013.2).
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Figure 2: Dependences increments on wave number for ETG [a] and ITG [b]
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Verification statistical hypothesis about ES value in
finite sample setting
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1University of Lodz, Department of Statistical Methods, Poland,
marta.malecka@uni.lodz.pl

Introduced on the turn of 21st century, the axiomatic risk theory has devel-
oped around the notion of a coherent risk measure. In recent literature much
attention has been given to the ES (expected shortfall) measure, which fulfils
the set of coherency axioms and offers an important extension to the VaR
model. The idea behind ES measure is to give information about the possible
loss in case of extreme events. In case of countinuous real random variables,
the definition of ES reduces to the expectation of the distribution tail.

The wide variety of ES-based risk models, introduced in the recent liter-
ature, created the need for relevant testing procedures. In the general case,
the distribution of a sample average of extreme observations is unknown, thus
classic statistical methods are unfeasible for ES value testing. Since scarcity of
observations is inherent to extreme events, the statistical inference cannot be
based on the central limit theorem, which requires large sample size.

Since the beginning of the 21st century several approaches have been pro-
posed for ES model backtesting or ES value verification. The use of bootstrap
technique V, which is based on the simulated distribution of the test statistic,
was proposed by McNeil and Frey [2]. Its modification V ∗, aimed at using
more sample information, was suggested by Embrechts [1]. Finally, circum-
venting the problem of the unknown distribution, Wong [3] introduced the
saddlepoint test technique S, which gives approximate p-values through the
Taylor expansion of the moment generating function.

The aim of the paper was to evaluate statistical properties of available
ES value testing procedures. Test assessment included their size and power.
The analysis of the test properties was preceded by the overview of statistical
inference methods proposed in the literature for ES models. The statistical
properties of the considered tests were evaluated through the Monte Carlo
method.

The size and power evaluation experiments were designed in a way that
they reflected volatility clustering phenomenon, which hinders volatility pre-
diction and is commonly regarded as a key issue in risk control. Volatility
clustering was represented through inclusion of a GARCH process in the data
generating algorithm. The size estimates for the considered tests are given in
Table 1.
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The power evaluation was based on three variants of the simulation exper-
iment. We used GARCH models with undersized standard deviations, fixed at
chosen percent of the true standard deviation: 0.9σt, 0.7σt and 0.5σt, where
σt denotes the correct parameter value. The power evaluation results are pre-
sented in Table 2.

The results showed that type one errors for the saddlepoint test S and the
bootstrap test V, assuming series length of at least 250 data, were compliant
with the assumed significance level of 5%. The power comparison showed that
for the sample size of 250 observations the highest rejection frequencies under
the alternative were observed for the V test. The saddlepoint test S rejection
frequencies were slightly lower, however there was a clear growth in the power
estimates with lengthening the time series.

Test
Series length

250 500 750 1000

S 0.047 0.054 0.049 0.052

V 0.056 0.053 0.055 0.052

V ∗ 0.140 0.164 0.162 0.172

Table 1: Size estimates of ES tests

Test σ∗t
Series length

250 500 750 1000

S
0, 9σt 0.34 0.51 0.64 0.71
0, 7σt 0.59 0.70 0.82 0.88
0, 5σt 0.89 0.97 0.99 1.00

V
0, 9σt 0.49 0.50 0.56 0.62
0, 7σt 0,55 0,74 0,85 0,91
0, 5σt 0,87 0,97 0,99 1,00

V ∗
0, 9σt 0.26 0.31 0.37 0.38
0, 7σt 0.54 0.64 0.73 0.80
0, 5σt 0.92 0.98 1.00 1.00

Table 2: Power estimates of ES tests
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The accuracy of various estimation techniques has been studied extensively
for the Weibull distribution, which is commonly used for the lifetime data [3].
Imposing strong restrictions on the data, the Weibull model is unable to fit
data that exhibit a bathtub-shaped hazard-rate function. Thus, basing on a
real data on final products from the large production company, we suggested
the use of the modified Weibull distribution, proposed by Lai, Xie and Murthy
[2], to represent the shape of the failure rate function.

The survival function of the modified Weibull distribution is given as

S(t) = exp
(
− atb exp(λt)

)
, (1)

where a > 0, b ≥ 0, λ > 0. The density and the hazard rate functions have
the following forms:

f(t) = −S′(t) = a(b+ λt)tb−1 exp(λt) exp
(
− atb exp(λt)

)
, (2)

h(t) = a(b+ λt)tb−1 exp(λt). (3)

This distribution can describe both increasing (b ≥ 1) and bathtub-shaped
(0 < b < 1) hazard functions and includes the Weibull distribution and the
type I extreme value distribution as special cases [4]. Moreover, having three
parameters it offers important numerical advantage over other more flexible
distributions, which often have four or more parameters. Fig. 1. shows the ob-
served number of failures and the shape of the density of the modified Weibull
distribution estimated from the real data sample.

Five techniques proposed it the literature for censored data modelling have
been compared in terms of their capability to estimate the parameters of the
modified Weibull distribution. As benchmark methods we used the popular
maximum likelihood and least squares estimators. Ross [5] and Jacquelin [1]
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Figure 1: Observed number of failures and estimated density of the modified
Weibull distribution.

estimator techniques were used as unbiasing factors for the maximum likeli-
hood estimates. Finally we considered the White estimator [6], which is a
weighted version of the least squares technique.

The study concentrated on II-type censored data. Estimator accuracy was
evaluated through the Monte Carlo method. The bias of the expected values
and variance of the parameter estimators were computed over 10000 simula-
tions. The study included the bias understood as the difference between the
expected value of the estimator and the true value of the parameter, as well
as the fractional bias, which is the ratio of the expected value and the true
parameter value. The focus was on the independence of the fractional bias of
the parameter value. The research was conducted for sample sizes of n = 10,
20, 50, 100, 1000. The share of censored observations was set to 30, 60 and
90%.

The presented study allowed for recommendations about optimum estima-
tors of the modified Weibull distribution in terms of feasibility and complexity
of the techniques as well as their accuracy. All considered methods resulted in
parameter estimates, which had a systematic error. The results showed that
the commonly used maximum likelihood and least squares techniques are not
to be recommended on censored data sets.
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Confidence intervals for average success probabilities
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We provide Buehler-optimal one-sided and some valid two-sided confidence
intervals for the average success probability of a possibly inhomogeneous fixed
length Bernoulli chain, based on the number of observed successes. Contrary
to some claims in the literature, the one-sided Clopper-Pearson intervals for
the homogeneous case are not completely robust here, not even if applied to
the special case of hypergeometric estimation problems.

To be more precise, let Bp for p ∈ [0, 1], Bn,p for n ∈ N0 and p ∈ [0, 1], and
BCp := ∗nj=1Bpj for n ∈ N0 and p ∈ [0, 1]n denote the Bernoulli, binomial, and
Bernoulli convolution (or Poisson-binomial) laws with the indicated parame-

ters. Then, for n ∈ N and β ∈ ]0, 1[, and writing p := 1
n

n∑
j=1

pj for p ∈ [0, 1]n,

we are interested in β-confidence regions for the estimation problem

((BCp : p ∈ [0, 1]n) , [0, 1]n 3 p 7→ p) , (1)

that is, in functions K: {0, . . . , n} → 2[0,1] satisfying BCp (K 3 p) > β for
p ∈ [0, 1]n. Clearly, every such K is also a β-confidence region for the binomial
estimation problem (

(Bn,p : p ∈ [0, 1]), id[0,1]

)
, (2)

that is, satisfies Bn,p (K 3 p) > β for p ∈ [0, 1], but, as noted in [1] and thus
refuting claims in several later publications such as [2], the converse is false
for example if K is the Clopper-Pearson β-confidence upray for (2), namely

K(x) =

{
[0, 1] if x = 0,
]gn(x), 1] if x ∈ {1, . . . , n}, (3)

where gn(x) := the p ∈ [0, 1] with Bn,p({x, . . . , n}) = 1− β. We prove:
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Theorem. Let β ∈ [ 3
4
, 1[. Then

K(x) :=


[0, 1] if x = 0,]

1−β
n
, 1
]

if x = 1,
]gn(x), 1] if x ∈ {2, . . . , n}

(4)

defines the optimal isotone β-confidence upray for (1), is admissible in the set
of all β-confidence uprays for (1), is strictly isotone, and has the effective level
infp∈[0,1]n BCp (K 3 p) = β.

Thus (3) and (4) differ, but only in that gn(1) = 1− β1/n > (1− β)/n.

The common source of the wrong claims in the literature indicated above
is an unclear remark in [3]. On the other hand, our proof of the above theorem
uses first a reduction, well known from [3] but essentially already presented
in [4], to Bernoulli convolutions BCp such that the coordinates of p take on at
most one value different from 0 or 1, and then certain additional inequalities
from [3] and [5].

We further prove for β > 1
2

that the two-sided Clopper-Pearson β-
confidence interval for (2) is a β-confidence interval for (1), but also that
this robustness property does not extend to some other and less conservative
competitors.

Definitions assumed above, somewhat more general forms of the results
indicated, proofs, and further details can be found in [6].
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Comparative analysis of models of regulated and
unregulated pedestrian crossing

Irina Mikhailova 1

1Voronezh State University, Russia, mikhailova.vsu@gmail.com

Stochastic models of transport systems have been attracting attention of
many mathematicians during the last decade. The interest was driven by prac-
tical importance of these models for planning and organising of automobiles
traffic as well as by complex purely mathematical problems arising in the area.

This work is closely linked to the papers in which mathematical models,
describing unregulated intersection of two car roads, are built (see e.g.[1],[2]).

We consider a pedestrian crossing on a car road. Pedestrians approach
the crossing in accordance to a Poisson process with intensity λ1. The times
required for the pedestrians to cross the road do not depend on the process of
their arrivals to the crossing. These times are independent random variables
with common distribution function B(x) where b =

∫∞
0
xdB(x) <∞.

At first we consider the model where the pedestrians have absolute priority
over the vehicles approaching the crossing. It means that the vehicle may
proceed only when there are no pedestrians crossing the road. Otherwise the
vehicle stops and waits until the road is free. After that the time required for
the vehicle to complete the crossing is assumed to be a random variable with
distribution function F(x). If there are no pedestrians and there is no queue of
other cars at the moment of the vehicle approaching the pedestrian crossing,
then the time required for it to complete the crossing is assumed to be equal to
zero (the effect of skipping). The flow of the cars approaching the pedestrian
crossing is assumed to be a Poisson process with intensity λ2 .

One can conclude that the number of the pedestrians Q(t) at the moment
t ≥ 0 equals to the number of calls in a queuing system with infinite number
of service elements: M | GI | ∞. It is well known that the limit distribution
of Q(t) when t→∞ is the Poisson one with the intensity λ1b.

Another important characteristic of this system is its busy period, i.e. the
period during which there is at least one pedestrian on the crossing. The
Laplace- Stilties transformation of the distribution of the length of the busy
period is defined by quite complex formula. We will consider only two partial
cases: constant and exponential distribution of the service time.

We will model the number of vehicles queuing in front of the pedestrian
crossing as a single-channel queuing system with unreliable service element.
The element goes faulty when the first pedestrian emerges on the crossing.
The element becomes operational at the end of the busy period of the system
with infinite number of service channels described above. One can find a sta-
tionary distribution of the number of waiting vehicles and the moments of this
distribution.
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Intuitively it is obvious that if the intensity of the vehicles flow on the
road is high, then the presence of a pedestrian crossing leads to a traffic jump,
i.e. big queue consisted of vehicles. That is why it makes sense to include the
traffic light into the model.

The traffic light works in the following way: for the vehicles the green light
is present during the time τ1, and the red light is present during the time τ2,
where τ1, τ2 are constants. For the pedestrians the reverse situation is true.

Here the line of vehicles again is described by single-channel queuing system
with unreliable service element, which is operational during the time τ1, and
faulty during the time τ2.

We propose an algorithm for estimation of major characteristics of the
model, in particular, average number of the vehicles queuing in front of the
traffic light.

The behaviour of the pedestrians is well described by queuing system with
infinite number of service elements operating in random external environment.
When the traffic light for the pedestrians goes red all the elements become
faulty, when the traffic light goes green all the elements become operational.
We assume that the service, interrupted because of the element goes faulty (the
traffic light shows red colour), starts from the beginning when the element is
operational again (the traffic light shows green colour).

Various approaches estimating the distribution of the number of queuing
pedestrians are proposed. Some of them is proposed in [3]. Comparative analy-
sis of the models with and without traffic light allows finding the boundaries for
the intensities of the vehicles and pedestrians flows for which the installation
of the traffic light is desirable.

