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On approximation of power type estimator of survival
functions by censored data

Abdurahim Abdushukurov

Department of Probability Theory and Mathematical Statistics, National Univer-
sity of Uzbekistan, a abdushukurov@mail.ru

Incomplete or censored observations occur in survival analysis, especially
in clinical trials and engineering when we partially observe death in biological
organisms or failure in mechanical systems. There are several models of random
censoring. In this work we deal only with right censoring model.

Let X1, X2, ... be a sequence of independent and identically distributed
random variables(i.i.d.r.v.-s) (the lifetimes) with common distribution func-
tion(d.f.) F . Let Xj be censored on the right by Yj , so that observations avail-
able for us at the n-th stage consist of the sample S(n) = {(Zj , δj), 1 ≤ j ≤ n},
where Zj = min(Xj , Yj) and δj = I(Xj ≤ Yj) with I(A) meaning the indica-
tor of the event A. Suppose that Yj are again i.i.d.r.v.-s, the so-called censoring
times with common d.f. G, independent of lifetimes Xj .

The main problem consist of nonparametrically estimating F with nuisance
G based on censored sample S(n), where r.v.-s of interest Xj-s observed only
when δj=1. Kaplan and Meier (1958) were the first to suggest the product-
limit (PL) estimator FPLn defined as

FPLn (t) =


1−

∏
{j:Z(j)≤t

}
[
1− δ(j)

n−j+1

]
, t ≤ Z(n),

1, t > Z(n), δ(n) = 1,
undefined, t > Z(n), δ(n) = 0,

where Z(1) ≤ ... ≤ Z(n) are the order statistics of Zj and δ(1), ..., δ(n) are the
corresponding δj . In statistical literature there are different versions of this
estimator. However, those do not coincide if the largest Zj is a censoring time.
Gill (1980) redefined the FPLn setting FPLn (t) = FPLn (Z(n)) when t > Z(n). At
present there is an enormous literature on properties of the PL-estimator (see,
for example [3]-[9]) and most of work on estimating incomplete observation
are concentrated on PL-estimator. However FPLn is not unique estimator of F .

The second, closely related with the FPLn , nonparametrical estimator of F
is the exponential hazard estimator

FEn (t) = 1− exp
{
−

n∑
j=1

δ(j)I(Z(j) ≤ t)
n− j + 1

}
,−∞ < t <∞.

FEn plays an important role in investigating the limiting properties of the
estimator FPLn .
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Abdushukurov (1998,1999) proposed another estimator for F of power
type:

Fn(t) = 1−(1−Hn(t))Rn(t) =


0, t < Z(1),

1− (n−j
n

)Rn(t), Z(j) ≤ t < Z(j+1), 1 ≤ j ≤ n− 1,
1, t ≥ Z(n),

where

Hn(t) =
1

n

n∑
j=1

I(Zj ≤ t)

is empirical estimator of d.f. H(t) = P (Zj ≤ t) = 1− (1−F (t))(1−G(t)) and

Rn(t) =
−log(1− FEn (t))∑n

j=1

I(Z(j)≤t)
n−j+1

.

As we see, estimator Fn is defined on whole line. Let

d(t) =

∫ t

−∞
[(1− F )2(1−G)]−1dF.

For the estimator Fn of power type we have prove a consistency and Gaus-
sian approximations results on weak and strong forms up to some large order
statistics in the sample with the rates depending on the order of these statistics.
In order to choose the order statistics we choose a sequence {kn} of integers
such that 1 ≤ kn < n and require the condition:

(C) kn ≥ logn for all n large enough { kn
n
} is asymptotically nonincreasing.

We have
Theorem. Let d.f.-s F and G are continuous. Then

I. sup
t≤Z(n−kn)

|Fn(t)−F (t)|
1−F (t)

=

{
Op(k−1/2

n + k−2
n n)

O((k−1
2n logn)

1/2
+ k−2

n n), a.s.

II. There exist a sequence {Wn(·), n ≥ 1} of Wiener processes such that

sup
t≤Z(n−kn)

∣∣∣∣n1/2 (Fn(t)− F (t))

1− F (t)
−Wn(d(t))

∣∣∣∣ =

Op
(
k−1
n n1/2 logn+ k−2

n n3/2
)

O
(
k−1

2n n
1/2 logn+ k−2

n n3/2
)
, a.s.

In monographies [3,5] of author one can find several extensions of estima-
tors Fn, F

PL
n and FEn with full asymptotical results theory (weak convergence,

law of itherated logarithm type strong consistency, weak and strong approxi-
mation, empirical Bayes approach ...) in competing risks models with random
censorship from the right and both sides.
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Large deviations for queueing system with a
regenerative input flow

Larisa Afanasyeva 1, Elena Bashtova 2

1Moscow State University, Russia, l.g.afanaseva@yandex.ru
2Moscow State University, Russia, bashtovaelena@rambler.ru

Our result is a generalization of the classical GI|GI|1 analysis in point of
view large deviations theory. The strength of the theory is that one can draw
broad conclusions for systems, which are otherwise hard to analyze, without
relying on calculations. Besides, large deviations theory is the basic tool for
studying rare and non-desirable events.

We consider a single-server queueing system with a regenerative input flow
A(t). Definition of regenerative flow one can see i.e. in [1]. Let {θi}∞i=0 (θ0 =
0), {τi = θi − θi−1}∞i=0 be sequences of points and intervals of regeneration
respectively, {ξi}∞i=0 be numbers of customers entering the system during the
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ith period of regeneration ( ξi = A(θi)−A(θi−1)). We assume that µ = Eτi <
∞, a = Eξi <∞. The sequence of service times {ηi}∞i=0 consisting of i.i.d.r.v.’s
does not depend on input A(t). Denote λ = a/µ, b(s) = Ee−sηi , b = Eηi and
introduce the function G(z, s) = Ezξie−sτi .

Assumption 1. The greatest common divisor of numbers j = 1, 2, . . . such
that P(ξi = j) > 0 is equal to one.

Assumption 2. There exist δ > 0 and M <∞ such that

P(ξi ≤M) = 1, Eeδτj <∞,Eeδηj <∞.

We consider a workload process W (t). Let tn be the time of the nth customer’s
arrival (n = 1, 2, . . . ). Introduce embedded processes Wn = W (θn − 0), wn =
W (tn − 0). If ρ = λb < 1 then these processes are ergodic and there exist the
limits

Φ(x) = lim
n→∞

P(Wn ≤ x), F (x) = lim
n→∞

P(wn ≤ x).

Theorem. Let ρ < 1 and assumptions 1 and 2 fulfilled. Then there exist the
limits

lim
x→∞

1

x
log(1− Φ(x)) = lim

x→∞

1

x
log(1− Φ(x)) = −q,

where q is the unique positive solution of the equation

G(b(−q), q) = 1.

Acknowledgements. This work was partially supported by RFBR grant
13-01-00653
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Optimal design for parameters of a shifted
Ornstein-Uhlebeck sheet

Sándor Baran 1,2, Kinga Sikolya 3 Milan Stehĺık 4

1University of Debrecen, Hungary, baran.sandor@inf.unideb.hu
2University of Heidelberg, Germany
3University of Debrecen, Hungary, kinga.sikolya@inf.unideb.hu
4Johannes Kepler University, Austria, Milan.Stehlik@jku.at

The problem of optimal design for parameter estimation and for predic-
tion of a shifted Ornstein-Uhlenbeck sheet is studied, where for parameter
estimation we consider D-optimality, while for prediction integrated mean
square prediction error (IMSPE) and entropy criterion are used. For classi-
cal Ornstein-Uhlenbeck processes D-optimality was studied e.g by Kisělák and
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Stehĺık [4], while optimal predictions with respect to IMSPE and entropy were
investigated by Baldi Antognini and Zagariou [1]. In the present work we de-
rive exact D-optimal designs for estimation of the shift parameter (Baran and
Stehĺık [2]) and optimal designs for prediction with respect to entropy crite-
rion (Baran et al. [3]) in the cases when the design points form a regular grid
or a monotonic set. This later design is motivated by problems when one has
measurement on the sets with a specific geometric shape, e.g. measurement
along the isotherms. We also investigate optimality with respect to IMSPE
criterion.

Acknowledgements. This research has been supported by by the Hun-
garian Scientific Research Fund under Grants No. OTKA T079128/2009
and OTKA NK101680/2012, by the Hungarian –Austrian intergovernmental
S&T cooperation program TÉT 10-1-2011-0712 and partially supported the
TÁMOP-4.2.2.C-11/1/KONV-2012-0001 project. The project has been sup-
ported by the European Union, co-financed by the European Social Fund.
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Trimming of dependent sequences and applications

Alina Bazarova 1, István Berkes 2, Lajos Horváth 3

1Institute of Statistics, Graz University of Technology, Austria, bazarova@tugraz.at
2Institute of Statistics, Graz University of Technology, Austria, berkes@tugraz.at
3Department of Mathematics, University of Utah, USA, horvath@math.utah.edu

Trimming is a standard method to decrease the effect of large sample ele-
ments in statistical procedures used, e.g., to construct robust estimators and
tests. Trimming of i.i.d. sequences has been extensively studied from the 1960’s
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and most basic problems of the theory have been solved, except a few isolated
problems, e.g. the CLT under modulus trimming. In contrast, very little is
known about trimming of dependent sequences, even though results here would
be very useful e.g. in the statistics of heavy tailed processes. We formulate a
few new results in this direction.

(a) We prove a functional CLT for trimmed AR(1) processes with stable
errors, leading to a change point test for the unknown parameter of the
process.

(b) We prove the CLT for trimmed -mixing sequences, with applications in
the theory of continued fractions.

Our method also gives insight into the central limit theory of modulus trimmed
i.i.d. sums, showing that the difficulties in the classical theory can be removed
by allowing random (but sample dependent) centering sequences in the CLT.

References
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Stein’s method and a quantitative Lindeberg CLT for
the Fourier transforms of random vectors

B. Berckmoes 1, R. Lowen, J. Van Casteren

1University of Antwerp, Belgium, ben.berckmoes@ua.ac.be

We use a multivariate version of Stein’s method to establish a quantitative
Lindeberg CLT for the Fourier transforms of random N -vectors. We achieve
this by deducing a specific integral representation for the Hessian matrix of the
solution to the Stein equation with test function et(x) = exp

(
−i
∑n
k=1 tkxk

)
(where t, x ∈ RN ).
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Kernel quantile estimators in dose-effect relationships
over indirect data

Mikhail Tikhov 1, Tatjana Borodina 2

1Nizhny Novgorod State University, Russia, tikhovm@mail.ru
2Nizhny Novgorod State University, Russia, zhts.260980@mail.ru

In many applications, the problem of constructing efficient estimators of
quantile function often arises. For example, when runway areas are optimized
with a specified limitation on the landing safety, in the process of forming opti-
mum securities portfolios, and in risk management, one should solve quantile
optimization problems (see [1, 2]). It is well known (see [3, 4]) that such a
popular index as the value at risk (VaR) is properly a distribution quantile of
price changes. The optimal solution to these problems is based on constructing
efficient estimators of the quantile function using both complete and incom-
plete samples. In the present paper, we consider the problem of constructing
estimators of the quantile function and studying their asymptotic behaviour
using incomplete samples, namely, in the dose-effect relationships over indirect
data.

Let U (n) = ((U1,W1), (U2,W2), ..., (Un,Wn)) be n independent and identi-
cally distributed with (U,W ) pairs of random variables, where W = I(X < U)
is an indicator of event (X < U), X and U are random variables with distri-
bution functions F (x) = P(X < x), G(x) = P(U < x) and with density
f(x) > 0, g(x) > 0 respectively. The examined model is interpreted as a dose-
effect relationships, where U is a random dose of the substance brought into
an organism, and X is the lower bound, where the effect begins (W = 1).
This situation is called a random plan of the experiment. If the dose U is
nonrandom that plan is called fixed. In this case we assume that Ui = ui,
i = 0, 1, ..., n + 1, where 0 = u0 < u1 < ... < un < un+1 = 1. Let us consider

the statistics F̂n(x) =
1

n

∑n
i=1 WiKh(i/n− x) – to be the kernel estimator of

the distribution function F (x) based on fixed plans, where Kh(x) =
1

h
K
(x
h

)
.

Define the quantile estimator ξp of order 0 < p < 1 by ξ̂np = inf{x ∈
R, F̂n(x) ≥ p}. These observations are called direct data and in this case
behaviour of the estimator ξ̂np was studied in work [5].

However, quite often data measurements are made with an error ε, which
is a random variable with a known or an unknown continuous distribu-
tion function Q(x) and density q(x). In other words, instead of the data
(Ui,Wi), 1 ≤ i ≤ n we observe (Yi,Wi), 1 ≤ i ≤ n where Yi = Ui + εi,
Wi = I(Xi < Ui). How can limit distributions of estimator ξ̂np change? How
robust is this estimator containing measurement errors?

In this report, we show that the limit distributions of the estimators ξ̂np
in the presence of errors are asymptotically normal, but their limit variances

9



XXXI International Seminar on Stability Problems for Stochastic Models

in case of indirect observations differ from the limit variances in case of direct
ones.

Indeed, let yi = ui + εi . We consider two situations:
(i) ui are random or nonrandom variables ; measured errors εi are inde-

pendent and identically distributed variables;
(ii) true doses are observed with an error, but this dose ui is taken, so that

the equality ui + εi = i/n was held, where i/n are specified.

It is shown that in case (i) we have ξ̂np
p−→

n→∞

∫∞
−∞ F (ξp − y)q(y) dy under

suitable regularity conditions.
If the density distribution q(y) is an even function, i.e. q(y) = q(−y), y ∈ R,

that in case (ii) we also have ξ̂np
p−→

n→∞

∫∞
−∞ F (ξp − y)q(y) dy.

Limit variances of the considered estimators are presented.
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Systems with several replenishment sources

Ekaterina Bulinskaya 1, Kseniya Shakhgildyan 2

1Moscow State University, Russia, ebulinsk@yandex.ru
2Moscow State University, Russia, ksy-shakhgildyan@yandex.ru

Multi-supplier inventory systems have always attracted attention of many
researchers. An excellent review of results obtained before 2003 can be found in
Minner [1]. During the last decade various methods were used in the framework
of cost approach for investigation of such systems. Thus, Afanaseva and Bulin-
skaya [2] have studied the systems with several suppliers and seasonal demand
by queueing methods. On the other hand, linear and dynamic programming
methods were employed in Wang et al. [3], Fox et al. [4], Bulinskaya [5], see
also references therein.
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We mention in passing that multi-source replenishment is typical not only
for inventory theory but also for insurance, finance and other applied proba-
bility domains, see, e.g., Bulinskaya [6]. Hence, in addition to cost approach,
we use a reliability one as well, treating the inventory and insurance models.

Below we formulate some results in terms of the periodic-review one-
product two-supplier inventory model introduced in Bulinskaya [7]. It was
assumed there that the second supplier is unreliable delivering the order im-
mediately with probability p and having a one-period lag with probability
q = 1 − p. We suppose additionally that there are capacity or budget con-
straints. That means, the order sizes zi, i = 1, 2, must satisfy either relations
0 ≤ zi ≤ ai for some ai < ∞ or c1z1 + c2z2 ≤ b where ci is the unit order-
ing cost at the ith supplier. We take into account the unit holding cost h per
period and backlogging unit penalty r.

As objective function to minimize we choose the mean discounted costs
incurred in n period process. Discount factor is denoted by α and x is the
initial inventory level whereas di = b/ci, i = 1, 2. Let ∆0 = {0 ≤ c1 ≤ r},
∆0 = {0 ≤ c2 ≤ pr}, Γ = {c1 ≥ 0, c2 ≥ 0} and for k ≥ 1

∆k = {(c1, c2) ∈ Γ : r

k−1∑
i=0

αi < c1 ≤ r
k∑
i=0

αi},

∆k = {(c1, c2) ∈ Γ : r(p+

k−1∑
i=1

αi) < c2 ≤ r(p+

k∑
i=1

αi)}.

For the case of budget constraint we prove that for some order costs it is opti-
mal to send orders only to one supplier (even unreliable) as state the following

theorems, where by z
(n)
i (x) we denote the order sent to the ith supplier at the

first step of n step process.

Theorem 1. If (c1, c2) ∈ {c2 ≥ (p+αq)c1}∩∆k, k ≥ 0, then for any n it is

optimal to take z
(n)
2 (x) = 0. For n ≤ k one puts also z

(n)
1 (x) = 0. There exists

an increasing sequence {vn}n≥k+1 such that z
(n)
1 (x) = min(d1, (vn − x)+) for

n ≥ k + 1.

Theorem 2. If (c1, c2) ∈ {c2 < c1 − qr} ∩∆k, k ≥ 0, then for any n it is

optimal to take z
(n)
1 (x) = 0. For n ≤ k one puts also z

(n)
2 (x) = 0. There exists

an increasing sequence {un}n≥k+1 such that z
(n)
2 (x) = min(d2, (un − x)+) for

n ≥ k + 1.

For other parameters values the optimal policy involving two suppliers is
much more complicated.

It is established that the models under consideration are stable with respect
to small parameters fluctuations and underlying processes perturbations.

11
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Asymptotic behavior of statistics
employed for high-dimensional data analysis

Alexander Bulinski

Moscow State University, Russia, bulinski@yandex.ru

The development of new methods for analysis of data having huge dimen-
sions is of great importance. For example a challenging problem is to find the
genetic and non-genetic (or environmental) factors which could increase the
risk of complex diseases such as diabetes, myocardial infarction and others,
see, e.g., [1]. In this regard recall that human genom contains more than 6

12



XXXI International Seminar on Stability Problems for Stochastic Models

milliard nucleotide bases. The vast research domain called the genome-wide
association studies (GWAS) requires new techniques for handling large arrays
of biostatistical data.

The plan of the talk is as follows. After the brief introduction we concen-
trate on the modern methods such as multifactor dimensionality reduction
(MDR) and its modifications, logic regression and machine learning. We deal
with optimization problems for random functions defined on various graphs.
The model selection is discussed as well. We apply also K-fold cross validation
and permutation tests. Along with survey we present our quite recent results.
In [2] the basis for application of the MDR-method was proposed when one
uses an arbitrary penalty function to describe the prediction error of the bi-
nary response variable by means of a function in factors. Now we establish the
asymptotic normality of appropriately normalized statistics used to justify the
optimal choice of a subcollection of the explanatory variables. Moreover, we
consider self-normalization in this variant of CLT.

Acknowledgements. The work is partially supported by RFBR grant
13-01-00612.
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Asymptotic of the mean absolute error of UNVUE and
MLE in the case of one-parameter exponential family

lattice distributions

Vladimir Chichagov

Perm State University National Research, Russia, chichagov@psu.ru

Uniformly minimum variance unbiased estimators (UMVUE) and maxi-
mum likelihood estimators (MLE) play all-important role in current statisti-
cal research. A choice of the best among them can be made by computing of
their precision. The precision of estimators is defined by means of absolute
risk function. The author proposes solution for this problem for high sample
size in the case of one-parameter exponential family lattice distributions. The
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absolutely continuous distributions family case were considered by Chichagov
and Fedoseeva [1].

The observation model description. Let X1, . . . , Xn a repeated sam-
ple, which elements have the same lattice distribution as observation random
variable ξ. The distribution of the random variable ξ belong to exponential
family, which determined with the following expression:

P(ξ = x) = exp {Φ1[a]T [x]− κ[Φ1[a]] + d[x]} , x ∈ XG ⊂ R, a ∈ A ⊂ R.
(1)

Here XG is the distribution support; a = E(T [ξ]) is a mean value parameter
of given distribution; d[x], T [x], Φ1[a] are known functions; κ[θ] is a cumulant
transform of distribution (1).

Let Θ̃ be the set of values θ satisfies

∑
x∈XG

exp {θ · T [x] + d[x]} <∞.

Basic results. The following regularity conditions are applied.

(A1). The support XG is contained in Z but not in any sublattice of Z, and
not depended on the parameter a.

(A2). The distributions family (1) is steep and A =
{
κ′[θ] : θ ∈ Int[Θ̃]

}
.

(A3). Φ′1[a] > 0 on A.

Let us denote Ǧ[a|Sn] and Ĝ[a|Sn], where Sn =
∑n
i=1 T (Xi), corresponding

the MLE and UMVUE of the given parametrical function G[a], a ∈ A.
Denote

ε =
G′′[a]

2G′[a]
, ϕ[x] =

1√
2π

exp

[
−x

2

2

]
, U (k)[a]j = (U (k)[a])j , U (k)[a] =

dkU [a]

dak
,

bxc is the fractional part of x.

Theorem. Let conditions (A1)− (A3) are satisfied and there exists a posi-

tive integer L such that VĜ[a|SL] <∞ and VǦ[a|SL] <∞. Then as n→∞
14
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and G′[a] 6= 0 the following expansions

E
∣∣∣Ĝ[a|Sn]−G[a]

∣∣∣ =
2ϕ[0] |G′[a]|√

nΦ′1[a]

{
1− Φ′1[a]

n

(
bna+ εc2

2
− bna+ εc

2
+

1

12

)
+

+
1

n

(
G′′[a]2

8G′[a]2Φ′1[a]
+

G′′[a]Φ′′1 [a]

4G′[a]Φ′1[a]2
− Φ′′1 [a]2

12Φ′1[a]3
− G(3)[a]

6G′[a]Φ′1[a]
+

Φ
(3)
1 [a]

24Φ′1[a]2

)}
+

+ o

(
1

n3/2

)
, (2)

E
∣∣Ǧ[a|Sn]−G[a]

∣∣ =
2ϕ[0] |G′[a]|√

nΦ′1[a]

{
1− Φ′1[a]

n

(
bnac2

2
− bnac

2
+

1

12

)
+ (3)

+
1

n

(
− G′′[a]Φ′′1 [a]

6G′[a]Φ′1[a]2
− Φ′′1 [a]2

12Φ′1[a]3
+

G(3)[a]

3G′[a]Φ′1[a]
+

Φ
(3)
1 [a]

24Φ′1[a]2

)}
+ o

(
1

n3/2

)
are hold. If G′[a] = 0 but G′′[a] 6= 0, then as n→∞

E
∣∣∣Ĝ[a|Sn]−G[a]

∣∣∣ =

√
2

πe

|G′′[a]|
nΦ′1[a]

+ o

(
1

n3/2

)
, (4)

E
∣∣Ǧ[a|Sn]−G[a]

∣∣ =
|G′′[a]|
2nΦ′1[a]

+ o

(
1

n3/2

)
. (5)

The theorem proof is mainly based on the results of Chichagov, Fedoseeva,
Bhattacharya and Rao [1]–[3]. By using (2)–(5), one can obtain the asymp-
totic expansions for arbitrary order moments and central moments of random
variable T [ξ] and for probability P(ξ ≤ x).

For some parametric functions G[a], the comparison of expansions (2)–(5)
will be represented in the case of the Poisson and geometric distributions.
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Confidence intervals for means of lattice-valued random
variables constructed using split-sample methods

Geoffrey Decrouez 1, Peter Hall 2

1The University of Melbourne, Australia, and the Australian Centre of Excellence
for Risk Analysis (ACERA), dgg@unimelb.edu.au
2The University of Melbourne, Australia, and University of California Davis, Davis,
CA 95616, USA, halpstat@ms.unimelb.edu.au

We explore the properties of distributions of sums of independent means
of independent lattice-valued random variables. Let {Xj1, . . . , Xjnj}, for j =
1, 2, be two independent samples of independent random variables, where nj
denotes the sample size of the random sample j. We assume that the Xij
have a finite fourth moment, and that X1j has a lattice distribution with
maximal edge ej , for j = 1, 2. Let X̄j = n−1

j

∑
iXji be the sample mean of

sample j. Put S = X̄1 + X̄2, and denote by βn the standardised skewness of
the distribution of S. Define ρ = ρ(n) = (e2 n1)/(e1 n2), take n = n1 + n2

to be the asymptotic parameter, and view n1 and n2 as functions of n. We
are interested in an Edgeworth expansion of the distribution of S under the
following two assumptions. First, assume that

lim inf
n→∞

n−1 min
j=1,2

nj > 0 , (1)

which ensures that the two sample sizes n1 and n2 are diverging at a similar
pace. Moreover, for a positive rational number ρ0 and some γ ∈ (0, 1/2),
assume that

|ρ− ρ0| � n−γ , (2)

where the notation a(n) � b(n), for positive sequences a(n) and b(n), means
that the ratio a(n)/b(n) is bounded away from 0 and infinity as n → ∞.
Assumption (2) ensures that the ratio (e2 n1)/(e1 n2) converges slowly to
a rational number. Let φ and Φ denote the standard normal density and
distribution functions, respectively. We have proved the following result.

Assume that (1) and (2) hold. Then, if γ is such that 0 < γ < 1/4,

P

{
S − E(S)

(varS)1/2
≤ x

}
= Φ(x) + n−1/2 1

6
βn
(
1− x2)φ(x) +O

(
n−(1/2)−γ) , (3)

whereas if 1/4 ≤ γ < 1/2 then the remainder in (3) changes to O(nγ−1+ε),
for any ε > 0. In both settings, (3) holds uniformly in x as n→∞.

Expansion (3) can be specialised in the context of a single sample
{X1, . . . , Xn} of size n of i.i.d. random variables, rather than two distinct
samples. Split the random sample {X1, . . . , Xn} randomly into two parts
{Xj1, . . . , Xjnj} for j = 1, 2, where n1 = 〈n/2 + sn〉 and n2 = n − n1 with
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〈x〉 denoting the integer nearest to a real number x and with the sequence sn
satisfying |sn| � n1−γ , for some γ ∈ (0, 1/2). Let X̄split = (X̄1 + X̄2)/2 be a
split-sample version of the conventional sample mean X̄ = n−1 ∑

iXi. Like
X̄, X̄split is unbiased for E(X). Under assumptions (1) and (2), expansion (3)
becomes

P

{
X̄split − E(X)

(var X̄split)1/2
≤ x

}
= Φ(x) + n−1/2 1

6
β0

(
1− x2)φ(x) +O

(
n−ξ

)
, (4)

where β0 denotes the standard skewness of the distribution of X, and

ξ =

{
1/2 + γ if γ ∈ (0, 1/4)

1− γ − ε for any ε > 0, if γ ∈ [1/4, 1/2) .