The author expresses his deep gratitude to Professor L.G. Afanasyeva for
formulation of the problem and for useful discussion.
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Levy processes and stochastic integrals with respect to
generalized convolutions
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My talk is based on the paper Lévy processes and stochastic integral in
the sense of generalized convolution written together with M. Borowiecka-
Olszewska, B.H. Jasiulis-Go ldyn Rosiński. In this paper, we present a com-
prehensive theory of generalized and weak generalized convolutions, illustrate
it by a large number of examples, and discuss the related infinitely divisible
distributions. We consider Lévy and additive process with respect to general-
ized and weak generalized convolutions as certain Markov processes, and then
study stochastic integrals with respect to such processes. We introduce the
representability property of weak generalized convolutions. Under this prop-
erty and the related weak summation, a stochastic integral with respect to
random measures related to such convolutions is constructed.

Motivated by the seminal work of Kingman [2], K. Urbanik introduced
and developed the theory of generalized convolutions in his fundamental pa-
pers starting from [5]. Roughly speaking, a generalized convolution is a binary
associative operation ? on probability measures such that the convolution
of point-mass measures δx ? δy can be a non-degenerate probability measure,
while the usual convolution gives δx+y. The study of weakly stable distribu-
tions, initiated by Kucharczak and Urbanik and followed by a series of papers
by Urbanik, Kucharczak, Panorska, and Vol’kovich, provided a new and rich
class of weak generalized convolutions on R+ (called also B-generalized con-
volutions). Misiewicz, Oleszkiewicz and Urbanik [3] gave full characterization
of weakly stable distributions with non-trivial discrete part and proved some
uniqueness properties of weakly stable distributions that will be used in this
paper.

Examples of generalized convolutions.

0. The classical convolution is evidently an example of generalized convo-
lution. It will be denoted as usual by ∗:

δa ∗ δb = δa+b.

1. Symmetric generalized convolution on P+ is defined by

δa ∗s δb =
1

2
δ|a−b| +

1

2
δa+b.
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2. In a similar way another generalized convolution (called by Urbanik
(α, 1)-convolution in can be defined for every α > 0 by

δa ∗s,α δb =
1

2
δ|aα−bα|1/α +

1

2
δ(aα+bα)1/α .

3. For every p ∈ (0,∞] the formula

δa ∗p δb = δc, a, b > 0, c = ‖(a, b)‖p = (ap + bp)1/p

defines a generalized convolution ∗p (p-stable convolution) on P+.

4. The Kendall convolution �α on P+, α > 0, is defined by

δx �α δ1 = xαπ2α + (1− xα)δ1, x ∈ [0, 1],

where π2α is a Pareto measure with density g2α(x) = 2αx−2α−11[1,∞)(x).

5. The Kingman convolution ⊗ωs on P+, s > − 1
2
, is defined in [2] by

δa ⊗ωs δb = L
(√

a2 + b2 + 2abθs
)
,

where θs is absolutely continuous with the density function

fs(x) =
Γ(s+ 1)√
π Γ(s+ 1

2
)

(
1− x2)s− 1

2

+
.
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Consistency and asymptotic normality for kernel based
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Carroll, Delaigle and Hall [1] consider the problem of predicting the ran-
dom variable Y nonparametrically via the estimation of µ(t) = E(Y |T = t). T
is an observed “future” explanatory variable generated by T = X +UF where
X is the true unobserved explanatory variable and UF is a measurement error.
The prediction problem is complicated by the fact that “past” observations
{(Yj ,Wj)}nj=1 are such that Wj = Xj + Uj with measurement errors Uj that
are different from UF . Moreover, the Uj themselves may have different dis-
tributions. They have suggested a new estimator for µ(t) and obtained its
consistency.

Our paper provides two novel results in the context of this model. First,
consistency of their estimator is provided under much less restrictive condi-
tions. The main condition for consistency in their paper, and in the extant
literature, is expressed in terms of the functional

v(h) = nh−1

∫ ∣∣∣∣ϕK(t)ϕf
UF

(
t

h

)∣∣∣∣2 / n∑
k=1

∣∣∣∣ϕfUk
(
t

h

)∣∣∣∣2 dt.
Here, K is a kernel, ϕK is its Fourier transform and ϕfX is the characteristic
function of a density fX associated with a random variable X. If certain regu-
larity assumptions are satisfied and v(h)/n→ 0, then the estimator proposed
in [1] is consistent.

To obtain that v(h)/n → 0 it is often required, as in [1], that ϕK have a
compact support. Up to now, it has been unknown if v(h)/n → 0 is possible
when the support of ϕK is not compact and

∑n
k=1 |ϕfUk (x)|2 declines at infin-

ity exponentially fast. We provide a method to study the properties of v(h).
The method applies when 1/

∑n
k=1 |ϕfUk (x)|2 can be dominated by any of the

iterated exponential functions e1(x) = exp(x), e2(x) = e1(e1(x)), ..., en(x) =
e1(en−1(x)). Denoting

Φn(s) =
n
∣∣∣ϕf

UF
(s)
∣∣∣2∑n

k=1

∣∣∣ϕfUk (s)
∣∣∣2 .

we assume that
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Assumption. Φn is locally bounded, that is sups∈K Φn(s) < ∞ for each
compact K ⊂ R, and has a majorant P in the neighborhood of infinity such
that

(a) with some positive c1, c2 one has Φn(s) ≤ c2P (s) for all |s| ≥ c1,

(b) P is even, P (s) = P (−s), and with some c3 > 0 the inequality P (s) ≤
c3P

′(s) holds for all s ≥ c1,

(c)
∫∞
c1

exp(−P (s))
(

1 + |P ′(s)|2
)
ds <∞.

(d) From (b) it follows that P is increasing on [c1,∞), P−1 exists and is
defined on [P (c1),∞). Lastly, we require that

J(h) ≡
∫ ∞
P (c1)

exp
[
−P (hP−1(t))

]
dt <∞ for all 0 < h < 1.

The inequalities Φn(s) ≤ c2P (s), P (s) ≤ c3P
′(s) can be replaced by their

consequence Φn(s) ≤ cP ′(s), still providing enough structure for our applica-
tions. We prefer to use the two inequalities for better transparency. Examples
of functions P are P (s) = exp(sα) and iterated exponential functions. Iterated
exponential functions form a scale that covers all imaginable errors. Note that
J(h) is monotone and therefore it is bounded from above when h is bounded
away from zero. Assumption 1 has been developed with growing Φn in mind,
because the case of a bounded Φn is simpler. Under this assumption we show
that there exists a kernel K ∈ L1, where the support of ϕK is not compact
and v(h) <∞ for all 0 < h < 1. Furthermore, K satisfies v(h)/n = o(1) with
suitably chosen h = hn.

The second novel result in our paper is the provision of sufficient conditions
for the asymptotic normality of the estimator proposed in [1] when the mea-
surement errors Uj are of two types and their characteristic functions, as well
as that of UF , are super-smooth. The weak convergence we obtain depends on
a restriction on the class of K provided in van Es and Uh [2].
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The extension of the spectral method to the Harris
Markov chains

Sergei Nagaev 1

1Sobolev Institute of Mathematics, Novosibirsk, Russia, nagaevs@hotmail.com

Let {Xn} be the Markov chain defined on the measurable space (X,S)

with the transition function p(x,B), x ∈ X,B ∈ S. Let Sn =
n∑
j=1

f(Xj),

where f(·) is a real measurable function on (X,S). In the theory of general
Markov chains prevail direct probabilistic methods. The analytical approach
is used only for uniformly ergodic chains. Our purpose is to extend the spec-
tral method introduced in Nagaev [1] to the general case when the uniform
ergodicity of the chain Xn is not supposed. Select some set A0 ∈ S. Let
v = min {n > 0 : Xn ∈ A0}, qn(x,B) = P{v = n,Xn ∈ B|X0 = x}, where
x ∈ A0. Define the new transition function on (A0, A0S) by the equality

q(x,B) =
∞∑
n=1

qn(x,B). We assume that the chain defined by this transi-

tion function is uniformly ergodic. Let M and M0 be the spaces of bounded
complex functions respectively on (X,S) and (A0, A0S). Define the opera-
tors P (t) and P1(t) by the formulas P (t)g(x) =

∫
X

g(y)eitf(y)p(x, dy) and

P1(t)g(x) =
∫
A0

g(y)eitf(y)p(x, dy), g ∈ M. Let P2(t) = P (t) − P1(t). De-

note P k−1
2 (t)P1(t) by Qk(t). Let Q(z, t) =

∞∑
k=1

Qk(t)zk, |z| ≤ 1. The spec-

trum of Q(1, 0) has the isolated point 1. The rest of the spectrum is con-
tained in the circle of the radius ρ < 1. According to the perturbation the-
ory the spectrum of Q(z, t) has the same structure for (z, t) close to (1, 0).
The key formula is P0(z, t) = −R(1; z, t). Here R(u; z, t) is the resolvent of

Q(z, t), and P0(z, t) is the contraction of P (z, t) :=
∞∑
n=0

Pn(t)zn onto M0.

Hence Pn0 (t) = − 1
2πi

∫
|z|=1

R(1; z, t)z−n−1dz. If (z, t) is close to (1, 0), then

R(1; z, t) = (1− λ(z, t))−1Q1(z, t) + Ω(z, t), where the operator Ω(z, t) is uni-
formly bounded in some neighborhood of (1, 0) with respect to (z, t), and
Q1(z, t) is the projector corresponding to the largest eigen-value λ(z, t) of
Q(z, t). It follows from the conditions imposed on q(x, ·) that || ∂R

∂z
(1; eiϕ, t)||

is uniformly bounded in {(ϕ, t) : ε < |ϕ| ≤ π, |t| ≤ δ}) for every 0 < ε ≤ π
if δ is small enough. Hence, lim

n→∞

∫
ε<|ϕ|≤π

e−niϕR(1; eiϕ, t)dϕ = 0 uniformly in

|t| ≤ δ. As a result we get

Pn0 (t) = −Q1(1, 0)(2π)−1

∫
|ϕ|≤ε

(1− λ(eiϕ, t))−1dϕ+ Tn(t, ) (1)
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where lim
n→∞

sup
|t|<δ
||Tn(t)|| = 0. Further,

(2π)−1

∫
|ϕ|≤ε

e−inϕ(1− λ(eiϕ, t))−1dϕ ∼

(2π)−1

π∫
−π

e−inϕ(λ′z(1, 0)(1− eiϕ)− λ′′t (1, 0)t2/2)−1dϕ ∼

1/λ′z(1, 0)(1− λ′′t (1, 0)t2/2λ′z(1, 0))n. (2)

It follows from (1) and (2) that

λ′z(1, 0) lim
n→∞

Pn0

(
t√
n

)
= exp

{
λ′′t (1, 0)

2λ′z(1, 0)
t2
}
. (3)

Basing on (3)we prove that

lim
n→∞

Pn(t) = exp

{
λ′′t (1, 0)

2λ′z(1, 0)
t2
}
P1, (4)

where P1g(·) ≡
∫
X

g(x)p0(dx), p0(·) being the stationary distribution for the

chain Xn. On the other hand,

Pn(t)1X = E{eitSn |X0}, (5)

where 1X := Ind X. It follows from (4) and (5) that n−1/2Sn is asymptotically
normal N(0,

√
−λ′′t (1, 0)/λ′z(1, 0)).

Acknowledgements. Research supported by Russian Foundation for Ba-
sic Research (project 12-01-00238-a).
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On a non-uniform bound of the remainder term in
central limit theorem for Bernoulli distributions

Sergey Nagaev 1, Vladimir Chebotarev 2, Anatoly Zolotukhin 3

1Sobolev Institute of Mathematics, Russia,
nagaevs@hotmail.com, nagaev@math.nsc.ru
2Computing Center, Far Eastern Branch of the Russian Academy of Sciences, Russia,
chebotarev@as.khb.ru
3Tula State University, Russia, zolot_aj@mail.ru

Let Z, Z1, Z2, . . . , Zn be a sequence of independent Bernoulli random vari-
ables with the same distribution: P(Z = 1) = p, P(Z = 0) = q = 1−p. Denote

the distribution functions of the normalized sum 1√
npq

n∑
j=1

(Zj−p) and the stan-

dard normal random variable by Fn(x) and Φ(x) respectively. Introduce the
following notations,

δn(p, x) = Fn(x)− Φ(x), Q1(x) =
1− 2p

6
√
pq

(1− x2), β3(p) = E
∣∣∣Z − p√

pq

∣∣∣3.
In the case when distribution functions are continuous from the left there

exists a discontinuity point x0 of the function Fn(x), such that sup
x∈R
|δn(p, x)|

is δn(p, x0+) or −δn(p, x0). For the sake of simplicity we discuss here only the
case sup

x∈R
|δn(p, x)| = δn(p, x0+).

According to the result by C.-G. Esseen [1, p. 56] the following equality
holds at the discontinuity points of Fn(x) when n→∞,

δn(p, x+) =
1√
2πn

e−x
2/2
(
Q1(x) +

1

2
√
pq

)
+ o
(
n−1/2)

uniformly in x.
Other bound is found in the present work for the remainder term, which

gives the opportunity to localize the maximum point of δn(p, x) in x in contrast
to the Esseen result, namely, the following representation of δn(p, x+) holds
for n > 200 and p > 0.02 at each discontinuity point of Fn(x),

√
n

β3(p)
δn(p, x+) =

√
n

β3(p)

(
1√
2πn

e−x
2/2
(
Q1(x) +

1

2
√
pq

))
+R1(p, n, x) +R2(p, n, x),

where

|R1(p, n, x)| 6 0.012 +
0.1
√
n

β3(p)
exp

{
−
( √n
β3(p)

)2

1.64
}
,

|R2(p, n, x)| 6 e−x
2/2(0.068 |x|+ 0.051|x3 − 3x|).
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This result together with the results of the paper [2] allows to re-
duce the time computing significantly when evaluating the Berry–Esseen
absolute constant in the case of two-point distributions. In this case the
problem is to find max

x,n,p

√
n

β3(p)
|δn(p, x)|. If the explicit expression Fn(x) =∑

06k<x
√
npq+np

(
n
k

)
pkqn−k is used for computation, the result obtained by us

gives opportunity to allocate quite a narrow region of the values of x, in which
this maximum is attained.

Acknowledgements. This work was fulfilled under the partial support
by grants: Siberian Branch of RAS No. 56, Far-Eastern Branch of RAS 12-II-
SO-01-002, 12-I-OMN-01.
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The convergence rate estimates for the generalized risk
process with Pareto mixing

Yulia Nefedova 1

1Moscow State University; Institute for Informatics Problems, Russian Academy of
Sciences; y.nefedova@gmail.com

Consider the doubly stochastic Poisson processes

S(t) =

N∗(t)∑
k=0

Xk,

where N∗(t) is Mixed Poisson Pareto distributed r.v. with parameters α and
δt, i.e. N∗(t) ∼MPP (α, δt).

S(t) can represent the total claim amount process, so the corresponding
claim sizes could be presented by i.i.d.r.v. X1, X2, . . . with common d.f. F

Let X1, X2, . . . satisfy the following moment conditions:

EX1 ≡ a, σ2 = EX2
1 <∞.

We suppose that for each t > 0 the random variables N∗(t), X1, X2, . . . are
independent.

We can interpret the S(t) as the doubly stochastic Poisson processes con-
trolled by Λ(t) processes, where Λ(t) = Λα,δ · t and Λα,δ ∼ Pareto(α, δ).
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In [Korolev (1996)] the necessary and sufficient conditions of the weak
convergence of distributions of the doubly stochastic Poisson processes to the
scale mixtures of normal laws with zero means were given.

Let d(t) > 0 is some auxiliary normalizing (scaling) unrestrictedly increas-
ing as t→∞ function.

Auxiliary theorem. Assume that Λ(t) → ∞ as t → ∞. Then the one-
dimensional distributions of a normalized doubly stochastic Poisson processes
S(t) weakly converge to that of some random variable Z:

S(t)

σ
√
d(t)

d−→ Z (t→∞),

if and only if there exists a nonnegative random variable Λ such that

1) P(Z < x) = EΦ
(
x/
√

Λ
)

=
+∞∫
0

Φ
(
x/
√
λ
)
dP(Λ < λ), x ∈ R,

2) Λ(t)/d(t)
d−→ Λ (t→∞).

In our case we have that EΛ(t) exist and equals

EΛ(t) = EΛα,δt = tEΛα,δ =
αδ

α− 1
t, α > 1.

This equality immediately allows us to take the function d(t) normalizing a
process S(t) in Auxiliary theorem in the form d(t) = t.

So, if we do the normalization by the identity function d(t) = t we will get
the following limiting law Λ for Λ(t)/t :

Λ(t)/t
d
= Λα,δ ≡ Λ.

Now we can get the explicit form of limiting low Z for normalized process
[S(t)−N∗(t)EX1]/(σ

√
t) in terms of the generalized hypergeometric function

P(Z < x) = EΦ
(
x/
√

Λ
)

=

+∞∫
δ

Φ
(
x/
√
λ
)
dP(Λ < λ) =

=
1

2
+

2αx√
2πδ(1 + 2α)

· 2F2

([
1

2
,

1

2
+ α

]
,

[
3

2
,

3

2
+ α

]
,−x

2

2δ

)
.

Lets estimate the accuracy of the approximation the distribution of

[S(t) − N∗(t)EX1]/(σ
√
t) by the scale mixtures of normal law EΦ

(
x/
√

Λ
)

found above. Denote

∆t ≡ sup
x

∣∣∣∣∣P
(
S(t)−N∗(t)EX1

σ
√
t

< x

)
−
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Figure 1: The plots of the density function pZ(x) of the limiting law Z for
some α and δ.

−1

2
− 2αx√

2πδ(1 + 2α)
· 2F2

([
1

2
,

1

2
+ α

]
,

[
3

2
,

3

2
+ α

]
,−x

2

2δ

)∣∣∣∣∣.
Theorem 1. Assume that β3 ≡ E|X1|3 <∞. Then for each t > 0 the following
estimate is true

∆t ≤ C(α, δ)
β3

σ3
√
t
, where C(α, δ) =

0,3041α

(α+ 1/2)
√
δ
.

In particular, for parameters α = 2 and δ = 0,5 we get

∆t ≤ 0,3441
β3

σ3
√
t
.

Now we will consider the risk process

R(t) = c(t)− S(t), t ≥ 0,

where c(t) is the income curve.
It is intuitively clear that the intensity Λ(t) of the flow of claims should

be proportional to the portfolio size. So, it is naturally to assume that c(t) =
u+ cΛ(t) and consider the following generalization of the risk process:

Rg(t) = u+ cΛ(t)− S(t).

Here we will investigate the asymptotic behavior of such generalized risk pro-
cess in the ’critical’ case c = a ≡ EX1 and construct the convergence rate
estimates in the central-limit-type theorem.
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Using the special representation for S(t) via SNλ =
Nλ∑
k=0

Xk with classical

Poisson process Nλ, λ > 0 and the analogue of the central limit theorem for
SNλ :

P

(
SNλ − λEX1

σ
√
λ

< x

)
⇒ Φ (x) , λ −→∞,

we can easily formulate the central-limit-type theorem for risk process R(t) :

Rg(t)

σ
√
t

d−→ Z, t −→∞,

where

P(Z < x) = EΦ
(
x/
√

Λα,δ
)

=

+∞∫
0

Φ
(
x/
√
λ
)
dP(Λα,δ < λ), x ∈ R.

The explicit form of the limiting distribution of Z with Λα,δ ∼ Pareto(α, δ)
was found above.

Lets estimate the accuracy of the approximation in this central-limit-type
theorem for generalized risk process Rg(t) = u+ EX1Λα,δt− S(t).

Theorem 2. Assume that β3 ≡ E|X1|3 < ∞. Then for each t > 0 the
following convergence rate estimate in the limit theorem for normalized gener-
alized risk process Rg(t) is true

sup
x

∣∣∣∣P(Rg(t)σ
√
t
< x

)
− EΦ

(
x/
√

Λα,δ
)∣∣∣∣ ≤

≤ 1√
t

(
0.3041β3

σ3
+

u

σ
√

2π

)
α

(α+ 1/2)
√
δ
.
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On sampling plans for inspection by variables
Vera Pagurova 1

1Moscow State University, Russia, pagurova@yandex.ru

Consider the setting in which a lot of items is to be either accepted or
rejected based on a quality characteristic that can be measured on each item in
the lot. A sample of items is drawn from the lot, the quantitative measurement
is made on each item sampled, and a decision is made to reject or accept the
lot based on these measurements.

Each sampled item is categorised as conforming or nonconforming. The
quality of item is determined by some variable X, and an item is considered
conforming if X < u (u is given). An attribute plan based the decision to
accept or reject the lot only on the number of nonconforming items in the
sample. Variables plans use the distribution of X and able to achieve the
same control with a smaller sample size. We consider that a distribution of
X follows the two-parameter family of distributions depending on unknown
shift and scale parameters. To test the hypotheses concerning a proportion of
nonconforming items in the lot we consider uniformly most powerful invariant
tests, an asymptotic approach and a random size of the sample.

We consider also a problem to compare proportions of nonconforming items
in two lots of items.
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The model of hydrodynamic-statistical forecast of the
storm wind and of the wind waving over the North and

Norway Seas

Elvira Perekhodtseva 1

1Hydrometeorological Center of Russia, Moscow, Russia, perekhod@mecom.ru

The dangerous wind waving over the North and Norway Seas is linear
connect with the wind velocity. The velocity V > 19m/s have involved the
dangerous wave high h = 3− 5m. The prediction of such events is very actual
and difficult problem. Nowadays in Russia there is no hydrodynamic model
for forecast of the wind with the velocity V ≥ 20m/s, V ≥ 25m/s, hence the
main tools of objective forecast are statistical methods using the dependence
of the phenomena A (the winds with the velocity V > 19m/s or V > 24m/s)
on a number of atmospheric parameters (predictors).

For this purpose the different teaching samples of presence of the event
A {X(A)} and presence of the event B (the absence of A) {X(B)} were
automatically arranged that include the values of forty physically substan-
tiated potential predictors. Then the empirical statistical method was used
the diagonalization of the mean correlation matrix R of the predictors and
the extraction of diagonal blocks of strongly correlated predictors. Thus the
most informative predictors for the recognition and for the prediction of these
phenomena were selected without loosing information. The statistical decisive
rules F1(X) and F2(X) for diagnosis and prognosis of the phenomena were
calculated for choosing informative vector-predictor. We used the criterion of
the Mahalanobis distance and criterion of the minimum of entropy Hmin by
Vapnik-Chervonenkis for the selection of predictors. The most informative and
weak depend predictors are:

(H1000, Tearth, V700, Tdearth U850 − U925, Iw, T300, mod(gradTearth),

Iw – index of the instability of Waiting.

The successful development of the new regional hydrodynamic model (the
author Losev V.M.) allowed us to use the prognostic fields of those models for
calculations of the discriminant functions F1(X) and F2(X) in the nodes of the
grid 75x75km and the values of probabilities P1(X) (depended from F1(X))
and P2(X) (depended from F2(X)) of dangerous wind V > 24m/s (the wind
high h = 5− 8m) and thus to get fully automated forecast for the territory of
Europe. The author proposes the empirical threshold values specified for these
phenomena of the wind with the velocity V > 19m/s and of the wind with
the velocity V > 24m/s and advance period 36 hours over the territory of the
Norway and North Seas. According to the Pirsey-Obukhov criterion (T ), the
success of these automated statistical methods of forecast of storm winds in the
warm and cold season for the territory of these Seas is T = 1−a−b = 0,54−78
after author experiments, where a and b - are the errors of I and II kinds.
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A lot of examples of forecasts of storm wind and connected with them wind
wavind over the territory of Norway, North and Barents seas are submitted
at this report. The rules likes these were applied to the forecast of storm
wind over these seas during cold period in this year too (the example of the
forecast of the storm wind “St. Iuda” on the 28.10.2013). The great amounts
of the velocity and connected with them very high waves of storm wind were
observed also at these territories on 1.07.09, on 2–3.08.09, on 18–19.08.09 and
other and in cold period 23–27.02.2010, in November 2009. The forecast of
these phenomena was given successful with the earliness even 36–48h.

Comparison theorems for small deviations of Green
Gaussian processes in weighted L2-norms

Ruslan Pusev 1

1Saint-Petersburg University, Russia, r.pusev@spbu.ru

Suppose we have a zero mean Gaussian process X(t), 0 ≤ t ≤ 1. Let ψ be
a non-negative weight function on [0, 1]. We set

‖X‖ψ =

(∫ 1

0

X2(t)ψ(t)dt

)1/2

.

We establish a comparison of P(‖X‖ψ1 ≤ ε) and P(‖X‖ψ2 ≤ ε) as ε → 0,
when X is a Green Gaussian process, i.e. a Gaussian process with covariance
being the Green function for a self-adjoint differential operator. This result
gives us the opportunity to obtain the sharp small ball asymptotics for many
classical processes under quite general assumptions on the weight.

Acknowledgements. The talk is based on a joint work with A. I. Nazarov.
The research was supported by RFBR grant 13-01-00172.
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Multifactor dimensionality reduction method and
simulation techniques

Alexander Rakitko 1

1Moscow State University, Russia, rakitko@gmail.com

High dimensional data arise naturally in many medical and biological inves-
tigations, including genetics. Usually such data are viewed as the value of some
random factors X1, . . . , Xn and the corresponding response variable Y . For in-
stance, in biological and medical investigations Y describes the health state of
a patient. From medical and computational points of view it is very important
to find among huge number of factors the collection Xk1 , . . . , Xkr which is re-
sponsible for certain complex disease provoking. In our research we concentrate
on the new MDR (multifactor dimensionality reduction) method developed in
[1]-[3]. To predict Y we use some function f in factors X1, . . . , Xn. The error
functional Err(f) involving a penalty function ψ determines the quality of
such f . As the law of Y and (X1, . . . , Xn) is unknown we cannot find Err(f).
Thus statistical inferences is based on the estimates of error functional. In
the mentioned works one can find such statistics constructed by means of a
prediction algorithm for response variable and K-fold cross-validation proce-
dure. Besides, the criterion of strong consistency and the central limit theorem
(CLT) for the proposed estimates are established.