On the other hand, the Edgeworth approximation to the standardised distri-
bution of X̄ contains a uniformly bounded but highly oscillatory term of the
same order as the correction for skewness, see Esseen [3]. In particular, this
term does not cancel from expansions of coverage error of two-sided confidence
intervals based on normal approximations.

Expansion (4) shows that the main effects of distribution smoothness can
be understood in terms of ρ. In particular, when ρ converges sufficiently slowly
to a rational number, the effects of the discontinuity of lattice distributions
are of smaller order than the effects of skewness. This is true in many other
cases too, for example when ρ converges to an irrational number, see Decrouez
and Hall [2]. In other words, the normal approximation under assumptions
(1) and (2) is more accurate that one would usually get for the distribution
of the sum of sample means of lattice-valued random variables. Therefore,
constructing those confidence intervals using the split-sample approach, with
n1 and n2 carefully chosen, produces confidence intervals with more accurate
coverage than conventional approaches. A numerical study in the context of
estimating a binomial proportion or a Poisson mean shows that split-sample
methods perform well when it is used to modify confidence intervals based on
existing techniques that already perform very well. In particular, we compare
our approach with intervals considered in [1], and show that the split-sample
intervals typically have better coverage accuracy.
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A moment inequality for a certain class of weakly
dependent random fields

Vadim Demichev

Moscow State University, Russia, vadim.demichev@gmail.com

Consider a family U = {(u1, v1]× · · · × (ud, vd], ui, vi ∈ Z, i = 1, . . . , d} of
blocks in Rd, d ∈ N. For U = (u1, v1]×· · ·×(ud, vd] ∈ U set |U | =

∏d
i=1(vi−ui).

We study partial sum moments of (BL, θ)-dependent random fields (see, e.g.,
[1], p. 94). Using a method proposed by Shao and Yu [2] we prove

Theorem 1. Let X = {Xk, k ∈ Zd} be an integrable centered (BL, θ)-
dependent random field with θ(x) 6 Cx−λ, x > 1, where C, λ > 0. Suppose
there exists s > 2, such that Ms = supk∈Zd E|Xk|s <∞. Then for each U ∈ U ,
any p ∈ (2, s) and ν > 0 the following inequality holds

E

∣∣∣∣∣∑
k∈U

Xk

∣∣∣∣∣
p

6

6 K

(
|U |1+ν max

k∈U
E|Xk|p + |U |γC(s−p)/(s−2)M (p−2)/(s−2)

s + |U |p/2Qp/2(X)

)
.

Here K = K(d, s, p, ν, λ), γ = max{(s(p− 1)− p− λ(s− p)/d)/(s− 2), 1 + ν},

Q(X) = sup
U∈U

1

|U |E

(∑
k∈U

Xk

)2

.

In [2] this estimate is established for d = 1 and Xk = f(Yk), k ∈ Z, where
f is a Lipschitz function and Y = {Yk, k ∈ Z} is an associated sequence.
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Method for localization of brain activity sources

Margarita Dranitsyna 1, Grigory Klimov 2

1Moscow State University, Russia, margarita13april@mail.ru
2Moscow State University, Russia, gregklimov@yandex.ru

The brain functional mapping is a challenging task posed by current tech-
niques for non-invasive investigation of the brain. Magnetoencephalography
(MEG) is a very powerful tool with a scientific and medical application po-
tential. It allows to retrieve large datasets describing processes in the human
brain. Analysing these date we face with a highly ill-posed inverse problem –
precise spatial reconstruction of the MEG signal sources in the human brain.
At the moment there are no tools powerful and accurate enough to analyse
MEG datasets in the inverse problem context.

In general MEG inverse problem can be written in a form:

Bt = GJt +Nt, (1)

where: Bt ∈ RNsensors is the random vector representing the measured data
at time t; G is the lead-field matrix; Jt ∈ R3Npoints is the random vector rep-
resenting the sources distribution at time t; Nt ∈ RNsensors is the noise in the
model.

Given the stochastic nature of the signal noise we can consider the inverse
problem from the statistic point of view. It allows to analyse linear as well as
non-linear models with a noise distributed distinctly (e.g., nongaussianity of
MEG signal noise was shown earlier).

Apparently MEG data contain a superposition of multidipole signals (sig-
nal source generalising). We can firstly apply Independent Component Anal-
ysis (ICA) to these MEG data. ICA enables to separate multiple independent
dipoles by finding several directions of maximum nongaussianity and decom-
pose relevant independent signal sources.

An analytical solution of the neuroimaging inverse problem was obtained
from Biot Savart equation, if simplify the model assuming head spherical shape
and uniform conductivity of the brain tissue:

Br = −µ0

4π

[−→
Q,−→rQ

]−→er
|−→r −−→rQ|3

, (2)

where:
−→
Q is dipole moment, −→rQ is dipole coordinates, µ0 is magnetic constant

and −→er is a unit vector, −→er =
−→r
r

.
Assuming monodipole model the analytical solution can be written in

spherical coordinates in the form:

rQ = R
(3− cos2 θ)±

√
(3− cos2 θ)2 − 4 cos2 θ

2 cos θ
. (3)
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Obtained independent components may be treated as a single-sources mod-
els and this enables to use analytical solutions (Eq. 3).

The software based on ICA and also engaging other approaches for neu-
roimaging inverse problem solving is under development at the moment.

We do hope that our work and findings in this field will advance inverse
problem solving and become of practical use in everyday clinical practice.
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Branching processes in random environment

Elena Dyakonova

Steklov Mathematical Institute, Russia, elena@mi.ras.ru

Let ζ = {ζn, n = 1, 2, . . .} be an irreducible positive recurrent Markov
chain with a countable state space Θ = {θ1, θ2, . . . , θk, . . .}. With each θ ∈
Θ we associate a p-dimensional vector f (θ)(s) = (f

(θ)
1 (s), . . . , f

(θ)
p (s)), s ∈

Jp := {s = (s1, . . . , sp) : 0 ≤ si ≤ 1, i = 1, . . . , p}, of probability generating
functions.

Consider a Galton–Watson branching process Z(n) = (Z1(n), . . . , Zp(n)),
n = 1, 2, . . . , evolving in the random environment ζ, which describes the evo-
lution of a population with p types of particles, where Zi(n), i = 1, . . . , p, is
the number of type i particles in the n-th generation of the process. More
precisely, it is assumed that, given ζn = θ, all the Zi(n) type i particles of the
n-th generation reproduce according to the reproduction law generated by the
p-dimensional generating function f

(θ)
i (s), independently of the other particles

of this generation and of the prehistory of the process.
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Limit theorems for the number of particles are established for this process.
The results obtained generalize and strength a number of known results es-
tablished earlier for the critical branching processes (with one or several types
of particles) evolving in a random environment generated by a sequence of
independent and identically distributed random variables.

This work is supported by RFBR, grant 11-01-00139.
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Integro-local limit theorem for sums of independent
random variables in scheme of series

Shakir K. Formanov 1, Tamara A. Formanova 2
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1. Introduction.

Let Xn1, Xn2, ..., Xnn be independent random variables in scheme of series
with,

EXnj = 0, 0 < σ2
nj = DXnj <∞, B2

n =

n∑
j=1

σ2
nj ,

σ2
n = max

j≤n
σ2
nj , Sn =

n∑
j=1

Xnj .

In what follows we will use notation from A.A.Borovkov [1].
Let ∆ be any positive number and ∆[x) denotes an interval [x, x+ ∆) . In

present work an asymptotic behavior of the probability

P (Sn ∈ ∆[x))

is studied, provided the following conditions hold:
1) There exists constants 0 < c1 < c2 <∞ which do not depend on n such

that
c1 6 σn 6 c2. (1)
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2) As n→∞

Bn →∞. (2)

Following Borovkov [1] we say that for the sequence {Xnk, k ≤ n} of ran-
dom variables (r.v.’s) integro-local limit theorem takes place, if for any ∆ > 0

P (Sn ∈ ∆[x)) =
∆

Bn
ϕ

(
x

Bn

)
+ o

(
1

Bn

)
, (∗)

where ϕ (x) = (2π)−1/2 e−x
2/2 is a density of standard normal distribution,

the reminder term o
(

1
Bn

)
is uniform in x .

If r.v.’s Xnj = Xj
d
=X are identically distributed, do not depend on n and

nonlattice then known theorems of Shepp - Stone [2], [3] establish asymptotics
of P (Sn ∈ ∆[x)) for any fixed ∆ > 0.

2. Integro-local limit theorem.
Let Fnj (x) and Φnj (x) be distribution functions of Xnj and Gaussian

random variable’s with parameters
(
0, σ2

nj

)
. Assume that the following takes

place
n∑
j=1

∫
|x|>εBn

|x| |Fnj (x)− Φnj (x)| dx→ 0 (L)

for any ε > 0 .
We will use the condition of asymptotic nonlatticity (R) from [1]. For given

ε > 0. and N > 0 set

qnj = qnj (ε,N) = sup
ε6|t|6N

|fnj (t)| , fnj (t) = EeitXnj

Condition (R): for any fixed ε > 0 and N > 0

Bn
n∏
j=1

qnj → 0 as n→∞ .

Theorem. Assume that the conditions (1), (2), (L) and (R) hold. Then
integro-local limit theorem (*) takes place.

Note that in above theorem, the condition of uniform integrability of the

sequence of random variable’s

{
X2
nj

σ2
nj
, j > 1

}
used in [1] to prove integro-local

theorem, replaced by weaker condition (L).
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Reduced-bias mean-of-order-p extreme value index
estimation
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Given a sample of size n of independent and identically distributed random
variables (r.v.’s), X1, . . . , Xn, with distribution function (d.f.) F , let us denote
by X1:n ≤ · · · ≤ Xn:n the associated ascending order statistics. Let us further
assume that there exist sequences of real constants {an > 0} and {bn ∈ R}
such that the maximum, linearly normalized, i.e. (Xn:n − bn) /an, converges
in distribution to a non-degenerate random variable. Then (Gnedenko [3]), the
limit distribution is necessarily of the type of the general extreme value d.f.,
given by the functional expression, EVγ(x) = exp(−(1+γx)

−1/γ
+ ), γ ∈ R. The

d.f. F is then said to belong to the max-domain of attraction of EVγ , and we
write F ∈ DM (EVγ). The parameter γ is the extreme value index (EVI), the
primary parameter of extreme events. For heavy-tailed models, i.e. a positive
EVI, the classical EVI-estimators are the Hill estimators (Hill [5]), which are
the average of the log-excesses, Vik := lnXn−i+1:n− lnXn−k:n, 1 ≤ i ≤ k < n,
and can thus be written as the logarithm of the geometric mean (or mean-
of-order-0) of the statistics Uik := Xn−i+1:n/Xn−k:n, 1 ≤ i ≤ k < n. More
generally, we can consider as basic statistics the mean-of-order-p (MOP) of

Uik, p ≥ 0, denoted by Mp(k) =
(∑k

i=1 U
p
ik/k

)1/p
, and the associated class of

MOP EVI-estimators, introduced and studied in Brilhante et al. [1], dependent
now on a tuning parameter p ≥ 0, and with the functional expression,

Hp(k) :=

{ (
1−M−pp (k)

)
/p if p > 0

lnM0(k) = H(k) if p = 0,

with H0(k) ≡ H(k), the Hill estimator. The class of MOP EVI-estimators is
highly flexible, but it is not asymptotically unbiased for large and even for
moderate k-values, the ones that lead to minimum mean square error. After
reviewing the asymptotic behaviour of the class of MOP EVI-estimators, we
introduce and study asymptotically and for finite samples, a class of reduced-
bias MOP (RBMOP) EVI-estimators, indeed an optimal RBMOP (ORBMOP)
class of EVI-estimators, introduced in the following.
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Whenever dealing with bias reduction, it is usual to consider a slightly more
restrict class than D+

M := DM (EVγ)γ>0, the class of models with a reciprocal

quantile function U(t) := F←(1−1/t) = C tγ
[
1+A(t)/ρ+o(tρ)

]
, A(t) = γβtρ,

as t → ∞, where C > 0, γ > 0, ρ < 0 and β 6= 0 (Hall and Welsh [4]). The
simplest class of corrected-Hill (CH) EVI-estimators, introduced in Caeiro et
al. [2], is defined as

CH(k) ≡ γ̂CH
n (k) ≡ γ̂CH

n,β̂,ρ̂(k) := H(k)
(

1− β̂(n/k)ρ̂/(1− ρ̂)
)
.