To illustrate our approach in [4] we discuss the results of simulations to
identify the collection of significant factors determining a binary response vari-
able. Different forms of dependence of Y on factors X1, . . . , Xn are considered.
It is worth to emphasize that in all considered examples for reasonable sam-
ple sizes our method permits to identify correctly the collections of signifi-
cant factors (corresponding to the minimum of prediction error estimates).
We demonstrate by graphs the character of stabilization of proposed predic-
tion error estimates’ fluctuations as sample size grows. This stabilization of
estimates can be explained not only by their strong consistency but also on
account of their asymptotic normality. In this regard we formulate the new
version of CLT for regularized estimates.

To establish this CLT we prove some limit theorems for row-wise exchange-
able random arrays using Lindeberg method and some recent achievements in
Stein’s techniques in high dimensions [5]. Thus it permits to take statistical
estimates of penalty function ψ from a wider class of functions. The statistical
variant of our CLT provides the possibility to construct the approximate con-
fidence intervals for unknown errors because we evaluate the variance of the
limiting normal law and give the appropriate estimate of this variance.

Acknowledgements. The work is partially supported by RFBR grant
13-01-00612.
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Dirichlet heat kernels for rotation invariant Lévy
processes

Michal Ryznar 1

1Wroclaw University of Technology, Poland, michal.ryznar@pwr.wroc.pl.com

In this talk I will consider a Lévy rotation invariant process in Rd. Un-
der some weak scaling assumptions about the symbol of the process some
estimates of the transition density in terms of the symbol will be presented.
Next, sharp estimates of the transition density of the killed process will be
described, usually for small values of time. Under global scaling conditions for
the symbol, for smooth domains, the obtained estimates are very sharp and
they show clear dependence on geometrical characteristics of the underlying
domain. In particular they apply to subordinate Brownian motions for which
many results of the above type were obtained recently. Even in this case our
results are more general then existing ones.

The talk is based on a joint work with Krzysztof Bogdan and Tomasz
Grzywny.
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Fractional stable statistics in microarray data

Viacheslav Saenko 1

1Ulyanovsk State University, Russia, saenkovv@gmail.com

At present time reliable established that probability density functions of
gene expression in microarray experiments possess of universal properties.
These distributions have power law asymptotic and shape of these distri-
butions are inherent for all organisms [1]. This fact led to appearance of a
number works where authors investigate various probability distributions for
approximation of empirical distribution of gene expression. In the works have
been investigated possibility of usage of such distribution as Poisson, exponen-
tial, logarithmic, Zipf-Paretto’s distribution and others. In certain works [2]
is noted that, for example, double Paretto-lognormal distribution in the best
approximation among all listed above distributions of empirical densities.

In this work the fractional stable distributions were used for approxima-
tion of gene expression of mcroarray experiments. This distributions are limit
distribution of sum independent identical distributed random variable. The
probability density function is expressed through Melin’s transformation of
two stable distribution

q(x;α, β, θ) =

∫ ∞
0

g(xyβ/α;α, θ)g(y;β, 1)yβ/αdy,

where g(x;α, θ) and g(x;β, 1) are stable and one-sided stable laws respectively.
The parameters are varying within limits 0 < α 6 2, 0 < β 6 1,−1 6 θ 6 1.
More detail information reader can find in the work [3]. The main reasons
according to which the fractional stable distribution have been used for ap-
proximation of gene expressions is that they have power law asymptotic.

As an object of investigation it were chosen gene expression data for fol-
lowing organisms: rat, arabidopsis and Maize leaves, canine, chicken, rice,
C. elegans, drosophila, clinical S. aureus strains, P. aeruginosa, Escherichia
coli, human , S. cerevisiae. All data were obtained from free database
http://www.ebi.ac.uk/arrayexpress/.

The task consists in test of hypothesis about possibility of description of
distribution of gene expression by FSD. For this purpose it were chosen gene
expression data from CEL files of Affymetrix microarray chips without any pre-
rpocessing. Results obtained from all probes were processed. Obtained data is
considered as sample of random variables Z1, Z2, . . . , ZN and we suppose that
each random variable belong to the class of fractional stable laws with param-
eters α, β, θ, λ. Since the class are fully defined by their parameters then the
task consists in estimation of values α̂, β̂, θ̂, λ̂ of parameters α, β, θ, λ of general
population according to the sample Z1, Z2, . . . , ZN . The parameters were es-
timated according to the algorithm described in [4]. Next, for the parameters
have been obtained the probability density function is estimated by histogram
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method. The results of approximation for human tissues and C. Elegans are
presented in the figure 1. As we can see from the figures the fractional stable
distribution are good enough approximates of gene expression profiles.

Figure 1: Distribution of gene expression of microarray experiments for human
tissues and c.elegans. Solid circles are experimental distribution, solid line is
fractional stable distribution. The parameters of distribution are presented on
the figure.

Acknowledgements. The work was supported by Ministry of Education
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On quasinonuniform estimates for asymptotic
expansions in the CLT

Vladimir Senatov 1

1Moscow State University, Russia, v.senatov@yandex.ru

Let X1, X2, . . . are independent identically distributed random variables,
EX1 = 0, EX2

1 = 1, EX6
1 < ∞. We denote P the common distribution of

these variables, Pn – the distribution of (X1 + . . .+Xn)/
√
n, Φ – the standard

normal law. We shall consider expansions

pn(x) = ϕ(x) + ϕ(x)

m−1∑
j=1

Aj(x)

nj/2
+O

(
1

nm/2

)
, n→∞, (1)

where pn(x) are densities of Pn, ϕ(x) = e−x
2/2/
√

2π is the density of Φ,
m = 2, 3, 4,

A1(x) =
θ3

3!
H3(x),

A2(x) =
θ4

4!
H4(x) +

n− 1

2n

(
θ3

3!

)2

H6(x),

A3(x) =
θ5

5!
H5(x) +

n− 1

n

θ3

3!

θ4

4!
H7(x) +

(n− 1)(n− 2)

6n2

(
θ3

3!

)3

H9(x),

Hk(x) = (−1)kϕ(k)(x)/ϕ(x), k = 0, 1, . . . , are Chebyshev - Hermite polyno-
mials, θk =

∫∞
−∞Hk(x)P (dx), k = 3, 4, 5, are Chebyshev - Hermite moments

of P.
It is clear that from (1) follow the inequalities∣∣∣∣∣pn(x)−

(
ϕ(x) + ϕ(x)

m−2∑
j=1

Aj(x)

nj/2

)∣∣∣∣∣ ≤ ϕ(x)
|A(m−1)(x)|
n(m−1)/2

+
Rm
nm/2

, (2)

for m = 2, 3, 4. The values Rm in (2) do not depend on n. For all values in (2),
except pn(x), the explicit formulas are known.

It turns out that the first term in the right side of this inequality correctly
reflects the behavior of its left part, without the second term in the right side
inequality wrong.

The main content of the report is the consideration of the inequality (2)
for the cases when the distribution P have the density e−(x+1), x ≥ −1 (in
this case the densities pn(x) are easily calculated) and n = 100, 400, 900, 1600.
For this distribution θ3/3! = 1/3, θ4/4! = 1/4, θ5/5! = 1/5 and R4 < 2.2 +
70/
√
n+ 220/n for n ≥ 100 and all the values in (2) for m = 2, 3, 4 can easily

be calculated.
The report is accompanied by numerous graphic illustrations.
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Potential theory in hyperbolic space

Grzegorz Serafin 1

1Wroc law University of Technology, Poland, grzegorz.serafin@pwr.edu.pl

In recent years we have seen a considerable growth of interest in hyperbolic
Brownian motion. The reason is a strong relationship between this process and
some functionals playing an important role in economics (e.g. Asian options),
see [1] and [2]. One of the main objects in the theory are the Green function,
which measures how much time a process spends in any set, and the Poisson
kernel, which describes where a process hits while exiting a fixed set.

We consider the n-dimensional hyperbolic Brownian motion with drift
{X(µ)(t)}t≥0, µ > 0, on the real hyperbolic space Hn = {x ∈ Rn : xn > 0}.
The generator of the process is the operator 1

2
∆µ, where

∆µ =
1

2
x2
n

n∑
k=1

∂2

∂x2
k

− 2µ− 1

2
xn

∂

∂xn
.

Putting µ = n−1
2

we obtain a standard hyperbolic Brownian motion. The

subject of our studies is the λ-Green function G
(µ),λ
U (x, y) and the λ-Poisson

kernel P
(µ),λ
U (x, y), λ ≥ 0, of Lipschitz domains U ⊂ Hn. For U bounded in

hyperbolic metric we provide following relationships

(1) G
(µ),λ
U (x, y) =

(
xn
yn

)µ−η
G

(η),0
U (x, y),

(2) P
(µ),λ
U (x, y) =

(
xn
yn

)µ−η
P

(η),0
U (x, y),

where η =
√
µ2 + 2λ. In fact, the formula for the λ-Green function is valid

also for unbounded domains U . In case of λ-Poisson kernel of unbounded sets
a different approach is needed. We introduce a new definition of this object
and prove modified formula (2).

As an example we give uniform estimates both of the λ-Green function and
the λ-Poisson kernel of hyperbolic strip Sa = {x ∈ Hn : x1 ∈ (0, a)}, a > 0.
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Supremum distribution of Bessel process of drifting
Brownian motion

Andrzej Pyć 1, Grzegorz Serafin 1, Tomasz Żak 1

1Wroclaw Technical University, Poland, tomasz.zak@pwr.edu.pl

In his famous paper David Williams [4] showed how to decompose the paths
of a transient one-dimensional diffusion at its maximum (or minimum). One of
the best-known examples of such decomposition is that of B(t)+µt, Brownian
motion with a positive drift µ, as a Brownian motion with a negative drift
B(t)− µt and a diffusion Zt with a generator

(1) ∆µ =
1

2

d2

dx2
+ µ coth(µx)

d

dx
.

One can construct Zt in the following way: let (B
(1)
t , B

(2)
t , B

(3)
t + µt) be a

three-dimensional Brownian motion with drift µ, starting at the origin. Then
Zt = ‖(B(1)

t , B
(2)
t , B

(3)
t + µt)‖ is a diffusion with generator given by (1).

Process (Zt) is known as a Bessel process of drifting Brownian motion and
denoted BES(3, µ) (Pitman and Rogers [2]) or as a hyperbolic Bessel proces
(Revuz and Yor [3]). Indeed, if µ = 1 then (Zt) is a radial part of a hyperbolic
Brownian motion in three-dimensional hyperbolic space.

The transition density function of (Zt) is well-known (cf. Pitman and
Rogers [3]) but to our best knowledge, distributions of different functionals
of this process have not been examined yet.

We investigate process (Zt) killed on exiting interval (0, r0) and give a for-
mula describing distribution of Mt = sups6t Zs, the supremum of the process
(Zt). Because the formula is given as an infinite series, we give its exact esti-
mate using elementary functions. Moreover, our method of estimation applied
to a function ssy(v, t) used in a handbook by Borodin and Salminen [1] give
very precise estimate of this function.
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A variant of the law of the iterated logarithm for
dependent random fields

Alexey Shashkin 1

1Moscow State University, Russia, ashashkin@hotmail.com

Laws of the iterated logarithm are among the most well-known classical
limit theorems of probability theory. Starting from theorems by Khintchine,
Kolmogorov and Hartman-Wintner, these laws have been generalized many
times to dependent sequences, random fields, set-indexed systems of random
variables etc. It is known (Wichura [1]) that for multiparameter random sys-
tems, such as d-parameter Brownian motion, the upper limit in the law of
the iterated logarithm depends substantially on what is the set of indices over
which one takes the upper limit. To make this precise, let 〈t〉 = t1 . . . td for
t ∈ Rd, and Log(x) := log max{x, e}, for x > 0. The notation t → ∞, with
t ∈ Rd, means that t1 →∞, . . . , td →∞. Then, for a d-parameter Brownian
motion W = {Wt, t ∈ Rd+}, the almost sure upper limit

lim sup
t→∞, t∈T

Wt√
2〈t〉LogLog〈t〉

equals 1, if T = {(s, . . . , s) : s ≥ 0}, and equals
√
d if T = Rd+. Similar

statements hold for partial sums of independent variables having moments of
appropriate order. Thus it is natural to ask what is the general form of the law
of the iterated logarithm if the set T over which the limit is taken is general
enough. This talk provides the answer to this question in the case of stationary
associated random fields.

Recall that a random field X = {Xj , j ∈ Zd} is called associ-
ated if for any n ∈ N, arbitrary pair of coordinatewise nondecreasing
bounded Borel functions f, g : Rn → R and all i1, . . . , in ∈ Zd one has
cov(f(Xi1 , . . . , Xin), g(Xi1 , . . . , Xin)) ≥ 0. Associated random systems arise
in mathematical statistics, reliability, statistical physics, random measures
theory etc. Independent random variables are automatically associated; suffi-
cient conditions for association to hold are known for many other important
classes of random systems. There is also a large number of limit theorems
describing the belavior of associated random processes and fields, see Bulin-
ski and Shashkin [2] for a detailed account. An important characteristics of
a square-integrable stationary associated random field X is its sequence of
Cox-Grimmett coefficients

ur(X) =
∑

j∈Zd:|j|≥r

cov(X0, Xj), r ∈ N.

Here |j| = maxi=1,...,d |ji|, j ∈ Zd. The finiteness and appropriate rate of
convergence of {ur(X)} to zero, when r →∞, is a typical condition for a limit
theorem to hold (together with moment restrictions).
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To state the main result let us introduce some more notation. For a random
field X = {Xj , j ∈ Zd} and n ∈ Nd, we set Sn =

∑
0<j≤nXj , where the

inequalities between multiindices are understood in the coordinatewise sense.
Define the norm ‖z‖ =

∑d
i=1 |zi| in Rd, and for a set T ⊂ Nd let L(T ) to be

the 1-neighborhood of the set

Log T = {(Log t1, . . . ,Log td) : t = (t1, . . . , td)}

with respect to that norm. Finally, for a > 0 set R(a) = ∩di=1{t : ti ≥ a} ⊂ Rd+.
Theorem. Let X = {Xj , j ∈ Zd} be a stationary associated random field.

Suppose that supj∈Zd E|Xj |2+δ <∞ for some δ > 0, and that ur(X) = O(r−λ)

as r →∞, with some λ > 0. Then for any T ⊂ Nd, with probability 1, one has

lim sup
n→∞, n∈T

Sn√
2〈n〉LogLog〈n〉

= σ
√
r,

here σ2 =
∑
j∈Zd cov(X0, Xj) and

r = r(T ) = lim
a→∞

inf
{
ρ > 0 :

∫
L(T )∩R(a)

‖x‖−ρdx <∞
}
.

In particular, take b ∈ (0, 1) and

T = {n ∈ Zd : ni ≥ ϕ(n1 . . . nd), i = 1, . . . , d},

where ϕ(t) = t1/d exp(−(log t)b), t > 0. Then one has r(T ) = 1+(d−1)b. Thus
such restriction imposed on the indices of partial sums provides the value of
upper limit which lies in between the extreme cases, that of a half-line and of
a whole positive orthant.

Acknowledgements. The work was partially supported by RFBR,
project 13-01-00612.
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Some moment estimates for characteristic functions with
applications

Irina Shevtsova 1

1Moscow State University, Institute for Informatics Problems of RAS, Russia,
ishevtsova@cs.msu.su

Some moment estimates for characteristic functions are derived that are
applied to construction of moment-type estimates of the accuracy of the normal
approximation to distributions of sums of independent random variables and
Poisson random sums. The presented estimates for characteristic functions
have an untraditional nonlinear dependence on moments and trigonometric
dependence on the argument instead of a polynomial one.

Acknowledgements. The work is supported by the Russian Foundation
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Solving some open problems on Brownian areas by
applying a new extension of Euler’s Theorem

Jan WH Swanepoel 1

1North-West University, South Africa, jan.swanepoel@nwu.ac.za

In this talk we restrict ourselves to versions of a standard Brownian mo-
tion process {B(t), 0 ≤ t ≤ T} and a standard Brownian bridge process
{B0(t), 0 ≤ t ≤ T} defined on a finite interval [0, T ]. Consider the ran-
dom Riemann integrals, which often occur in practice, A(t) :=

∫ t
0
h(s)B(s)ds

and A0(t) :=
∫ t

0
h(s)B0(s)ds, for some continuous deterministic function

h : [0, T ] → R. It is shown that for certain choices of h(s), closed-form ex-
pressions can be derived for these integrals by applying suitable expansions
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of Brownian motion and Brownian bridge processes in proper countable coor-
dinate systems (see, e.g., Breiman [1]). This enables one to study the na-
ture of the sample paths of A(t) and A0(t). More importantly, the exact
non-asymptotic probability distributions of A(t) and A0(t) are derived rig-
orously. For example, if h(s) ≡ 1 we provide a new proof for the known result

that A(t) is N(0, t
3

3
)–distributed, and also derive the new result that A0(t) is

N(0, t
3

3
(1 − 3t

4T
))–distributed, for all 0 ≤ t ≤ T . In the latter case, Perman

and Wellner [2] provides a heuristic proof only for the case t = T and not
for t < T . Furthermore, if h(s) = s, we obtain the new results that A(t) is

N(0, 2t5

15
)–distributed and A0(t) is N(0, 2t5

15
(1− 5t

6T
))–distributed.

From these results interesting conclusions can be made. For example, if
h(s) ≡ 1, then Var(A(T ))/Var(A0(T )) = 4 for all T , and if h(s) = s, then
Var(A(T ))/Var(A0(T )) = 6 for all T . Other choices of h(s), which appear in
Swanepoel [3], will be considered. In order to calculate the variances mentioned
above, we rely on a newly derived extension of a theorem by Euler regarding
infinite series of real numbers involving cosines and sines (Swanepoel [4]). The
proof of this theorem, which is based on Bernoulli polynomials, will be briefly
discussed.
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Estimates of transition densities for jump Lévy processes

Pawe l Sztonyk 1

1Wroc law University of Technology, Poland, Pawel.Sztonyk@pwr.wroc.pl

We give upper and lower estimates of densities of convolution semigroups
of probability measures under explicit assumptions on the corresponding Lévy
measure (non-necessarily symmetric and absolutely continuous with respect
to the Lebesgue measure) and the Lévy–Khinchin exponent. We obtain also
estimates of derivatives of densities.
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Furthermore, for a large class of Lévy measures, including those with jump-
ing kernels exponentially and subexponentially localized at infinity, we find the
optimal in time and space upper bound for the corresponding transition ker-
nels at infinity. In case of Lévy measures that are symmetric and absolutely
continuous, with densities g such that g(x) � f(|x|) for nonincreasing pro-
file functions f , we also prove the full characterization of the sharp two-sided
transition densities bounds of the form

pt(x) � h(t)−d · 1|x|≤θh(t) + t g(x) · 1|x|≥θh(t), t ∈ (0, t0), t0 > 0, x ∈ Rd.

This is done for small and large x separately. Mainly, our argument is based on
new precise upper bounds for convolutions of Lévy measures. Our investiga-
tions lead to some interesting and surprising dichotomy of the decay properties
at infinity for transition kernels of purely jump Lévy processes.

The joint work with Kamil Kaleta.
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Cure rate quantile regression for censored data with a
survival fraction

Yuanshan Wu 1, Guosheng Yin 2

1Wuhan University, China shan@whu.edu.cn
2University of Hong Kong, Hong Kong gyin@hku.hk

Censored quantile regression offers a valuable complement to the tradi-
tional Cox proportional hazards model for survival analysis. Survival times
tend to be right-skewed, particularly when there exists a substantial fraction
of long-term survivors who are either cured or immune to the event of interest.
For survival data with a cure possibility, we propose cure rate quantile regres-
sion under the common censoring scheme that survival times and censoring
times are conditionally independent given the covariates. In a mixture formu-
lation, we apply censored quantile regression to model the survival times of
susceptible subjects and logistic regression to model the indicators of whether
patients are susceptible.

The mixture cure rate model assumes a decomposition of the failure time
as

T = ηT ∗ + (1− η)∞,
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where T ∗ < ∞ denotes the survival time of a susceptible subject, and the
indicator η takes a value of 1 if a subject is susceptible, and 0 otherwise. Based
on the logistic regression (Farewell, 1982), we can model the susceptibility
indicator η,

P (η = 1|W) = π(γTW) =
exp(γTW)

1 + exp(γTW)
.

For survival times T ∗, we take the usual linear regression model

log T ∗ = βTZ + ε,

where the error ε may depend on Z. Given τ ∈ (0, 1), QT∗(τ |Z) =
inf{t: P (T ∗ 6 t|Z) > τ} is the τth conditional quantile function, and the
quantile regression model is given by

QT∗(τ |Z) = exp{ZTβ(τ)}, τ ∈ (0, 1),

where β(τ) is an unknown (p+ 1)-vector of regression coefficients.

We develop two estimation methods using martingale-based equations: One
approach fully utilizes all regression quantiles by iterating estimation between
the cure rate and quantile regression parameters; and the other separates the
two via a nonparametric kernel smoothing estimator.

Following the martingale formulation of censored quantile regression in
Peng and Huang (2008), we can develop the estimating equation

n−1
n∑
i=1

Zi

{
Ni(exp{ZT

i β(τ)})−
∫ τ

0

I[Xi > exp{ZT
i β(u)}]Hγ(du|Wi)

}
= 0,

where Hγ(u|W) = − log{1 − π(γTW)u} and Ni(t) = ∆iI(Xi 6 t) for i =
1, . . . , n.

We can extract the cure information to construct an estimating equation
for γ. To avoid the difficulty arising from the entanglement of β̂(·) and γ̂, we
propose an alternative nonparametric approach based on the locally weighted
Kaplan–Meier estimator, which estimates γ0 separately from β0(·). Bandwidth
selection is often a critical part of nonparametric regression. In practice, we
recommend a d-fold cross-validation method for choosing the bandwidth.

We establish the uniform consistency and weak convergence properties for
the estimators obtained from both methods. The proposed model is evalu-
ated through extensive simulation studies and illustrated with a bone marrow
transplantation data example.
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Recently, quite often in the study of various pedagogical phenomena math-
ematical statistic is used. But using of these methods is not always performed
correctly. For example, often to test hypotheses Student’s test is used. How-
ever, this criterion is applicable only in the case of normal distributions, which
in educational research appear rarely. One example of histograms of scores is
shown in Fig. 1.

The participants in the current study were undergraduate students enrolled
in an introductory course in probability and statistics at Ohio University in
Athens, OH. There were 27 total participants. X quizzes were assigned to
students to assess their comprehension of course material. In each quiz, one
problem was given whose content was discussed during group-work activities,
in addition to one problem whose content was taught during a traditional lec-
ture format. We would write the hypothesis H0: there is no difference between
the two comprehension of course material. Let level of significance be 0.05.

By using the t-test statistic in SPSS, we have got the results, which are
presented in the Figure 2. The lowest level of significance for Student’s t-test
is 0.19 and we should accept the hypothesis H0.

By using the Wilcoxon signed rank test, we have got the results, which are
presented in the Figure 3. The lowest level of significance this test is 0.01 and
we should reject the hypothesis H0.

We can do the conclusion, that the result of Student’s t-test is wrong, due
to the fact, that the distribution of database is not normal.
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Figure 1: Student’s t-test.

Figure 2: Wilcoxon signed rank test.
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Uniform truncation bounds for weakly ergodic
birth-death processes

Alexander Zeifman 1
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The problem of existence and construction of limiting characteristics for
inhomogeneous (in time) birth and death processes is important both for the-
ory and applications. General approach and related bounds for the study on
the rate of convergence was considered in [1,2].

Calculation of the limiting characteristics for the process via truncations
was firstly mentioned in [3] and was considered in details in [4]. First results
for more general Markovian queueing models have been obtained recently in
[5].

About two decades ago Vladimir V. Kalashnikov suggested that in some
cases one can obtain uniform (in time) error bounds of truncation.

Here this conjecture is studied for a class weakly ergodic birth-death pro-
cesses.

Let X = X(t), t ≥ 0 be a birth-death process (BDP) with birth and death
rates λn(t), µn(t) respectively.

Let pij(s, t) = Pr {X(t) = j |X(s) = i} for i, j > 0, 0 ≤ s ≤ t be the tran-
sition probability functions of the process X = X(t) and pi(t) = Pr {X(t) = i}
be the state probabilities.

Secondly we consider the family of ”truncated” processes XN (t) on state
space EN = {0, 1, . . . , N}, where birth rates are λn(t), n ∈ EN−1 and death
rates µn(t), n ∈ EN .

By p(t) = (p0(t), p1(t), . . . )T , and by pN(t) = (p0(t), p1(t), . . . ,N (t))T ,
t > 0 we denote the column vectors of state probabilities for X(t), and XN (t)
respectively.

We prove the ”uniform” approximation bound in the form

‖p(t)− pN(t)‖TV 6
C

gN
, t > 0,

under assumptions of exponential weak ergodicity of X(t) in special weighted
norms, where C is a constant, and gN → 0 as t→∞, see details and examples
in [6].
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Properties of likelihood ratio test applying for
discriminating of Normal and Laplace distributions
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We study the problem of discriminating the Gauss and Laplace distribu-
tions by sampling. For the case of composite hypotheses we have shown that
the likelihood ratio test is reduced to the Geary test if we substitute the pa-
rameters estimates instead of these unknown parameters. We have proved the
invariance and have studied the test asymptotic properties for both alterna-
tives.