These estimators can be second-order minimum-variance reduced-bias
(MVRB) estimators, for adequate levels k and an adequate external estima-
tion of the vector of second-order parameters, (β, ρ), i.e. the use of CH(k) can
enable us to eliminate the dominant component of bias of the Hill estimator,
H(k), keeping its asymptotic variance. Indeed, from the results in Caeiro et
al. [2], we know that, asymptotically, CH(k) overpasses H(k) for all k. For the
aforementioned class of models and for p < 1/(2γ), so that the asymptotic
normality of the MOP EVI-estimators holds, there is an optimal value p ≡ pM

given by pM =
(
1 − ρ/2 −

√
ρ2 − 4ρ+ 2/2

)
/γ =: ϕ(ρ)/γ, which maximizes

the efficiency of the MOP EVI-estimators. Then, with the notation H∗ for
the MOP estimator associated with p ≡ pM , H∗(k) overpasses H(k) for all k
and, with Z∗k a standard normal r.v., we get the validity of the asymptotic
distributional representation

H∗(k) ≡ Hp
M

(k)
d
= γ +

γ(1− ϕ(ρ))Z∗k√
k
√

1− 2ϕ(ρ)
+

(1− ϕ(ρ))A(n/k)

1− ϕ(ρ)− ρ + op
(
A(n/k)

)
,

which immediately suggests the consideration of the ORBMOP EVI-estimator,

CH∗(k) ≡ ORBMOP(k) := CHpM(k) = H∗(k)
(

1− β̂(1− ϕ(ρ̂))

1− ρ̂− ϕ(ρ̂)

(n
k

)ρ̂ )
.

Then, CH∗(k) outperforms H∗(k) for all k, just as CH(k) outperforms
H(k). We further compare such a class of estimators with the MVRB EVI-
estimators, for finite samples. An application to simulated random samples
and to sets of real data in the fields of insurance, finance and environment is
undertaken and some overall comments on the new ORBMOP EVI-estimation
are drawn.

Acknowledgements. Research partially supported by National Funds
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Localization of areas of brain activity is a cornerstone in the study of
the brain, as well as in helping people with various pathologies. Many scien-
tific teams engaged in similar research, from physiologists and neurosurgeons,
to mathematicians and physicists. Over many years of research in this area
many revolutionary and evolutionary changes have been done. In particular
the method was invented to register the magnetic activity of the brain, using
ultra-sensitive sensors - quantum interference devices allowing to catch the
field inductances 1015 T (1010 times weaker than the geostationary Earth’s
field). Apparatus for magnetoencephalography (MEG) research is very com-
plicated and sensitive. Nowadays in Russia there is only one such device in
the MEG-center at Moscow State University of Psychology and Education
and about 30 items are in use all over the world (for more details about the
MEG-research see [1, 2]).

Classically forward MEG problem stated as follows:

Yt = L · Jt + ε,

where Yt contains MEG-signals, L - leadfield matrix (i.e., the Biot-Savart
operator, generated using mesh, obtained from patient MRI), Jt - dipoles
activation vector and ε is noise vector.

The main difficulties in the inverse problem solving are that the matrix
L is far from the square one and the solution is extremely unstable. We have
studied the classical methods (see [2]), as well as some new ones (see [3]). Using
this knowledge we theoretically proved the inability of active brain regions’
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precise localisation using these methods in the current form, because there
are situations in which they do not converge. Also we started to develop the
method that will use an adaptive segmentation of the brain (grouping of similar
areas into one) and iteratively specify the location of active regions.
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On information technology for the plasma turbulence
research

Andrey Gorshenin
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Nowadays the design of methods for the analysis of stochastic processes is
very important for the evaluation of turbulence characteristics when conditions
of the plasma confinement are changed. Finite local-scale normal mixtures are
the basis of model to describe the fine structure of the chaotic processes [1].
The paper aims at review of creation the information technology to identify the
specific plasma turbulence structures by spectral analysis. Development and
application of new methods of analyzing spectra are based on a special prob-
abilistic bootstrap-like approach. There are two reasons for the methodology.
First of all, bootstrap is well-known procedure in the research of complex pro-
cesses in various areas. Secondly, the compliance of the implemented method
results with experimental ones is quite good.

Some ideas with application could be found in paper [2]. For example,
lets consider the short-wave fluctuations of the plasma near the centre of the
plasma filament (see one-sided spectrum in Fig. 1). There are four dominating
components forming the spectrum. It corresponds with transmission of energy
between various turbulence types. Another examples of spectra decompositions
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Figure 1: Normal components in spectra

for the low-frequency plasma fluctuations under different external conditions
are in paper [2] too.

Note, to find the maximum likelihood estimates, classic EM-algorithm is
used in the paper [2]. But creation of information technology should not be
restricted by the only one method. For example, we can use different modifi-
cations of EM-algorithm for improving accuracy and computational efficiency.
The grid methods in situations, when parameter range can be specified, are
suitable too. Not only finite local-scale normal mixtures can be used as valid
model but mixtures of another distributions (for example, gamma distribu-
tions) are convenient too. Implementation of new methods entails theoretical
exploring for stability, computational efficiency, etc.

Integration of different methodologies, algorithms and techniques in the
united information technology make it possible to analyse stochastic processes
in plasma turbulence more precise and to obtain new physical results.

Acknowledgements. Author would like to thank Professor V.Yu. Korolev
for useful advices during the research.
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Stochastic approach for big data analysis
Andrey Gorshenin
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There is the global trend of large data set processing in different fields. So
it leads to actuality of big data problematic. It should be pointed out that
special official commissions try to standardize conception ”big data” in the
USA and European countries. Global leading IT-companies (IBM, Microsoft,
HP, Google, etc) suggest some solutions for big data working and at the same
time they look for data scientists. So, urgency of methodology design for big
data analysis is obvious.

Generally term ”big data” in information technologies implies collection of
data sets so large and complex that traditional data storage and processing
tools (for example, using data bases) are inefficiency. And the most important
and critical problem for big data is development of methods which could be
worked with the specific data. Leaving out the question of big data storage the
paper suggests some ideas for big data analysis based on stochastic approach.

The main advantage of the approach is combination of statistical analysis
and data mining methods. We use basic assumption about stochastic character
of data and suppose that data can be modelled by mixture of probability
distributions. For the investigation of the fine structure of data flow we assume
the total sample to be locally homogeneous and suggest that within the window
(number of elements) the sample is homogeneous. Then the window moves in
the direction of the astronomic time making it possible to trace the evolution
of the mixture parameters in time. This idea is the essence of a data mining
method which is called ”moving separation of mixtures” (MSM method) [1].
Accordingly, the original sample is split into smaller subsamples (windows),
and the system is analysed within each window.

Undoubtedly, computational efficiency problems can be arose for big data.
Methodology should be tested on diagnostic data with smaller volume, but
the data must be real. Some applications for special information system and
its information flows could be found in paper [2]. The limit order book for a
some time is the example of real financial big data. But the subsample from
the limit order book (for example, its behaviour during one day) can be used
for testing and adjustment methodology of analysis. Fig. 1 shows some results
for one-day subsample which were obtained by MSM method based on classic
EM-algorithm [1] and finite mixtures of gamma distributions.
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Figure 1: Evolution of density and profile for one of window possition

Consider reasons for mixtures of gamma distribution. Classical stochastic
models of information systems are based on the hypothesis that the data flows
are Poisson. The assumption of the Poisson character of flow entails the fact
that the development of a random process in future does not depend on its
past and is determined only by its value at the current time. But this model
is ideal, because real processes do not satisfy the ideal conditions that imply
Poissonity. Because of heterogeneity of chaos in real information systems, com-
pound Cox process [1] should be used instead of Poisson process. So,we have
special reasons to examine finite gamma mixtures for modelling information
flows.

Fig. 1 shows good compliance between histogram and profile of density in
different window locations. So, we expect identical results for various data.

Note, the methodology can be applied to dissimilar information systems.
For example, such models can be used for various sample for web-traffic anal-
ysis. Instead EM-algorithm the grid methods is suitable for separation of mix-
tures in some situations. Moreover, paper [3] shows prospectivity of intensity
flows research for exploring fine process structure (in terms of financial sys-
tems). Thus the methodology admits different opportunities for improving.

The results mentioned above imply that described approach represents one
of the perspective technique for big data analysis.

Acknowledgements. Author would like to thank Academician
I.A. Sokolov for useful information about big data problems and Professor
V.Yu. Korolev for significant discussions.
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Let us consider an autoregressive field Xij described by an equation

Xij = a10Xi−1,j+a01Xi,j−1 +a11Xi−1,j−1 +εij , i, j = 0,±1,±2, . . . , (1)

where εij are independent and identically distributed random variables with
an unknown distribution function F (x) and a = (a10, a01, a11) is an unknown
vector of the parameters.

The processes of spatial autoregression are used in the theory of pattern
recognition, economy, geology, geography, biology, agriculture, and so on [1,2].
The traditional methods of studying (1) rely on the principles of maximum
likelihood (see [3] and their bibliographies). They suggest that the distribution
of the εij is known. However, this is not always true in practice. Therefore there
is a need for methods oriented to a wide class of distributions εij . One of such
methods is a sign method which appeared as early as in the XVIII century and
showed itself to good advantage in the recent decades [4]. Sign method uses
not the observation Xij , but only signs Sij(a) = sign(εij(a)), sign(x) = x/|x|,
of residuals

εkl(a) = Xij − a10Xi−1,j + a01Xi,j−1 + a11Xi−1,j−1,
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and relies on the assumption that the distribution function F (x) of εij should
satisfy the condition F (0) = 1/2.

In this paper sign estimate for the parameter a of field (1) is constructed
and investigated. The sign estimate is shown to be consistent and asymptot-
ically normal. It allows to calculate the asymptotic relative efficiency of sign
estimate with respect to least squares estimate for the main types of proba-
bility distributions of the innovation field εij .

We define the set {δij(a)} by the recurrent relation

δij(a) = a10δi−1,j(a) + a01δi,j−1(a) + a11δi−1,j−1(a), i, j = 1, 2, . . .

with the boundary conditions δ00(a) = 1, δk0(a) = (a10)k, δ0l(a) = (a01)l,
k > 0, l > 0, δij(a) = 0, i < 0 or j < 0.

We denote φ(x) = −f
′(x)

f(x)
,

Zij(a) =

m∑
k=i+1

n∑
l=j+1

Skl(a)Sk−i,l−j(a),

Wpq(a) =

m−1−p∑
i=0

n−1−q∑
j=0

δij(a)Zi+p,j+q(a).

In [5] are shown that W (a) = (W10(a),W01(a)W11(a)) — the statistics
of the locally most powerful tests for checking H0 : a = a0. Small values of
|Wpq(a

0)| attest to H0. Therefore, according to the idea of J.L.Jr. Hodges and
E.L. Lehmann [6], we propose to estimate the parameter a by the solution â
of the equation system W (a) = 0.

Theorem. Let the distribution F (x) and density f(x) functions of indepen-
dent identically distributed random variables εij in (1) satisfy the conditions
F (0) = 1

2
, f(0) > 0, Eεij = 0, Eε3

ij <∞, E[φ2(x)] <∞,
∫∞
−∞ |f

′(x)| dx <∞,

E[|f(θuX11)− f(0)||X11|]→ 0 under u→ 0 for all θ ∈ (0, 1),

|φ(x+ y)− φ(x)| ≤ C|y|, y ∈ R, C > 0, for a.s. x ∈ R.

Then, as m,n → ∞ the random vector
√
mn(â − a0) is asymptotically

normal with zero mean and covariance matrix (4f(0)µ)−2K−1, where a0 —
true parameter of (1), µ =

∫ 0

−∞ xf(x) dx,

K =

K00 K11 K01

K11 K00 K10

K01 K10 K00

 , Kkl =

∞∑
i=0

∞∑
j=0

δij(a
0)δi+k,j+l(a

0).

Corollary. The asymptotic relative efficiency of sign estimates with re-
spect to least squares estimates is e(f) = 16f2(0)µ2.
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On a Bahadur-Kiefer representation of von Mises
statistic type for intermediate sample quantiles

Nadezhda Gribkova

Saint-Petersburg State University, Russia, nv.gribkova@gmail.com

Let X1, X2, . . . be a sequence of independent identically distributed real-
valued nondegenerate random variables with common distribution function
(df) F , and for each integer n ≥ 1 let X1:n ≤ · · · ≤ Xn:n denote the order
statistics based on the sample X1, . . . , Xn.

Introduce the left-continuous inverse function F−1 defined as F−1(u) =
inf{x : F (x) ≥ u}, 0 < u ≤ 1, F−1(0) = F−1(0+), and let Fn and F−1

n

denote the empirical df and its inverse respectively, put f = F ′ to be a density
of F , when it exists.

Let kn be a sequences of integers, such that kn → ∞, whereas pn :=
kn/n → 0, as n → ∞. Let ξpn = F−1(pn), ξpn n:n = F−1

n (pn) denote pn-th
population and empirical quantile respectively.