Moreover, using the software package Wolfram Mathematica 8 for the sta-
tistical simulation method, were performed the following calculations for the
wide range of changes of the Geary test significance level and for the different
volumes of samples:

- test critical points for samples from the normal distribution;
- test power for samples from the Laplace distribution;
- mean and standard deviations estimates for the distribution of the test

statistics for samples of the Gauss and Laplace distributions.
Simulation results are written in the relevant tables. Illustrative graphs

have been built for the Giri test power, histograms of distributions of Giri
statistics (for both alternatives) as well as their approximation of the normal
distribution.
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Asymptotic distributions of multivariate geometric
random sums

Igor Zolotukhin 1, Lidia Zolotukhina 2
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Multivariate geometric random sums were introduced in [1] as the sums of
the following type:

S = (S1, . . . , Sk) =

(
M1∑
j=1

X
(1)
j , . . . ,

Mk∑
j=1

X
(k)
j

)
.

Let’s assume that the random variables included in this expression, imposed
the following conditions:

I. The vector M = (M1, . . . ,Mk) has a multivariate geometric distribution
(MVG-distribution).

II. For random variables X
(i)
j following conditions are satisfied.

1. X
(i)
j are i.i.d. random variables with characteristic functions ϕi(θi) =

EeiX
(i)
j ;

2. ϕi(p
1/αiθi) = 1 + p ln gi(θi) + o(p) as p→ 0,

where gi(θi) is the characteristic function of a strictly stable distribution
with α = αi, β = βi, η = ηi.

III. Ml and X
(i)
j are independent.

Theorem. Under the conditions of I-III

o

S= (
o

S1, . . . ,
o

Sk) = (p1/α1

M1∑
(j=1)

X
(1)
j , . . . , p1/αk

Mk∑
j=1

X
(k)
j )⇒ V as p→ 0,

where V has a general marginally strictly geometric stable distribution (GMS-
GSL).

The special parametric family of multivariate distributions, called the
general marginally strictly geometric stable law (GMSGSL), which can be
uniquely recovered from the univariate distributions of its margins, was intro-
duced in [2] by the following way.

GMSGSL distributions are the distributions of the vector

V = (Z
1/α1
1 Y1, . . . Z

1/αk
k Yk),
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where Yi (i = 1, . . . , k) are independent random variables having strictly sta-
ble distributions with characteristic functions gi(θi) and with the parame-
ters αi, ηi, βi; Z = (Z1, . . . , Zk) is (independent from Y1, ..., Yk) random vec-
tor having multivariate exponential distribution of Marshall-Olkin (MVE-
distribution, see [3]).
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Stationary distribution of MMPP |D|1|R queue with
bi-level hysteric policy
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The rapid development of telecommunication services based on the SIP
protocol and growth of number of users have revealed a number of shortcom-
ings in the basic overload control SIP mechanism 503 (Service Unavailable).
Being motivated by this problem and by loss-based overload scheme (pro-
posed by IETF SIP Overload Control Working Group for dealing with conges-
tions in SIP network), we consider the generalization of the model introduced
in [1]. Specifically, consideration is given to the analysis of queueing system
MMPP |D|1|R with bi-level hysteretic input load control. Bi-level hysteretic
input load control implies that system may be in three states (normal, over-
loaded, blocking), depending on the total number of customers present in it,
and upon each state change input flow rate is adjusted. The generalization
concerns service time (which is considered to be constant instead of exponen-
tially distributed) and number of phases of markov modulated poisson process
(which is assumed to be arbitrary integer 1 < n <∞).

New method is being proposed (based on approach initially proposed in
[2]) for computation of main performance characteristics of the system and
calculation of joint stationary distribution at an arbitrary time of number of
customers in the queue, elapsed service time and system’s state.

Acknowledgements. This work was partially supported in part by the
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A discrete-time retrial queueing system with different
types of displacements
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In this paper we analyze a discrete-time queueing system in which an ar-
riving customer can decide, with a certain probability, to go directly to the
server expelling out of the system the customer that is currently in service or
to join the orbit in order to try to reenter at some random time later on. We
carry out an extensive analysis of the system.

1. The Mathematical model

Customers arrive according to a geometric arrival process with rate p.
If, upon arrival, the service is idle, the service of the arriving customer
begins immediately, otherwise, the arriving customer either with proba-
bility θ1 displaces the customer that is currently being served to the head
of the orbit and with probability θ2 expels it out of the system starting
immediately, in both cases, its service.

We will assume that only the customer at the head of the orbit is allowed
for access to the server. It is always supposed that retrials and services
can be started only at slot boundaries and their durations are integral
multiples of a slot duration. Successive inter-retrial times of any cus-
tomer are governed by an arbitrary distribution {ai}∞i=0 with generating
function A(x) =

∑∞
i=0 ai x

i. Service times are governed by an arbitrary
distribution {si}∞i=1, with generating functions S(x) =

∑∞
i=1 si x

i. After
service completion, the served customer leaves the system forever and
will have no further effect on the system. In order to avoid trivial cases,
we assume 0 < p < 1.

2. The Markov chain

At time m+ (the instant immediately after time slot m), the system
can be described by the process Ym = (Cm, ξ0,m, ξ1,m, Nm) where Cm
represents the server state (0 or 1 according to the server is free or busy,
respectively) and Nm is the number of customers in the retrial group.
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If Cm = 0 and Nm > 0, ξ0,m denotes the remaining service time of the
customer being served. If Cm = 1, ξ1,m corresponds to the remaining
service time of the customer being served. Some results of this paper are
summarized in the following:

Theorem. The generating functions of the stationary distribution of the
chain are given by

ϕ0(x, z) =
A(x)−A(p̄)

x− p̄
p[p̄− s(p̄)]θ1xz

(p̄A(p̄) + θ1z)S(p̄)− p̄θ1z
π0,0

ϕ1(x, z) =
S(x)− S(p̄)

x− p̄
pp̄x

(p̄A(p̄) + θ1z)S(p̄)− p̄θ1z
π0,0,

where

π0,0 =
(p̄A(p̄) + θ1)S(p̄)− p̄θ1

A(p̄)
[
(p̄+ θ1)S(p̄)− p̄θ1

]
+ p̄(1− S(p̄))

.

Corollary. The probability generating function of the number of cus-
tomers in the retrial group (i.e. of the variable N) is given by

ψ(z) = π0,0 + ϕ0(1, z) + ϕ1(1, z) =

=
A(p)[(p+ θ1z)S(p)− pθ1z] + p(1− S(p))

(pA(p) + θ1z)S(p)− pθ1z
π0,0

The probability generating function of the number of customers in the
system (i.e. of the variable L) is given by

Φ(z) = π0,0 + ϕ0(1, z) + zϕ1(1, z) =

=
A(p)[(p+ θ1z)S(p)− pθ1z] + pz(1− S(p))

(pA(p) + θ1z)S(p)− pθ1z
π0,0
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5233.

References
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We study the stability of a single-server retrial queueing system with con-
stant retrial rate and general input and service processes. In such system the
external (primary) arrivals follow a renewal input with rate λ. The system
also has service times with rate µ. If a new customer finds all servers busy
and the buffer full, it joins an infinite-capacity virtual buffer (or orbit). An
orbital (secondary) customer attempts to rejoin the primary queue after an
exponentially distributed time with rate µ0.

First, we present a review of some relevant recent results related to the sta-
bility criteria of similar systems. Sufficient stability conditions were obtained
in Avrachenkov and Morozov [1] and have the following form:

(λ+ µ0)Ploss < µ0, (1)

where Ploss is a stationary loss probability in the majorant loss system. The
presented statement holds for a rather general retrial system. However, only
in case of Poisson input an explicit expression is provided; otherwise one has
to rely on simulation.

On the other hand, the stability criteria derived in Lillo [2]

λ(µ+ µ0)2

µ
[
λµ[1− C(µ+ µ0)] + µ0(µ+ µ0)

] < 1, (2)

where

C(s) =

∫ ∞
0

e−xsdF (x), s > 0 (3)

can be easily computed, but hold only for the case of exponential service times.

We present new sufficient stability conditions, which are less tight than the
ones obtained in Avrachenkov and Morozov [1], but have an analytical expres-
sion under rather general assumptions. A key assumption is that the input
intervals belong to the class of new better than used (NBU) distributions. The
new condition is based on the connection between Ploss and Pbusy (stationary
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busy probability) in the majorant loss system. This statement was obtained
in Morozov and Nekrasova [3] and can be expressed as:

Ploss = 1− 1

ρ
Pbusy. (4)

We also illustrate the accuracy of these conditions (in comparison with
known conditions when possible) for a number of non-exponential distribu-
tions.
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LTE has been devised by the 3GPP to improve end-user throughput, reduce
user plane latency and cope with the increasing demand for better Quality of
Service (QoS) [1]. In uplink LTE exploits Single Carrier-Frequency Division
Multiple Access scheme, which requires that all the Resource Blocks (RBs)
assigned to the same User Equipment (UE) must be contiguous in frequency
domain. Note that LTE specification does not recommend any uplink Re-
source Allocation Algorithm (RAA) by the evolved Node B (eNB). However,
there are a number of mechanisms defined in the LTE network that allow
performing uplink scheduling efficiently, e.g. Sounding Reference Signal (SRS)
that carries the Channel State Information (CSI) for each RB for each UE,
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Buffer Status Report (BSR), knowledge of the QoS requirement for each of the
session. Uplink RAAs may be classified by principles of channel dependency
and proportional fairness (PF). Among the channel-unaware algorithms, Fair
Work Conserving [2] outperforms others by its strategy to schedule all the
RBs in every subframe (1 ms). The channel-aware schemes [3] achieve the best
throughput, but suffer from starvation problem that can be solved by means
of proportional fairness paradigm [4]. However, both channel-aware and PF
schemes do not take the UE QoS requirements into consideration, which may
result in scenario when the UE with highest priority and lowest channel qual-
ity may not get enough RBs to fullfill the QoS requirement. In this paper we
introduce an analytical model that takes into account SRS, BSR and QoS re-
quirements, and allows analyzing various uplink RAA by means of performance
measures evaluation.

Description of the model. The structure of the proposed analytical
model is shown in Fig. 1. Let us assume that there are M UEs in LTE cell
that may initialize the session of uplink transmission, whereas eNB has N
RBs available for distribution. The system functions in discrete time with the
constant slot length h of 1 ms, and all the changes in the system occur at
moments nh, n = 1, 2, .... We consider two types of sessions: with priority (0),
and without priority (1). Being empty, the UEi (here and further, i = 1,M)
can initialize a new session during a time slot with the probability ai. By
opening a session a number of bits prepared for transmission is generated at
the UEi buffer of ri capacity. Note that a new session belongs to a prioritized
0-type with probability di, and to the non-prioritized 1-type with di = 1− di.
The parameter ci = {0, 1} models the priority type of the UEi in the current
time slot. UEi keeps its priority till all bits of the current session will be
send from the buffer. In order to analyze channel-aware RAA, we consider
that the CSI si of UEi is known for every RB every time slot. Let the buffer
occupancy of UEi in current slot be qi. During each slot a certain number
of packet units of the UEi may be serviced according to group deterministic
distribution DG, which will lead to reduction of the buffer occupancy. Note
that the number of serviced packet units directly depends on the selected RAA,
and in general case depends on the CSI, buffer occupancy and type of the
session. The described system can be denoted as GeomG(~q) | DG(RAA) | N |
~r | ~f1. The functioning of the system is described by the homogeneous Markov
chain ξn at time moments nh+ 0, n ≤ 0, with the state space: X = {(~c, ~q, ~s) :
~c = (c1, c2, ..., cM )T , ~q = (q1, q2, ..., qM )T , ~s = (s1, s2, ..., sM )T , ci = 0, 1, qi =
1, ri, si = 1, SN}, where S - is the overall number of CSI possible values and
si ∈ S := {(si(RB1), ..., si(RBN )) : si(RBj) ∈ {1, 2, ..., S}, j = 1, N}, | S |=
SN . We assume that the set S is lexicographically ordered. Our contribution in
this paper is to use the described system as a framework for analyzing various
RAA, e.g. [2-4], by means of performance measures evaluation.
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Figure 1: Structure of the model.
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Different lossless and lossy compression techniques are very important in
modern informatics. In both cases, the compression is an encoding of original
files to be compressed. Typically the compression is based on a mapping of
original file F into set (ci, i) of bits which can be, for example, coefficients
of spectral transformations (Discrete Fourier, Walsh-Hadamard (WHT)) with
their indexes or pairs of indexes for a dictionary based compression techniques
[1]. For example, in LZ77 compression, the longest phrases with their indexes
can be considered as the set (ci, i) mentioned above. The system designers are
interested in the optimality of data compression in order to achieve the mini-
mum number of bits for storing the input string, without assumptions on the
generating source statistics. The compression procedure should be efficient in
terms of the required time and space. To evaluate the efficiency of compression
there is a need for corresponding mathematical models that can assist in in-
formation systems efficiency analysis. However, currently such models are very
generalized from the point of view of different specific tasks [2], for example,
for on-line data compression. In this presentation we consider models for the
output files length optimization.

In dictionary-based data compression techniques, any strings of symbols are
represented by an index to a dictionary constructed from the source alphabet.
The dictionary coding is based on maintaining a dictionary that contains fre-
quently occurring phrases (substring of symbols), in contrast to Huffman cod-
ing which is based on computing the symbols occurrence probabilities. When
these phrases are encountered and found in the dictionary, they are encoded
with an index in the dictionary.

It is well-known [2] that parsing of n-words file can be computed in O(n)
time and O(nw) space, where nw is the the dictionary size. In this case the
greedy parsing is optimal with respect to the number of phrases (corresponding
to the indexes (ci, i)) in which string S can be parsed by the dictionary (called
also as the sliding window of size nw). An important theoretical result in
this scope is that such dictionary-based parsing achieves asymptotically the
best compression possible and therefore acts (asymptotically) according to the
empirical entropy. However, the optimality in the number of parsed phrases is
not necessarily equal to the optimality in the number of bits of a compression
of a given string S [2].
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As we deal with finite strings (files) while Lempel-Ziv theory has been
formulated in asymptotic terms, we should consider empirical entropy [3], es-
timated over corresponding finite data set. In general, following [3], it can be
easily shown, that the length Lc of the compressed string can be estimated as
Lc ≥ LorigHk,m, where Lorig is the length (number of bits) of the original file,
Hk,m is empirical entropy estimated using a sliding window of size m, when k
is the number of longest matches for given string (block, file). The empirical
entropy can be expressed in terms of longest matches and dictionary size as
Hm,n = ((1/k)

∑k
i=1 Li,m/ log2(m))−1, that allows to define the problem of

the compressing process optimization.

As for Walsh-Hadamard Transformation, this approach to data compres-
sion is a lossy one, the number of the compressed bits depends on the quality
of possible decompression. In [4] it has been shown that the Hamming distance
between original and reconstructed binary files as a blurriness measure [4]. We
suggested a metric [4] that captures the difference of the bits bi of the original
file and bits bi, where i = 1, . . . , n, n is the number bits, reconstructed from
a truncated set of WHT coefficients. Each coefficient ci is transmitted/stored
with its index i in the WHT matrix, namely the pairs (ci, i) are stored as the
representation of the data. Note, that this truncation enables a compression of
the original file (along with other useful features of the WHT [4]). A compres-
sion optimization model for reconstruction a binary sequence from a truncated
WH series can be also based on an entropian paradigm. In particular, we may
consider the theoretic Shannon bound R = −D log2(D)− (1−D) log2(1−D),
where D is the fraction (probability) of the correctly reconstructed bits and
R is the number of bits per symbol transmitted. Note that lossless algorithms
provide the compression of a file to the values dependent asymptotically on
entropy of a source modeling the file [2], whereas relationship between the
entropy and the holographic property of the WHT based codes is not asymp-
totic.
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Here, we propose an approach for modelling the data exchange process
between users in P2P streaming network with buffering mechanism in form
of discrete Markov chain. Our model takes into account all important char-
acteristics of a P2P streaming network and allows us to evaluate the main
performance measures, such as playback continuity and startup delay.

The data exchange mechanism in streaming P2P networks is similar to that
of file sharing P2P networks based on the most popular protocol BitTorrent.
However, in streaming P2P networks the time window when a peer still needs a
data chunk is of critical importance, as every chunk has its playback deadline.

A user downloads data chunks from both the server and other users, who
have already downloaded them. For this reason, users constantly exchange
buffer maps, providing the information about data availability to one another.
This way a user can download one or more missing data chunks from other
users.

Note, that a user, who just connected to the network, does not provide any
data chunks to exchange with other users and compete with other users for
downloading the available data chunks in the network. When a user disconnects
from the network, he deprives other users of the opportunity to download
anything from him. Thus, the overall performance of the network degrades
due to peer churn. We take this into account by introducing the probabilities
α and β of a user connecting and disconnecting from the network.

The data chunk exchange process is also affected by so-called lags the data
transmission delay between the server and users. Lags define the playback time
difference between any two users. Due to playback lags, one and the same data
chunk in the buffers of users will be located in positions with different indexes,
leading to narrowing the number of data chunks available to exchange between
these two users.

The maximum download and upload rate of a user affect the performance
of the network as well. Every user will try to use all his download capability
in the most effective way by downloading different data chunks from different
users; however, the upload speed limitation will make it impossible to download
every single data chunk in the network during one time slot. In order to choose
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which data chunk to download next a download strategy, such as Rarest First
(RF), Latest First (LF) or Greedy (Gr), is applied. Download strategies can
greatly improve one or another performance measure, for example, RF strategy
strives to enhance the overall performance of the network, while Gr strategy
reduces the playback startup delay.

Therefore, we propose our model in the next form:

Z = 〈N,M,α,β, lag,d,u, δ〉 .

Here [1-4]:

• N is the maximum number of users in the netowrk;

• M is the buffer size of each user;

• α = (α (1) , ..., α (N)) is a vector, describing the probabilities with which
a new user can join the netwrok;

• β = (β (1) , ..., β (N)) is a vector, describing the probabilities with which
a user can leave the netwrok;

• lag = (lag (1) , ..., lag (N)) is a vector, that describes the data transmis-
sion delays between the server and each user;

• d = (d (1) , ..., d (N)) and u = (u (1) , ..., u (N)) vectors contain the down-
load and upload rate for each user.
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In the paper we discuss possible ways to improve a performance of realiza-
tions of various stochastic models. The main purpose of our work is finding
effectiveness techniques for the problem of finite mixture decomposition in
compound Cox model, etc. (see, for example, the book [1]).

Undoubtedly, it can be embodied by special programming solutions, e.g.,
we can realize computational modules using any low-level programming lan-
guage. The source code might be very effective and fast but too difficult for
programming and especially for debugging. Moreover, it needs much time and
in fact you have to create a new information technology. We consider ap-
proaches of possible optimizations of the existent solutions (see, for example,
the paper [2]).

The first way is simply to use more actual and efficient hardware. For ex-
ample, we have used the newest CPU and obtained up to 3 times acceleration
of working with one spectrum comparing our previous hardware. At the same
time, this CPU is available for the most of users even in their homes. The mod-
ern CPUs have more than one logical core and so you can process multiple data
sets simultaneously. The ratio between velocity and time is not linear but you
obtain significant acceleration even without special programming solutions!

The second way logically follows the first one in terms of parallelism. Mod-
ern integrated development environments support mechanisms for automatiza-
tion of parallel computing for a source code. Using special directives, program
can work faster without wide modifications of the code.

The third way is based on new hardware ideas and creating special source
code for these purposes. It leads to computing on GPUs, clusters, etc. At
that, GPU solutions are not so expensive as clusters and supercomputers. The
world leading GPU producers offer special solutions for researchers in differ-
ent ares (CUDA technology by NVIDIA, ATI Stream Technology by AMD). It
should be noted that in modern GPUs the number of cores equals from several
hundred to thousands ones. Obviously, their performance may be extremely
high for various complex computational problems in the areas with the critical
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requirements for accuracy and processing time. Surely, one of the most impor-
tant problems is a creation of an effective software that would be able to use
the maximum power of the hardware solutions. In fact the optimal application
performance on multi-core systems can be achieved through rational use of
program threads for the correct allocation of subproblems. Threads execution
can be optimized for running on a different physical cores.

One of the most important issues is a software’s effectiveness to use the
sizeable part of hardware performance. Indeed, the optimal application per-
formance on multi-core systems can be achieved only through rational use of
program threads for the smart allocation of software problems. Threads can
be optimally run on various physical cores to improve system’s performance.

Developing this type of software we should follow the principle of decom-
position [3], i.e., we try to allocate parts of main problem that can be executed
in parallel. There are some types of the decomposition: by problems, by data
and by the information flows.

In the first type of decomposition we should use different threads for various
tasks. It is the easiest way to create parallel programs involving the simultane-
ous execution of problems which can be considered as independent with each
other. For example, the program can estimate the model parameters, but at
the same time user can work with initial data, graphs, etc.

In the second variant of the decomposition different processes handle
unique data blocks. For example, you can divide original sample among few
various processes based on different models.

The most difficult type in terms of parallelism is decomposition by infor-
mation flows. In real problems the output of one subtask is often input to
another one. Obviously, the second process can not be executed without data
from the first one.

Choosing a specific type of decomposition or some hybrid versions, we can
realize effective programming solutions. At the same time to solve specific
problems you may need an individual approach because in parallel program-
ming technologies we have not only opportunities to increase performance but
also some specific requirements for software developers.
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Simultaneous processing systems where the order of customers (jobs, units)
upon arrival has to be preserved upon departure may suffer from the impacts
of resequencing, thay may be performed inside the systems. Various analytical
methods and models have been proposed to study the impacts of resequenc-
ing. General survey of queueing theoretic methods and early models for the
modeling and analysis of parallel and distributed systems with resequencing
can be found in [1], whilst survey on the resequencing problem that covers
period up to 1997 can be found in [2]. Among recent related papers related to
this topic one can cite [3-7].

In this paper we study the generalized version of the problem considered
in [8]. Specifically we consider queueing system with two servers, infinite ca-
pacity buffer (for storing customers before they get served) and resequencing
buffer (RB) of infinite capacity. New customers arrive at the system accord-
ing to Markovian arrival process, upon entering the system obtain sequential
number and join buffer. Customers leave the system strictly in order of their
arrival (i.e. in the sequence order). Thus after customer’s arrival it remains
in the buffer for some time and then receives service when one of the servers
becomes idle. If at the moment of its service completion there are no customers
in the system or all other customers present at that moment in the queue and
the rest two servers have greater sequential numbers it leaves the system. Oth-
erwise it occupies one place in the RB. Customer from RB leaves it if and only
if its sequential number is less than sequential numbers of all other customers
present in system. Thus customers may leave RB in groups. Service times of
customers on both servers follow the same phase-type distribution.

Efficient method is proposed for computation of joint stationary distribu-
tion of the number of customers in buffer and RB. In order to check theoretical
results there was built a simulation model. The comparisons of numerical and
simulation results showed good accuracy.

Acknowledgements. This work was partially supported in part by the
Russian Foundation for Basic Research (grants 14-07-00041, 13-07-00223).

126



XXXII International Seminar on Stability Problems for Stochastic Models

References

1. O. Boxma, G. Koole, Liu Z. Queueing-theoretic solution methods for
models of parallel and distributed systems. Performance Evaluation of
Parallel and Distributed Systems Solution Methods. CWI Tract 105 and
106, 1994. Pp. 1–24.

2. B. Dimitrov. Queues with resequencing. A survey and recent results. Pro-
ceedings 2-nd World Congress on Nonlinear Analysis, Theory, Methods,
Applications, 1997. Vol. 30, No. 8. Pp. 5447–5456.

3. K. Zheng, X. Jiao, M. Liu, Z. Li. An Analysis of Resequencing Delay of
Reliable Transmission Protocols over Multipath. Proceedings of the IEEE
International Conference on Communications (ICC), 2010. Pp. 1–5.

4. L. Wen-Fen. An Analysis of Resequencing Queue Size at Receiver on
Multi-Path Transfers. Proceedings of the International Conference on
Internet Technology and Applications (iTAP), 2011. Pp. 1–4.

5. Min Choi, Jong Hyuk Park, Young-Sik Jeong. Revisiting reorder buffer
architecture for next generation high performance computing. The Jour-
nal of Supercomputing, 2012. Pp. 1–12.

6. Y. Gao, Y. Zhao. Large Deviations for Re-Sequencing Buffer Size. IEEE
Transactions on Information Theory, 2012. Vol. 58. No. 2. Pp. 1003–
1009.

7. C. De Nicola, A. Pechinkin, R. Razumchik. Stationary Characteristics
of Homogenous Geo/Geo/2 Queue with Resequencing in Discrete Time.
Proceedings of the 27th European Conference on Modelling and Simula-
tion, 2013. Pp. 594–600.

8. S. Chakravarthy, S. Chukova, B. Dimitrov. Analysis of MAP/M/2/K
queueing model with infinite resequencing buffer. Journal of Perfor-
mance Evaluation, 1998. Vol. 31. Issue 3-4. Pp. 211–228.

Modelling of SIP server with hysteretic overload control
and K-state MMPP input flow

Konstantin Samouylov 1, Pavel Abaev 1, Anastasiya Khachko 1

1Peoples’ Friendship University of Russia, Russia, {ksam, pabaev,
akhachko}@sci.pfu.edu.ru

Major standards organizations, ITU, ETSI, and 3GPP have all adopted
SIP as a basic signalling protocol for NGN. The current SIP overload con-
trol mechanism is unable to prevent congestion collapse and may spread the
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overload condition throughout the network [1–3, 6]. IETF work group is devel-
oping loss based overload control scheme which should substitute the existing
mechanism [1]. The most common implementation of the schema involves the
threshold-based load management as an essential tool in prevention of vari-
ous types of congestions in SIP networks [1, 2]. A variation of the threshold
management is a hysteretic mechanism, which uses two types of thresholds
to control congestion – congestion onset threshold and congestion abatement
threshold. Criteria for the determination of SIP server congestion status are
the number of messages in the queue for CPU service, i.e. buffer occupancy.
In papers [2–6] some queuing models with Poisson input flow and hysteretic
mechanism were introduced and their performance measures were analysed.
However, these models do not allow to investigate the performance indicators
of a SIP server in the case of bursty input message flow. In this paper we
constructed an analytical model of SIP server with MMPPK ,K > 2, input
flow and bi-level hysteretic overload control mechanism.