Let SRV −∞ρ be a class of regularly varying in −∞ functions such that
g ∈ SRV −∞ρ if and only if:

(i) g(x) = ±|x|ρ L(x), for |x| > x0, with some x0 < 0, ρ ∈ R, and L(x) is a
positive slowly varying function at −∞;
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(ii)
∣∣∣ g(x+4x)−g(x)

∣∣∣ = O
(
| g(x)|

∣∣∣4xx ∣∣∣1/2), when4x = o(|x|), as x→ −∞.

Here is one of our main results.

Theorem 1. Let kn → ∞, pn → 0, as n → ∞, and suppose that F−1 is
differentiable in (0, ε) for some ε > 0 and that f ∈ SRV −∞ρ with ρ = −(1+γ),
γ > 0. Let G be some function differentiable in F−1((0, ε)), and g = G′ ∈
SRV −∞ρ with some ρ ∈ R. Then

∫ ξpn

ξpnn:n

(G(x)−G(ξpn)) dFn(x) = −1

2
[Fn(ξpn)− pn]2

g

f
(ξpn) +Rn,

where

P
(
|Rn| > Ap3/4

n (log kn/n)5/4 |g|
f

(ξpn)
)

= O(k−cn )

for each c > 0 and some positive constant A, which depends only on c.

Moreover, if, in addition, k−1
n logn→ 0, as n→∞, then

P
(
|Rn| > Ap3/4

n (logn/n)5/4 |g|
f

(ξpn)
)

= O(n−c)

for each c > 0 and some positive constant A, which depends only on c.

Although we assume that kn → ∞ but kn/n → 0, it is evident that a
similar result holds for the case n− kn →∞ but (n− kn)/n→ 0, as n→∞.

In particular (when G(x) = x), Theorem 1 provides a Bahadur – Kiefer
type representation for the sum of order statistics lying between the interme-
diate population pn-quantile and the corresponding sample quantile by a von
Mises type statistic approximation, especially useful in establishing second
order approximations for (slightly) trimmed means (cf. Gribkova & Helmers
[1, 2, 4]).

The talk is based on a joint work [3] with R. Helmers (CWI, Amsterdam,
The Netherlands).

Acknowledgements. The work was partially supported by the Russian
Foundation for Basic Research (grant RFBR no. SS-1216.2012.1).
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Bayesian analysis of multivariate time dependent models

Steward Huang

University of Arkansas - Fort Smith, Arkansas, USA, stewardhuang@gmail.com

Multivariate models under Bayesian formulation have attracted the atten-
tions of many researchers over the years. These models have extensive appli-
cations in many real world situations. One of the reasons is that with the
computational advantages over classical models, Bayeasian methodolody can
accommodate complicated practical scenarios into their models without being
overly-simplified by too many unnecessary or even unrealistic assumptions.

In our research, our interest is to study models which demonstrate nonlin-
ear behaviors and are under the influence of autocorrelation, especially with
time as a factor. These curves are often also called growth curves. Also in-
tuitively, we know that the growth of organisms are normally determined by
more than one variable (in addition to time) and these variables are usually
correlated or even autocorrelated, such as weight and height, etc. Our research
provides a unique as well as comprehensive model which incorporates all of
the above mentioned conditions. Users will then have the flexibility to make
impartial choices of priors to sample from the posteriors for estimating the
model parameters.
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Generalized convolutions in the non-commutative
probability

Barbara Jasiulis-Go ldyn 1, Anna Wysoczańska-Kula 2

1Institute of Mathematics, University of Wroc law, Poland,
Barbara.Jasiulis@math.uni.wroc.pl

2Institute of Mathematics, University of Wroc law, Poland,
Anna.Kula@math.uni.wroc.pl

We consider the following binary operations from the non-commutative
probability theory:

• q- convolution defined by G. Carnovale and T. Koornwinder introduced
in [1],

• (p, q)-convolution introduced by A. Kula and E. Ricard in [6].

We show that the above convolutions on the set of the sequences of moments
M+ of probability measures on (0,∞) are generalized convolutions defined on
M+ ×M+. The relationship between q- convolution and (p, q)-convolution is
similar to the weak stability property under generalized convolution introduced
by J. Kucharczak and K. Urbanik in [5]. We follow the method of defining of
weakly stable probability measures under generalized convolution given in [5]
and apply this construction in the Kendall convolution case. This way we
obtained a new classes of heavy tailed distributions.
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Dividend payments in discrete time model

Narine Karapetyan

Moscow State University, Russia, karanar@mail.ru

The study of dividend payments problems goes back to De Finetti [1]. He
was first to consider an insurance company as a stock company and suggest
that the main goal of the company should be maximizing the expected dis-
counted dividends paid to the shareholders until ruin. De Finetti worked with
a discrete time model and proved that the optimal dividend strategy must
have been a barrier one.

We consider discrete time model to describe work of an insurance company
with the initial surplus x ∈ N and assume that a dividend strategy with a
constant barrier n ≥ x (n ∈ N) is applied. It means that when the surplus
attains n, dividends are paid out to the shareholders until the next claim
occurs. The surplus at the i-th moment can be defined as

Sx(i) = min(Sx(i− 1) + 1− zi, n), Sx(0) = x,

where zi is the claims amount paid to policy holders at i-th moment. Those
amounts are i.i.d. random variables with

P (zi = 0) = p, P (zi = 1) = r, P (zi = 2) = q, p+ q + r = 1.

Let the time until ruin be ηx = min(i : Sx(i) < 0). Then the expected
discounted dividends paid to shareholders until ruin can be determined as

mx(n) = E

ηx∑
i=1

viDx(i),

where Dx(i) = max(Sx(i− 1) + 1− zi − n, 0) is the amount of dividends paid
to shareholders at the i-th moment and 0 < v < 1 is a force of interest.
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Lemma 1. Let an insurance company use dividend strategy with a constant
barrier n ≥ x, x, n ∈ N . Then the amount of expected discounted dividends
paid to shareholders until ruin is

mx(n) =
ax+1

2 − ax+1
1

∆n
,

where ∆n = an+1
2 (a2 − 1) + an+1

1 (1− a1) and 0 < a1 < 1 < a2 are the roots of
the quadratic equation vpa2 + (vr − 1)a+ vq = 0.

Knowing the expression of dividend payments we can find the optimal
barrier which maximizes mx(n).

Theorem 1. If p < q
(

1 + 1−v
vq

)2

then the optimal barrier should be equal

to the initial surplus x. Otherwise it is either one of the natural numbers closest

to n∗ = log a2
a1

(1−a1)2

(a2−1)2
− 1 or x in case n∗ < x.

De Finetti proved that if a barrier strategy was applied then the ruin would
take place with certainty. Thus it makes sense to investigate the time ηx until
ruin more closely.

Lemma 2. Let ux,k be the probability that the ruin will occur at k-th mo-
ment. Then generating function Ux(s) =

∑∞
k=0 ux,ks

k for the variable ηx can
be described by following expression

Ux(s) =

(
q

p

)x+1
(λ1(s)− 1)λn−x1 (s) + (1− λ2(s))λn−x2 (s)

(λ1(s)− 1)λn+1
1 (s) + (1− λ2(s))λn+1

2 (s)
,

where λ1,2(s) are the roots of the equation psλ2(s) + (rs− 1)λ(s) + qs = 0.
We consider the normalized random variable τx = ηx

Eηx
and find its limit

behavior when the probability of the company surplus to stay intact converges
to 1.

Theorem 2. If it is equiprobable for the surplus to increase or decrease
per unit time, i.e. p = q, then limiting distribution of τx (while r → 1) is
a mixture of (n − x + 1) distributions where the k-th (k = 0, . . . , n − x) of
it is a convolution of (n − k + 1) exponential distributions with parameters

(−x2 + (2n+ 1)x+ 2(n+ 1))
(

1− cos 2j+1
2n+3

π
)
, j = k, . . . , n.

In the case of p 6= q the form of limiting distribution depends on the correlation
of p and q:
1) if qp−1 → 0 then limiting distribution of τx is exponential with parameter
1;
2) if qp−1 → ∞ then it is a sum of (x + 1) exponential distributions with
parameter (x+ 1);
3) if qp−1 → d 6= 0,1 then the density of limiting distribution while r → 1 can
be found as

p(u) =

n+1∑
k=1

Sn−x(γk,n+1)

Hk(γk,n+1)
eγk,n+1u,
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where Hk(u) =
Sn+1(u)

u−γk,n+1
and γk,n+1, k = 1, . . . , n + 1, are solutions of the

equation Sn+1(u) = 0. The expression Sn+1(u) is calculated according to the
formula

Sm(u) =
(µ1 − 1)µm1 + (1− µ2)µm2

µ1 − µ2

with c = (d− 1)2((d− 1)(x+ 1) + d−n−1 − dx−n)−1, µ1,2 = w ±
√
w2 − d and

w = d+1+cu
2

.
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Robustness of sequential decision making on parameters
of stochastic data under distortions

Alexey Kharin

Belarusian State University, Belarus, KharinAY@bsu.by

Sequential approach [1] to the problem of decision making on parameters
of stochastic data is an effective method to minimize the expected number
of observations provided the requested small values of error probabilities are
satisfied [2]. Optimality properties stated by the theory for sequential tests are
often broken in practice as data do not follow a hypothetical model exactly, in
other words, the hypothetical model is distorted [3] – [6], and the performance
characteristics of sequential procedures (error probabilities values, expected
sample sizes) demonstrate their instability, and increase significantly [7].

The problem of robustness [3] of sequential statistical procedures for de-
cision making is analyzed theoretically for simple and composite hypotheses
cases for several models of data: independent observations, Markov chains,
high order Markov chains, time series with trends, autoregressive time series.
The following types of distortions are considered: ”outliers” in observations,
”contamination” of prior probability distributions of parameters, neighbor-
hoods in L1- and C- metrics. Asymptotic expansions for the sequential test
performance characteristics are constructed with respect to the distortion level
value. With the use of main terms of these expansions, the deviations of the
performance characteristics under distortions from the hypothetical values are
evaluated.

A parametric family of robustified sequential procedures is proposed, and
within this family the robust sequential procedures are constructed by the total
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error probability maximal value minimization provided the expected sample
size is constrained. The theory is applied to the problems of incidence data
monitoring and to the problems of medical diagnostics.

Acknowledgements The research is partially supported by the project
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Multivariate fractional Levy motion

Yury Khokhlov

Peoples’ Friendship University of Russia, Russia, yskhokhlov@yandex.ru

We propose a multivariate analog of fractional Levy motion. One-
dimentional variant of this process has been represented in De Nicola [1],
where some application to network traffic modelling has been considered.

Let (BH(t), t ≥ 0) be multivariate fractional Brownian motion, i.e.

1) BH has Gaussian distributions in Rp,
2) BH is H-self-similar, H ∈ (0, 1)p,
3) BH has stationary increments.

(see, for example, Amblard [2] and Stoev [3]).
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Next let (Lα(t), t ≥ 0) be Levy motion with one-sided α-stable distribu-
tions, α < 1.

Stochastic process

X(t) := BH(Lα(t)) , t ≥ 0.

is said to be Multivariate Fractional Levy Motion.
In our report we investigate the properties of this process and consider its

applications to actuarial and financial mathematics and teletraffic modelling.
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Parallel minimax control
in the two-armed bandit problem, one arm known

Alexander Kolnogorov

Yaroslav-the-Wise Novgorod State University, Russia, kolnogorov53@mail.ru

We consider a problem of rational adaptive control in a random environ-
ment which is also well-known as the two-armed bandit problem (see e.g.
Sragovich [1], Berry and Fristedt [2]) in application to processing a large num-
ber T items of data. Two universal methods of data processing are available,
numbered by ` = 1, 2. All data are partitioned into N groups each containing
K items of data, so T = NK. Data in the same group are processed by the
same method and this processing can be implemented in parallel. According
to the central limit theorem the result of the processing of the group of data
has often close to normal distribution even though original distributions were
not those.

So, in the sequel we consider the two-armed bandit problem for the process
ξn, n = 1, . . . , N , which values (usually interpreted as incomes) are normally
distributed with unit variances and mathematical expectations equal to m1,
m2 if methods ` = 1, 2 are used. We assume that mathematical expectation
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m1 is known and without loss of generality m1 = 0 (otherwise the process
ξn − m1 can be considered). The goal is to maximize (in some sense) the
total expected income. The core of the problem is that the best method is not
known in advance because it may be different for different data. So, it should
be estimated meanwhile the control process.

A direct determination of the minimax strategy and minimax risk is prac-
tically impossible. However, it is shown in Kolnogorov [3, 4] that they can be
found as Bayes’ ones corresponding to the worst prior distribution on the set
of parameters. For considered setting we use the idea of Bradt, Johnson, and
Karlin [5]. Since application of the first method does not give any additional
information, the optimal strategy is as follows. At the first stage it tries the
second method until optimal stopping condition is fulfilled and then applies
the first method till the end of the control. We present a sequential design
of optimal minimax control. The results of numerical experiments and Monte
Carlo simulations are given.