Model Definition. Let us assume that customers arrive at a single-server
queue and receive service in accordance with FCFS policy. The processing
times are exponentially distributed with the mean µ−1. The server operates
in three modes: normal (h = 0), overload (h = 1), and discard (h = 2), where
h is the overload status. When the queue length n increases and exceeds the
threshold,H, in the normal mode, the system detects the overload and switches
to the overload mode. In the overload mode, the system informs the sender
about reduction of input load by the probability q. Thereafter, if the queue
length decreases and drops below the threshold, L, in the overload mode,
the system detects the elimination of overload, turns to normal mode and
inform the sender about lifting of the restrictions. If in the overload mode
the queue length continues increasing and reaches threshold, R, the system
turns to the discard mode and informs the sender about suspension of message
dispatching. After that, the queue length starts decreasing in the discard mode
and when it drops below the threshold, H, the system detects mitigation of
overloading, turns to the overload mode. A Markov modulated Poisson arrival
process (MMPP) with K > 2 phases is completely determined by infinitesimal
operator Q = (qij)i,j=0,K−1 and rate matrix Λ = diag (λ0, . . . , λK−1). The
changes of input load in the dependency of the systems’ states is specified by
the following relation

λhk (n) =


λ0
k, h = 0, 0 6 n 6 H,

λ1
k = (1− q)λ0

k, h = 1, L 6 n 6 R− 1,

0, h = 2, H + 1 6 n 6 R.

The described system can be denoted as MMPPK |M | 〈L,H〉 |R.
The functioning of the system is described by the Markov pro-
cess X (t) = (h (t) , n (t) , k (t)) over the state space X = X0 ∪
X1 ∪ X2, X0 = {(h, n, k) : h = 0, 0 6 n 6 H − 1, 0 6 k 6 K − 1},
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X1 = {(h, n, k) : h = 1, L 6 n 6 R− 1, 0 6 k 6 K − 1}, X2 =
{(h, n, k) : h = 2, H + 1 6 n 6 R, 0 6 k 6 K − 1}. We introduce the lex-
ical order for set X and construct infinitesimal operator of process X in
a block-diagonal form. The algorithm from [5] is applied for performance
evaluation.
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In cloud computing system a user sends a query, which is handled by virtual
cloud servers [1-2]. In the system studied here it is assumed that when entering
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the system the customer query is split into several independent sub-queries
according to the number of the cloud computing service providers and each
provider handles exactly one sub-query [3]. All sub-queries of the same query
are handled simultaneously by the service providers. Notice that unlike [4] the
number of sub-queries doesn’t have to be exactly equal to the number of service
providers. It reflects the situation when a customer query doesn’t need some
kind of service or when the necessary service is received from another provider.
We study response time as a performance metric of the system. Response time
is denoted as the maximal within a single query sub-query handling time. We
develop a queuing system model with multiple queues and batch arrival to
analyze the response time of the cloud computing system.

In this model we assume the external arrival of customers to be Poisson
distributed with a rate of λ and the service times at the providers virtual
servers are exponentially distributed with a rate of µk, k = 1, ...,K. Here K
is a number of cloud computing service providers. Furthermore a probability
vector l= (l1, ..., lK) is introduced, lk element of this vector determines the
probability that the k -th provider is involved in handling the query. A number
of virtual servers in the system of the k -th provider is vk, a queue length of the
k -th provider is rk, k = 1, ...,K. The queuing system reflecting the described
cloud computing system is presented in Figure 1.

Figure 1: Queuing model of the cloud computing system.

For the described system a transfer rate infinitesimal matrix was obtained.
Using a determined lexicographic order

n′ > n′′ ⇔

(
(n′. > n′′. ) ∪

(
(n′. = n′′. ) ∩

( K∑
i=1

(n′k > n′′k)(γ + 1)K−k > 0
)))

it was proved that the obtained matrix have a block-diagonal form and the
formulas to calculate its blocks were also obtained. Here n′ and n′′ are vectors
describing the number of the sub-queries in the system of each provider. Each
element of these vectors n′k (n′′k) describes the number of sub-queries in the
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system of k -th provider, n′. =
K∑
k=1

n′k (n′′. =
K∑
k=1

n′′k) is a sum of all the sub-

queries in the system, γ = max
k

(rk + vk) is the maximal number of sub-queries

that can be presented in the largest provider system. Finally an equilibrium
equation system was deduced and solved and the average response time of
the system was calculated for different initial data values. The results show
average response time of each provider as well as the responce time of the
whole system.
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LTE networks deployment is inseparably linked with enhancing the quality
of service (QoS). LTE operators have to develop and select an optimal radio
admission control (RAC) scheme [1,2] accounting for the service level agree-
ment, as the 3GPP recommendations (TS 36.300, TS 23.401, TS 23.203) do not
specify such schemes. RAC could be realized through the service degradation
referred as partial pre-emption or full pre-emption, i.e. service interruption of
lower priority services. In the paper, we propose a full pre-emption based RAC
scheme for video conferencing.
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We consider a single cell with a total capacity of C bandwidth units (b.u.)
supporting two guaranteed bit rate services: multicast multi-rate video con-
ferencing (VC) service (higher priority) and unicast video on demand (VoD)
service (lower priority). The VoD service is provided on single guaranteed bit
rate d = 1 b.u. The VC bit rate can adaptively change from a maximum value
of b1 b.u. to a minimum value of bK b.u. according to a given set of values
b1 > . . . > bK , which depends on the cell load expressed in the number of users.
Let incoming flows be Poisson of rates λ (VC) and ν (VoD), and the service
times be exponentially distributed with means µ−1 (VC) and κ−1 (VoD). Then
we denote the corresponding offered loads as ρ = λ/µ and a = ν/κ.

The VC priority level is higher then the VoD one. First, this fact is re-
alized by the adaptive change of the VC bit rate. Second, the admission
control is achieved such that a new VC request is accepted by the so-called
pre-emption owing to the lack of free cell resources. Pre-empting refers to
the release of cell resources occupied by VoD service. Let n be the num-
ber of VoD users and let m the state of a multicast session, where m can
be equal to 1 if the session is active, i.e. multicast VC service is provided
at least to one user on bit rate bk, k = 1, . . . ,K or m can be equal to
0 if the session is not active. Then the system state space is defined as
X = {(0, n) : n = 0, . . . , C ∨ (1, n) : n = 0, . . . , C − bK}

The main performance measures of the pre-emption based RAC model are
blocking probability B, pre-emption probability Π, and mean bit rate b:

B = [p (0, C) + p (1, C − bK)] ·G,

Π =

 C−1∑
n=C−bK+1

λ

λ+ ν + nκ

bK − C + n

n
p (0, n) +

λ

λ+ Cκ

bK
C
p (0, C)

 ·G,
b =

b1 C−b1∑
n=0

p (1, n) +

K∑
k=2

bk

C−bk∑
n=C−bk−1+1

p (1, n)

 ·G,
where

G =

[
C∑
n=0

p (0, n) +

C−bK∑
n=0

p (1, n)

]−1

,

the unnormalized probability p (m,n) that the system is in state (m,n) can
be computed as follows

p (m,n) = αmn + βmn · x, (m,n) ∈ X ,

where

x =
ν

λ+Cκ
α0,C−1 − α0C

β0C − ν
λ+Cκ

β0,C−1
,
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and coefficients αmn and βmn are calculated by recursive formulae

α00 = 1, β00 = 0, α10 = 0, β10 = 1,

α01 =
υ + λ

κ
, β01 = −µ

κ
, α11 = −λ

κ
, β11 =

υ + µ

κ
,

nα0n = (α01 + (n− 1))α0,n−1 + β01α1,n−1 − aα0,n−2, n = 2, . . . , C − bK + 1,

nβ0n = (α01 + (n− 1))β0,n−1 + β01β1,n−1 − aβ0,n−2, n = 2, . . . , C − bK + 1,

nα1n = (β11 + (n− 1))α1,n−1 + α11α0,n−1 − aα1,n−2, n = 2, . . . , C − bK ,

nβ1n = (β11 + (n− 1))β1,n−1 + α11β0,n−1 − aβ1,n−2, n = 2, . . . , C − bK ,

nα0n = (α01 + (n− 1))α0,n−1 − aα0,n−2, n = C − bK + 2, . . . , C,

nβ0n = (α01 + (n− 1))β0,n−1 − aβ0,n−2, n = C − bK + 2, . . . , C.
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Calculating mean service downtime for a model of
eNodeB failure in LTE network
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4G LTE wireless networks give the possibility for mobile operators to offer
a wide range of multimedia services. The 3GPP specifications define quality of
service requirements for LTE networks and typical scenarios that are recom-
mended for network planning and design. Unfortunately, these scenarios don’t
take into account some factors putting the LTE base station (eNodeB) out
of normal mode. This results in temporal unavailability of physical resource
blocks. Thus, the process of modeling and analyzing LTE networks should
include the possible failures of eNodeBs [1]. We propose a model of eNodeB
failures with the finite buffer as a multi-service queuing system with unreliable
servers.

Our model is based on the model of a single cell with a total capacity of
C bandwidth units supporting a guaranteed bit rate service, i.e. telephony
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[2]. The eNodeB fails with rate α. After the failure all users will perceive
the temporal service interruption. The information about the current state of
serving users will be stored in buffer of a finite size r. The eNodeB is repaired
with rate β and the interrupted users will receive the service. We assume
failures and repairs of eNodeB be exponentially distributed, the incoming flow
be Poisson of rate λ, and the service durations be exponentially distributed
with mean 1/µ.

Let n be the number of users waiting to receive the service and let m be
the number of users receiving the service. It could be obtained that the process
representing the system states is not a reversible Markov process and solution
p (n,m) of the equilibrium equations is not of product form. So, we propose
the recursive algorithm for calculating the mean service downtime, i.e. mean
waiting time and mean delay.

The mean service downtime can be computed as

W =
1

λ (1− q (r − C,C)− q (r, 0))

(
r−C∑
n=1

nq (n,C) +

r∑
n=1

nq (n, 0)

)
,

where unnormalized probability distribution q (·, ·) is calculated as

q (n,m) = Anm
λα

µ(λ+ β)
+Bnm,

(n,m) ∈
{

(n,m) : (0,m) , m = 0, C; (n,C) , n = 1, r − C; (n, 0) , n = 1, r
}
,

and coefficients Anm, Bnm satisfy following recursion:

A00 = 0, B00 = 1, A01 = 0, B01 =
λ

µ
, A10 = 1, B10 = 0,

A0n =

(
λ+ α

nµ
+
n− 1

n

)
A0,n−1 −

λ

nµ
A0,n−2 −

β

nµ
An−1,0, n = 2, C,

B0n =

(
λ+ α

nµ
+
n− 1

n

)
B0,n−1 −

λ

nµ
B0,n−2 −

β

nµ
Bn−1,0, n = 2, C,

An0 =
α

β + λ
A0n+

λ

β + λ
An−1,0, Bn0 =

α

β + λ
B0n+

λ

β + λ
Bn−1,0, n = 2, C,

A1C =

(
λ+ α

Cµ
+ 1

)
A0C −

λ

Cµ
A0,C−1 −

β

Cµ
AC0,

B1C =

(
λ+ α

Cµ
+ 1

)
B0C −

λ

Cµ
B0,C−1 −

β

Cµ
BC0,

A1+C,0 =
α

β + λ
A1C +

λ

β + λ
AC0, B1+C,0 =

α

β + λ
B1C +

λ

β + λ
BC0,
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AnC =

(
λ+ α

Cµ
+ 1

)
An−1,C−

λ

Cµ
An−2,C−

β

Cµ
An−1+C,0, n = 2, r − C − 1,

BnC =

(
λ+ α

Cµ
+ 1

)
Bn−1,C−

λ

Cµ
Bn−2,C−

β

Cµ
Bn−1+C,0, n = 2, r − C − 1,

An+C,0 =
α

β + λ
AnC +

λ

β + λ
An−1+C,0, n = 2, r − C − 1,

Bn+C,0 =
α

β + λ
BnC +

λ

β + λ
Bn−1+C,0, n = 2, C − 1,

Ar−C,C =

(
λ+ α

Cµ
+ 1

)
Ar−C−1,C −

λ

Cµ
Ar−C−2,C −

β

Cµ
Ar−1,0,

Br−C,C =

(
λ+ α

Cµ
+ 1

)
Br−C−1,C −

λ

Cµ
Br−C−2,C −

β

Cµ
Br−1,0,

Ar0 =
α

β
Ar−C,C +

λ

β
Ar−1,0, Br0 =

α

β
Br−C,C +

λ

β
Br−1,0.
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