Note, that usual approach to the control is to process data sequentially,
one by one. However, if the problem is considered in minimax setting it turned
out that the control may be implemented in parallel almost without the lack
of its quality, i.e. under mild conditions minimax risks in both cases of parallel
and sequential controls have close values.
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Analysis of a repairable redundant system with PH
distribution of restoration times of its elements

Dmitry Kozyrev

Peoples’ Friendship University of Russia, Russia, kozyrevdv@gmail.com

A reliability model of homogeneous multi-redundant repairable hot standby
systems with PH distribution restoration is developed. Stationary and non-
stationary reliability properties of such systems are worked out.

Many stochastic models involve, in one way or another, phase-type prob-
ability distributions. Many known probability distributions (exponential, Er-
lang, hyper-exponential etc.) are all considered special cases of a continuous
PH distribution. Moreover, a continuous phase-type distribution can be used
to approximate any positive-valued distribution.

Consider a homogeneous hot standby n-unit system. The operational times
of its elements follow exponential distribution with parameter λ. Their repair
times follow the PH distribution, i.e. their distribution function (d.f.) B(x) is
given by

B(x) = 1− q′eMx1, x > 0, q′1 = 1,

and it admits the irreducible PH-representation (q′,M) of order m [1], where

• q′ = (q1, ..., qm) is a vector of dimension m, for which
m∑
j=1

qj ≤ 1,

qj ≥ 0, j = 1,m,

• M = (Mij)i,j=1,m is a square matrix of order m with the following

properties:
m∑
j=1

Mij ≤ 0; Mij ≥ 0, i 6= j; Mii < 0, i, j = 1,m, and for at

least one i it holds, that
m∑
j=1

Mij < 0.

According to the probabilistic interpretation of the PH-representation,
stated in [1], this system admits description by means of a homogeneous
Markov process {X(t), t ≥ 0} defined on the state set E = {(0); (k, j), k =
1, n, j = 1,m}, where

• k is the number of failed system elements at time t,
• j is the number of a recovery phase in which the element under repair is

at time t,
• m is the total number of recovery phases; the recovery of the current

element under repair can be finished at any phase at that.

The number of states N = nm + 1 of the process X(t) is finite, and
all the states are communicating. So the process is ergodic and there ex-
ist limit probabilities p0 = lim

t→∞
P{X(t) = (0)} = lim

t→∞
p0(t) > 0 and
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pkj = lim
t→∞

P{X(t) = (k, j)} = lim
t→∞

pkj(t) > 0, that are independent of the

initial state of the process X(0) and coincide with its stationary probabilities.
The stationary distribution of state probabilities {p0,pk, k = 1, n} in the

considered reliability system 〈Mn|PH|1〉 admits the representation as the trun-
cated matrix-geometric progression:

p′k =



p0w
′
0, k = 1,

p0w
′
0

k∏
i=2

Wi, k = 2, n− 1,

p0w
′
0

n−1∏
i=2

WiWn, k = n,

(1)

where the vector w′0 and matrices Wk, k = 1, n are expressed in terms of
parameters of operational and repair times distributions. In order to find p0

we make use of the normalisation condition:
n∑
k=0

pk = 1, where pk = p′~1 is the

stationary probability that k elements of the system are functioning properly.
For this system, the failure-free time distribution function, the reliability

function and mean failure-free time are worked out by examining the corre-
sponding process X̂(t) with absorbing set of failure states. For this purpose, the
solution of the Kolmogorov differention equations system in terms of Laplace-
Stieltjes transform is found:

p̃T(s)(Is−Λ) = bT, (2)

where Is − Λ̂ is a square non-degenerate block matrix of order (nm + 1), Λ̂
is an infinitesimal matrix of the modified process with absorbing set of failure
states, I is an identity matrix, and b is a zero vector of dimension (nm + 1)
with its first component equal to 1.

Studying the performance of redundant systems during their life-cycle, i.e.
till the total failure, is a problem of a peculiar interest. Therefore, in addition
to stationary distribution and performance reliability measures in transient
and stationary regime, the quasi-stationary distribution [2] is calculated.

In the main speech a numerical example is given to illustrate the model, the
results of numerical analysis are presented along with the plot of the system
reliability function and the table of values of high-reliability time quantiles.
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Asymptotic confidence interval for quantile of Gamma
distribution, constructed from samples with random size

Marina Kruchek

Petrozavodsk State University, Russia, kruchek@psu.karelia.ru

Quantiles are frequently used as measures of risk of portfolios of asserts
and in finacial mathematics are known as values-at-risk. Let us recall that for
financial position X under a given probability measure P value-at-risk at level
α is defined as

VaRα(X) = inf {m|P (X +m < 0) ≤ α} .

So estimation of quantiles is surely of interest. We propose an asymptotic
interval estimator of a quantile of Gamma distribution under assumption of
random size of sample.

Let X1, X2,. . . be i.i.d. observations from Gamma distribution Γα,λ with
density function

g(x;α, λ) =
αλ

Γ(λ)
xλ−1e−αx, x > 0, α > 0, λ > 0.

Parameter α is unknown, λ is assumed to be known. It is easy to show that
the p-quantile xp(Γα,λ) = 1

α
xp(Γ1,λ).

Let Sn =
n∑
i=1

Xi. Define quantile estimator as follows:

x̂p,n(Γα,λ) =
Sn
λn

xp(Γ1,λ).

Statistics x̂p,n(Γα,λ) is unbiased and asymptotically normal estimator of

xp(Γα,λ) with asymptotic dispersion σ2(α) =
x2
p(Γ1,λ)

λα2
.

Assume that for each n ≥ 1 the random variable (r.v.) Nn has the negative
binomial distribution NB(r, 1

n
), i.e.

P (Nn = k) =

(
k + r − 2
k − 1

)(
1− 1

n

)k−1
1

nr
, k = 1, 2, . . .

and is independent on the sequence X1, X2,. . . . We will regard Nn as the
random sample size.

Proposition. Let r.v.’s Nn, X1, X2,. . . satisfy conditions mentioned
above. Then for any α > 0 and for ε > 0

lim
n→∞

Pα

(
x̂p,Nn(Γα,λ)

√
λrn√

λrn− tε/2
< xp(Γα,λ) <

x̂p,Nn(Γα,λ)
√
λrn√

λrn+ tε/2

)
= 1− ε,
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where tε/2 is a quantile of Student distribution of order ε/2.
The result is essentially based on results and methods of Bening and Ko-

rolev [1] and Gnedenko [2].
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Generalized Cross Validation for Vaguelette-Wavelet
Signal Decomposition

Alexey Kudryavtsev 1, Oleg Shestakov 2
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Many physical problems involve indirect noisy measurements where one
faces a linear inverse problem in the presence of noise. We consider the follow-
ing model:

Xi = (Kf)i + εi, (1)

where Xi are the observed data, K is some linear operator, f is the unknown
signal, and εi are independent normal variables with zero mean and variance
equal to σ2. We suppose that K is homogeneous with index α.

Nonlinear wavelet methods of signal processing are very popular because
of their ability to deal with non-stationarity and capture local features of the
signal. One possibility is to use the following approximate signal decomposi-
tion:

f = 〈Kf,ϕ0,0〉K−1ϕ0,0 +

J−1∑
j=0

2j−1∑
k=0

βj,k〈Kf,ψj,k〉uj,k, (2)

where ϕ0,0 is a scaling function, {ψj,k} is a wavelet basis generated by a certain
mother wavelet ψ, and {uj,k} is a corresponding “vaguelette” basis, which is
stable if K is homogeneous. This kind of decomposition is called vaguelette-
wavelet decomposition (see [1]).

To filter out the noise we use thresholding method with soft-thresholding
function ρTj (x) = sgn(x) (|x| − Tj)+, and obtain an estimate of the signal:

f̂ = Y A0,0K
−1ϕ0,0 +

J−1∑
j=0

2j−1∑
k=0

βj,kρTj (Y
W
j,k )uj,k, (3)
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where Y A0,0 is a noisy approximation coefficient and YWj,k are noisy wavelet coeffi-
cients of the signal. Here we use individual threshold Tj for each decomposition
level j.

Risk of soft thresholding method is defined as

rJ =

J−1∑
j=0

2j−1∑
k=0

β2
j,kE(2J/2〈Kf,ψj,k〉 − ρTj (Y

W
j,k ))2. (4)

This expression contains unknown values 〈Kf,ψj,k〉, so it cannot be calculated
and has to be estimated. In [2] D. Donoho and I. Johnstone proposed to use
SURE estimate

r̂J =

J−1∑
j=0

2j−1∑
k=0

β2
j,kRTj (Y

W
j,k ), (5)

where RTj (x) = (x2−σ2)I(|x| ≤ Tj)+(σ2+T 2
j )I(|x| > Tj). This estimate is un-

biased, i.e. Er̂J = rJ . To choose the thresholds Tj we use so-called generalized
cross validation (see [3]). Let

Ĝj(Tj) =

2j−1∑
k=0

(
Yj,k − ρTj (Yj,k)

)2
µ2
Tj

, where µTj =
1

2j

2j−1∑
k=0

I(|Yj,k| ≤ Tj). (6)

The threshold TGj minimizes function Ĝj(Tj). In this way we avoid the neces-
sity to estimate variance σ2.

We prove that under certain conditions risk estimate with the thresholds
TGj is asymptotically normal. Let rJ,Min be the ’ideal’ (minimal) risk. The
following theorem holds.

Theorem. Let K be a homogeneous linear operator with index α > 0. Let
mother wavelet ψ have sufficient number of vanishing moments and satisfy cer-
tain conditions, which ensure that basis {uj,k} is stable. Let Kf have support
in [0, 1] and be Lipschitz continuous of order γ > (8α+ 2)−1. Then

r̂J − rJ,Min√
2σ4β4

0,0(24α+1 − 1)−1 2(2α+1/2)J
=⇒ N(0, 1) as J →∞. (7)

In (7) we do not use traditional normalization which involves variance of
r̂J , because this variance depends on the unknown values 〈Kf,ψj,k〉. Proposed
normalization allows to construct asymptotic confidence intervals for rJ,Min.
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Gaussian limits for multi-channel stochastic networks

Hanna Livinska 1, Eugene Lebedev 2

1National Taras Shevchenko University of Kyiv, Ukraine, livinskaav@gmail.com
2National Taras Shevchenko University of Kyiv, Ukraine, stat@unicyb.kiev.ua

The main object of the investigation in this paper is a multi-channel
stochastic [Mt|GI|∞]r-network consisting of r service nodes. Each of ”r” nodes
operates as a multi-channel stochastic system. In the i-th node the service time
is distributed with distribution function Gi(t), i = 1, 2, . . . , r. The service pro-
cess in the network is of r-dimensional type form Q′(t) = (Q1(t), . . . , Qr(t)),
where Qi(t) is the number of calls in the i-th node at the moment of time t.
Our goal is to study the process Q(t) under conditions of heavy traffic.

The heavy traffic regime for the [Mt|GI|∞]r-network is determined by the
following behavior of network parameters.

Condition 1. The input flows depend on n (series number) so in any finite
interval [0, T ] we have

n−1Λ
(n)
i (nt)

U⇒n→∞ Λ
(0)
i (t) ∈ C[0, T ], i = 1, 2, . . . , r,

where C[0, T ] is a set of continuous functions on the interval [0, T ], let us note

that the symbol
U⇒ means convergence in the uniform metric.

Condition 2. G
(n)
i (nt)⇒d

n→∞ Gi(t), i = 1, 2, . . . , r.

In order to formulate the main result, we need a semi-Markov processes
x(i)(t), i = 1, . . . , r, in the set of states {1, ..., r, r + 1}, which are defined by
the following semi-Markov matrix ‖Gij(t)‖r1:

Gij(t) =

{
pij Gi(t), i = 1, . . . , r; j = 1, . . . , r, r + 1;
δr+1j Gr+1(t), i = r + 1; j = 1, . . . , r, r + 1;

Gr+1(t) =

{
0, t < 1;
1, t ≥ 1.
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where P = ‖pij‖ri,j=1 is a switching matrix of the network.

At the initial time moment t = 0, x(i)(0) = i and the distribution function
of the permanence in the initial state ”i” coincides with Gi(t).

Let us denote for the transitional probabilities: pij(t) = P
(
x(i)(t) = j

)
,

P (t) = ‖pij(t)‖r1, and also p
(m)
ij (s, t) = P

(
x(m)(s) = i, x(m)(t) = j

)
,

E(m)(s, t) = ‖p(m)
ij (s, t)/pmi(s)‖ri,j=1, where 0 ≤ s < t.

Under Conditions 1, 2 we consider a normalized service process, that is:

ξ(n)(t)−1/2

(
Q(n)(nt)−

∫ nt

0

[dΛ(n)(τ)]′P (n)(nt− τ)

)
,

where [dΛ(n)(τ)]′ =
(
dΛ

(n)
1 (τ), . . . , dΛ

(n)
r (τ)

)
, P (n)(t) = ‖p(n)

ij (t)‖ri,j=1,

p
(n)
ij (t) = P

(
x(i,n)(t) = j

)
, x(i,n)(t) is a semi-Markov process which is de-

fined as x(i)(t) with the replacement of the distribution functions from Gi(t)

to G
(n)
i (t), i = 1, 2, . . . , r.

In order to construct the approximate process for ξ(n)(t), we need two
independent Gaussian processes ξ(1)(t) and ξ(2)(t) which have zero means and
correlation matrices of the following form

R(1)(t) =

∫ t

0
P ′(t− τ)∆[dΛ(0)(τ)]P (t− τ),

R(1)(s, t) =

∫ s

0
P ′(s− τ)∆[dΛ(0)(τ)]P (t− τ), s < t,

R(2)(t) =

∫ t

0

[
∆[(dΛ(0)(τ))′P (t− τ)] − P ′(t− τ)∆[dΛ(0)(τ)]P (t− τ)

]
,

R(2)(s, t) =

r∑
m=1

∫ s

0

[
∆(pm(s− τ)) − pm(s− τ)p′m(s− τ)

]
E(m)(s− τ, t− τ)dΛ

(0)
m (τ),

s < t,

where p′m(t) = (pm1(t), . . . , pmr(t)) is the m-th row of the matrix P (t), ∆(x) =
‖δijxi‖ri,j=1 is a diagonal matrix with a vector x′ = (x1, . . . , xr) on the principle
diagonal.

Theorem. Let the stochastic network of [Mt|GI|∞]r-type satisfy condi-
tions 1, 2 and at the initial time, t = 0, the network is empty. Then on any
finite interval [0, T ] the sequence of random processes ξ(n)(t) converges weakly,
in the uniform topology, to ξ(1)(t) + ξ(2)(t).

Note that the part ξ(1)(t) of the limit process is associated with fluctuations
of the input flows and ξ(2)(t) with the fluctuations of the service times at the
network nodes.

The assertion of the theorem generalizes the main result of the paper given
in [1], obtained for networks of a Markov type.
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A note on “A goodness of fit test for skew normal
distribution based on the empirical moment generating

function”

Mohammad Mahdi Maghami

Isfahan University, Iran, maghami8@gmail.com

There are several methods for goodness of fit test for the skew normal
distribution. This work focused on method of Meintanis [7] which is based
on the empirical moment generating function. This test is discussed for the
known and the unknown shape parameter. Meintanis [7] claimed that power
of his test is higher than the Kolmogorov-Smirnov test. But this claim is true
only for the known shape parameter. In this paper, we provide a new method
for finding his test statistic that has more efficiency. Also Meintanis [7] not
determine the size of himself test for the known shape parameter which in this
paper we will determine it.
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Poisson processes under generalized convolution

Jolanta K. Misiewicz

Institute of Mathematics and Information Science, Warsaw Technical University,
Warsaw, Poland, j.misiewicz@wmie.uz.zgora.pl

We discuss two classical definitions of the Poisson process applied to the
case of generalized convolutions. First definition states that the Poisson process
has independent stationary increments with the Poisson distribution, where
the Poisson distribution is the exponent of a Dirac measure.

The second based on the direct construction by a sequence of i.i.d. random
variables with exponential distributions (which is the only one distribution
with the lack of memory property) and their partial sums. Adapting this con-
struction to the case of generalized convolutions we show first that each gener-
alized convolution admits its own distribution with lack of memory property,
but only some of them are non-trivial. Next show that only some of generalized
convolutions have monotonicity property, which is also important in classical
case. Finally, we give the construction of generalized Poisson process based on
generalized random walk with steps having the monotonicity and the lack of
memory property on the example of α-convolution and Kendall convolution.

It turns out that in the case of generalized convolutions these two defini-
tions of Poisson process do not coincide. Moreover, the second construction
lied to a process which does not have even Markov property.
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M - order Markov logarithmic series distribution

Parviz Nasiri

Department of Statistics, University of Payame Noor,
19395-4697 Tehran, I. R. of IRAN
pnasiri45@yahoo.com, p.nasiri@tehran.pnu.ac.ir

In this article, we derived Markov logarithmic series distribution to model
the distribution of success runs in a time homogeneous sequence of Markov
dependent Bernoulli trials. We generalize this results to a time homogeneous
m - order Markov dependent sequence of Bernoulli trials. We will estimate the
parameters of model, and proceed to fit the corresponding model by computing
the expected frequencies of various wet spell lengths. Finally, we carry out a
chi-square test for goodness of fit for model.

Inspection paradox: an application to loss and optical
queues

Lyubov Potakhina 1, Evsey Morozov 2, Koen De Turck 3

1IAMR Karelian Research Center and Petrozavodsk University, Russia,
lpotahina@gmail.com

2IAMR Karelian Research Center and Petrozavodsk University, Russia,
emorozov@karelia.ru

3S.M.A.C.S., University of Ghent, Belgium, kdeturck@telin.ugent.be

The inspection (or renewal time) paradox means that in the limit, as time
goes to infinity, the mean remaining (and attained) renewal time approaches
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the ratio containing the 1st and the 2nd moments of the original interrenewal
time, Asmussen [1], Feller [2]. The inspection paradox is also formulated for
the mean interval covering instant t in limit as t → ∞. In this work, we
use numerical simulation to study the rate of convergence in the paradox for
various interrenewal time distributions.

Then we apply the inspection paradox to analyze the loss probability for a
class of the non-conventional loss systems (Tikhonenko [4]). In such a system,
each customer has both service time and size, and the system has infinite
capacity for the queue-size, but a finite capacity M for the total size of the
awaiting customers. Thus, the arriving customer is lost if he meets total size
N in the system and his size v is such that v +N ≥M .

Then a system with the optical buffers is considered. In the system, signals
travel from host to host in the form of light and buffering by means of a set
of fiber delay lines (FDL) with deterministic values. Thus the set of possible
waiting times is not a continuum (like in a classic queueing system), but a
denumerable set, with each value corresponding to the length of a delay line.
As a result, in general arriving signals have to wait for service longer than in
the classic case. A sufficient stability condition for the systems with optical
buffers has been recently obtained (Rogiest et al. [3]). In this work we present
and verify by simulation a tighter sufficient condition which stems from the
inspection paradox.

Another contribution of this work is that we also consider the optical sys-
tem with the independent identically distributed differences between fiber line
lengths. This extension is based on the following motivation. For heavily-loaded
modern large networks, a large number of the lines is required. These lines con-
stitute a huge number of possible paths between hosts and users. As a first-
order approximation, it seems appropriate to describe the differences between
their lengths as random variables to reflect a variability of the paths. On the
other hand, to guarantee a high QoS requirement and avoid a dramatic differ-
ence in transmission time, it seems reasonable to assume that the difference
∆ > 0 between the adjacent increasing link lengths has the same distribu-
tion reflecting a “homogeneity” of the network. Indeed, an “inhomogeneity”
(different distributions of ∆) may cause a huge loss of the capacity because
of dramatic increasing of the idle time after completion of a transmission. In
particular, it may be important in the problem of reducing the reordering in
the multi-path transmission of a big file by means of separate fragments. One
more argument to support a common distribution of ∆ is that the modern
networks are very well-connected containing a huge number of links, and a
path is collected from a number of optical cables with comparable lengths.

Moreover, in this work, we confirm by simulation that the inspection para-
dox can be effectively applied to estimate the mean loss size and obtain a
tighter stability region for the above described systems. In particular, the
results seem to confirm the conjecture that for M large the mean loss size ap-
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proaches to the mean covering interval obtained from the inspection paradox
for the renewal process generated by the customer sizes.
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Generalized Symmetric Covariation Coefficients for
Random Variables with Finite First Moments:

simulation and application for Indonesia stock market

Dedi Rosadi

Gadjah Mada University, Indonesia, dedirosadi@gadjahmada.edu

We discuss two new linear dependence measures between two random vari-
ables that we call the generalized covariation coefficient and the generalized
symmetric covariation coefficient, introduced recently in Rosadi [1], [2]. These
measures can be applied for two random variables with finite first moments,
satisfying a linearity property. The generalized covariation contain the covari-
ance function and the covariation coefficient (dependence measure applicable
for stable distributed random variable, see e.g., Nikias and Shao [3]) as the
special cases. The generalized symmetric covariation function is the symmetri-
cized and normalized version of generalized covariation, and it will satisfy the
properties of the classical Pearson correlation coefficient and contain symmet-
ric covariation (dependence measure applicable for stable distributed random
variable, see Garel, d’Estampes and Tjøstheim [4]) as the special cases. We
extend the theoretical studies in Rosadi [1], [2] by providing simulation studies
and applications of the measures for analyzing financial data from Indonesian
stock market.
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Sums of independent poissonian subordinators and a
family of Ornstein-Uhlenbeck type processes

Oleg Rusakov 1, Daniil Apleev 2

1Saint-Petersburg State University, Russia, ovirusakov@yahoo.co.uk
2Saint-Petersburg State University, Russia, apleev@yahoo.com

Poissonian Stochastic Index process (PSI - process ψ) is defined by a subor-
dination of the random sequence (ξn), n = 0, 1, . . . , to an independent Poisson
process Π(s), s ≥ 0, with intensity λ > 0 and spacings τ1, τ2, . . . that are i.i.d.
r.v’s ∈ Exp(λ); i.e. ψ(s) = ξΠ(s). We focus on the case of a strictly stationary
sequence (ξn), mainly, when (ξn) consists of i.i.d. random variables.

We consider the appropriate normalized sums of independent copies
(ψj(s))j∈N of the process ψ which are the subordinators for the sequences
(ξjn)j∈N, respectively. The basic result is that under the standard assumptions
for the CLT, these sums tend to the Ornstein-Uhlenbeck process with the same
viscosity parameter λ.

Let us define the multi-index process, t ∈ [0, 1], s ≥ 0, prelimit random
field:

ΨN (t, s) =
1√
N

[Nt]∑
i=1

ψi(s) .

Let us introduce the Wiener-Ornstein-Uhlenbeck (WOU) random field Z(t, s):
1) centered gaussian function defined on R+ ×R;
2) cov(Z(t1, s1), Z(t2, s2)) = exp{−λ|s2 − s1|}min(t1, t2), λ > 0.
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The WOU field is the tensor product of the Brownian motion (Bm) and
the O-U process. The time t we name the extrinsic time and the time s – the
intrinsic time.

Basic Theorem. The following convergence of the finite dimensional dis-
tributions takes place as N →∞; t ∈ [0, 1], s ≥ 0;

ΨN (t, s)⇒ Z(t, s) .

When the distribution of ξn is α-stable, we obtain in the limit an α-stable
generalization of the O-U process (O.V.Rusakov (2009)). The existence of the
limit random fields follows from the representation of the telecom processes
(R.L.Wolpert, M.S.Taqqu (2005)).

For all cases α ∈ (0, 2] limiting processes of O-U type are Markovian ones,
and for α ∈ (1, 2] there exists the transition expectation

E{U(s) |U(0) = x} = xe−λs

of the standard form, which is obtained by the properties of Brownian bridge
(α = 2 case, (Fig.1.) ) and by their fat tailed analogues: Harnesses processes
(α ∈ (1, 2) case, see M.Roger, M.Yor (2005))

In the non-homogeneous case, when the leading Poissonian processes have
the intensities λ ranging in the interval (0,∞), we distribute the total variance
of the normalized random variables (ξj0) over all existing intensities λ. Let for
simplicity this total variance be equal to 1. Then the given distribution ν
of this total variance is a probabilistic one and the corresponding covariance
function cov(s), s ≥ 0, of the examined limit stationary process is explicitly
the Laplace transform of ν. We apply our approach to processing the American
Treasures financial data and to the LIBOR rates.

Examples

0. The classical O-U process is a particular case of the measure ν which is
degenerated at the point λ.

1. A Simple curious example is as follows. Let the measure ν be the exponential
distribution Exp(µ), µ > 0. Then the covariance function of the limit station-
ary process has the following long-memory property: cov(s) = µ/(s+ µ).
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Figure 1: Transition Characteristics and Bridges
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On some invariant under group
of affine transformations optimal criteria

Pavel Sapozhnikov

Perm State University, pavel sapozhnikov@mail.ru

Let ξ be a random vector in (Rm, B), f(x) be it probability density func-
tion with respect to Lebesgue measure µ and G be a group of nondegenerate
transformations on Rm. The problem is in discrimination of two hypothe-
ses Hi : f(x) ∈ Fi, i = 1, 2 on the base of a sample from a population
X = gξ, g ∈ G, when g is unknown. We shall suppose that G is a group of
affine transformations on Rm or some of its subgroups.

Let Xn = (X1, X2, . . . , Xn) be a repeated sample from the population
X. Every sample element xn is in the fact (m × n)-matrix, with columns
x1, x2, . . . , xn. One possibility for elimination of the nuisance parameter g ∈ G
can be realized via replacement of original observations on some invariants of
transformations Xn → gXn, g ∈ G, where gXn = (gX1, gX2, . . . gXn). For
brevity one term ”invariant” will be use as for Un = u(Xn), so and for u(xn).
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The most informative are the maximal invariants (MI-s), these functions
have constant values on the orbits of the group and distinguish the different
orbits Leman∼[1]. MI doesn’t define by the unique way. It is possible that MI is
a function on some manifold, embedded in the space Rmn, but for the evalua-
tions are more preferable MI-s, which have absolutely continuous distributions
with respect to Lebesgue measure in Euclidian subspace of Rnm.

Let m(r) =
r

m
, where r is a dimension of G and nm > r. In my report it

is proposed one approach to the construction of functionally independent MI
such that supports of their distributions belong to Euclidian space Rm(n−m(r))

and a method for obtaining of the probability density function with respect to
Lebesgue measure in Rm(n−m(r)) for such invariants.

If σ(xn) is an equivariant estimate of the group shift’s parameter g, and
it is continuously differentiable in the natural region of definition, then a
matrix un(xn) = σ−1(xn)xn is the maximal invariant. Moreover matrix
of the partial derivatives of vector-column composed from columns of ma-
trix un(xn) under transposed vector-column of matrix (xn) has rank n −
m(r). Suppose that un−m(r)(xn) are functional independent and an equation
σ(un−m(r), un−m(r)+1, n) = e has some solution un−m(r)+1,n = ϕ(un−m(r)),
where e is the unite of the group G, and un−m(r)+1,n is submatrix of matrix
un composed from m(r) last columns.

We shall speak that a function H(un−m(r), xn−m(r)+1,n)

is obtained from the function H̃(xn) via incomplete
change of variables, if it can be presented in the form
H̃(xn−m(r)(un−m(r), xn−m(r)+1,n), xn−m(r)+1,n)J(un−m(r), xn−m(r)+1,n),

where J(un−m(r), xn−m(r)+1,n)) =
∣∣∣D(xn−m(r)(un−m(r),xn−m(r)+1,n))

D(un−m(r))

∣∣∣.
Let ν be a right invariant measure on G and ∆(g) be Jacobian of transfor-

mation x→ g−1x, then the density function of random matrix un−m(r)(Xn) =

σ−1(Xn)Xn−m(r) with respect to Lebesgue measure in Rm(n−m(r)) exists and
can be obtained from the function∫

G

n∏
j=1

[f(g−1xj)∆(g)]dνr(g)

∫
G

n∏
j=n−m(r)+1

[f(g−1xj)∆(g)]dνr(g)
(1)

via incomplete change of variable xn → (σ(xn)un−m(r), xn−m(r)+1,n), where
σ(xn) defined by the equation σ(xn)ϕ(un) = xn−m(r)+1,n.

In spite of the presence of “superfluous” arguments xn−m(r)+1,n) at the
function (1) and in the formula change of variables, the final result doesn’t
contained them. Denominators in the formula (1) and Jacobins at any per-
missible incomplete change of variables don’t depend on choice of the density
function so ratios of MI densities for two distributions are defined exclusively
by numerators of correspondent formulas, and Jacobins it is sufficiently eval-
uate for the normal case.
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In monograph R.Wijsman [2] was done an justification with survey and
analysis of former results of the integral formula

∫
G

f(gx)χ(g)dνl(g) under left

invariant measure νl on the group for the density function of MI distribution
under rather general superpositions on invariant sample space (X, B, G) and
invariant family {f(gx)χ(g), g ∈ G} with respect to quasiinvariant measure µ
with a modulator χ(g) on it. But this function is the density function with
respect to suitable measure on the some smooth manifold only. The partial
case of this formula is numerator in formula (1).

In my report are considered an applying of obtained formulas to the con-
struction for tests of some parameter’s hypotheses in comparison with tests of
complete likelihood ratio.
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Adaptive segmentation of piecewise stationary
stochastic processes based on the statistical testing for

homogeneity

Andrey Savchenko

National Research University Higher School of Economics, Russia,
avsavchenko@hse.ru

In this paper, we discover the problem of adaptive segmentation of piece-
wise stationary stochastic processes which spectral characteristics abruptly
change [1]. Though it is better to use here the word ”regularity” instead of ”sta-
tionarity”, we will retain he latter for clarity [2]. Such time series are usually
modeled by autoregressive (AR) processes with Gaussian distribution, where
the autocorrelation matrix (ACM) of the process remain constant for certain
time intervals and then jump to new values (with possible transition period)
[1]. These jump processes [2] are usually handled by splitting the signal into
small segments {x(t)} , t = 1, T ,x(t) = [x1(t), ..., xΛ(t)] of fixed size Λ = const,
where T is the total number of segments (”fixed-window” approach). Thus,
the segmentation problem is usually reduced [3] to the statistical hypothesis
testing for distribution P(t) of segment x(t):

W0 : P(t) = Ph, (1)

where Ph is the distribution of previous regular set of segments xh.
Theorem 1. If signals x(t) and xh are AR processes (order p = const), has

a Gaussian distribution with zero mean and unknown ACM K(t) and Kh,
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respectively, and all vectors xi(t) = [xi(t), ..., xi+p(t)] , i = 1,Λ− p are inde-
pendent (”naive” assumption), then the optimal in Bayesian terms decision is
made in favor of hypothesis W0 (1) by the following rule

ρ (xh,x(t)) < ρ0 = const, (2)

where ρ0 is a fixed threshold, and the similarity measure ρ (·) is the Kullback-
Leibler (KL) divergence between ACMs of signals x(t) and xh.

In this paper we suppose to use alternative approach [4] and reduce the
segmentation problem to the task of homogeneity testing

W ′0 : signalsx(t) andxh are homogeneous. (3)

Theorem 2. If conditions of Theorem 1 are satisfied, then the optimal in
Bayesian terms decision is made in favor of hypothesis W ′0 by criterion

ρ (xh,x) +
Λ− p

Λ ·∆th − p
ρ (x(t),x) < ρ1 = const, (4)

where x = [xh,x(t)], ∆th is the length (in segments) of signal xh, ρ (·) is again
the KL discrimination.

Experimental results. The experiment deals with automatic speech
recognition [3], namely, with recognition of a vowel in a syllable for Russian lan-
guage. Five speakers formed the phoneme database by pronouncing 10 vowel
sounds of Russian language with a close-speaking microphone A4Tech HS. The
training set was filled with 1000 realizations of various syllables (100 realiza-
tions per each vowel). The phoneme recognition was performed by the nearest-
neighbor rule with the KL divergence which is calculated as the Itakura-Saito
distance [3] between power spectral densities of signals. The proposed criterion
(4) was compared with a traditional segmentation (2) and the ”no segmenta-
tion” case. The parameters were fixed as follows: PCM (8 kHz, mono, 16 bits),
Λ = 120, p = 12, ρ0 = 0.8, ρ1 = 0.25. Accuracy and FRR (False-Reject Rate)
for speaker-dependent and -independent modes are presented in Table 1.

Mode No segmentation
Conventional
segmentation (2)

Proposed seg-
mentation (4)

FRR Accuracy FRR Accuracy FRR Accuracy
Speaker-
dependent

0.009 0.727 0.082 0.727 0.055 0.764

Speaker-
independent

0.273 0.618 0.082 0.591 0.064 0.664

Table 1: Results of isolated words recognition

Based on these results we could draw the conclusion that the proposed cri-
terion (2) to adaptive segmentation outperforms either conventional algorithm
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(2) or the recognition algorithm without segmentation. The accuracy of (4) is
4-5% higher and the FRR is 2-3% lower than the same indicators of (2).

Acknowledgements. This study was carried out within ”The National
Research University Higher School of Economics Academic Fund Program in
2013-2014, research grant No. 12-01-0003”
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Threshold theorems for generalized epidemic size in a
new Markovian epidemic model with immunization

Sergey Sedov

Gas and Oil Russian university named by Gubkin branch in Tashkent
kadabrasss@mail.ru

As the epidemic model we consider a continucus-time Markov procecc
ξ(t) = (R(t), S(t)) with transition probalilities given by

P (ξ(t+ ∆t) = (r − 1, s+ 1)/ξ(t) = (r, s)) = λrαs∆t+ o(∆t),

P (ξ(t+ ∆t) = (r, s− 1)/ξ(t) = (r, s)) = µs∆t+ o(∆t),

P (ξ(t+ ∆t) = (r − 1, s)/ξ(t) = (r, s)) = θs∆t+ o(∆t),

(1)

and initial condition ξ(0) = (n,m), where 0 5 s 5 n + m − r, 0 5 r 5
n, ρ1 and ρ2 are the relative infection and remuval rate respectively. The com-
ponents of ξ(t) represent respectively the number of susceptibles and infectives
at time t. If a = 1 and ρ2 = 0 we obtain the classical general stochastic epi-
demic in closed, homogeneously mixing population. If 0 < a < 1, then model
takes into accound a non-homogeneous mixing in a population.

The third transition of the model (1) reflects a possibility of susceptibles
immunization in some sense.
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If this probability has the form ρ2rs∆t + o(∆t), then that model is well-
known as Downton model [1] or Nagaev-Rakhmanina model with natural im-
munization [2].

Note that states of the form (k, 0) are absorbing.
Absorption at (n− k, 0) means that epidemic size is equal to k for genaral

stochastic epidemic or generalized epidemic size ν = ν1 + ν2 is equal to k,
where ν2 is the immunization size and ν1 is equal to initial susceptibles that
are ultimately infected. Much of the work on the standard epidemic process
has been directed toward finding the distribution of epidemic size, ν. However,
explicit expressions are, in general, very cumbersome. In connection with this
in the wok of Nagaev and Startsev [3]. Was proposed a metod of asumptotical
analysis, as n → ∞ in that the problem of epidemic size reduce to boundary
crossing problem for sums of independent random variables.

This report is devoted to obtaining of the limit distributions for the gener-
alized epidemic size in the model (1). We suppose that m→∞ as n→∞ and
parameters of the model are changed together with n (“series scheme”). The
parameter θ1(n) = ρ1/n

a plays a regulating role and similar to the parameter
ρ1/n in the general stochastic epidemic. The threshold theorems are concerned
of the case when θ1(n) → 1, m(1 − θ1(n)) = O(1) and m3 = O(n). In this
case limit boundary g(t) (in corresponding boundary problem) is a continuous
function of parabolic form. In other cases this boundary is degenerate, namely,
it is infinite at t ∈ (0, 1), and consequently the normal distribution appears as
a limit law.

Theorem. If θ1 → 1, β ≡ m(1− θ1)→ β0,
m
n
→ γ0 <∞, |β0| <∞, then for

∀ fixed x > 0

P

(
ν >

(1 + θ2)m2

2

)
=⇒

P

(
w(t) <

1√
x

+

√
x/2√

1 + θ20

β0t−
(θ10 + θ20)αγ0(x

2
)3/2

4(1 + θ20)5/2
t2, 0 ≤ t ≤ 1

)
.
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On an approach to approximation in the CLT

Vladimir Senatov

Moscow State University, Russia, v.senatov@yandex.ru

The communication deals with an approach to the construction of the
approximations to the distributions of normalized sums of independent identi-
cally distributed random variables related to the use of the asymptotic expan-
sions of high accuracy. In the local forms of CLT for random variables with
unite variances and finite moment of order 6, 8, 10, . . . under rather relaxed
conditions these expansions allow to obtain approximations whose accuracy is
equivalent to the following one:

β6

120n2
,

β8

960n3
,

β10

9600n4
, . . . ,

where n is the number of summands in the sums. The main part of the
report is the discussion of the conditions mentioned above. A substantial part
of the communication is devoted to numerical illustrations.

Incomplete data problems in tomography

Oleg Shestakov

Moscow State University, Institute of Informatics Problems of the Russian
Academy of Sciences, Russia,

oshestakov@cs.msu.su

Mathematical methods of computer tomography are based on the inversion
of Radon-type transforms, which describe different settings of tomographic ex-
periments. Reconstruction techniques allow to reconstruct density function if
all (an infinite number) of projections are known. However in practice one can
only obtain a finite number of projections and unique reconstruction is not
possible in this case. It was proved in [1] that for any density function f(x)
(x ∈ R2) and any finite number of directions θ1, . . . , θN in the plane there
exists another density function g(x) with the same Radon projections in the
directions θ1, . . . , θN as f(x) and such that g(x) has only two values: 0 and
1. This result gives the following paradox: for any human object and corre-
sponding projection data there exist many different reconstructions, including
reconstruction consisting only of bone and air (0 or 1), but still having the
same projections as the original object. Similar examples of nonuniqueness are
familiar in tomography, but are usually ignored because tomography machines
produce useful images.

In [2] this paradox is solved using estimates of the distances between win-
dowed reconstructions of density functions having finite number (N) of iden-
tical Radon projections. We obtain similar estimates for other Radion-type
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transforms, including exponential Radon transform, attenuated Radon trans-
form (these are used in emission tomography models), circular Radon trans-
forms (used in thermocoustic tomography and reconstruction of SAR images)
and fan-beam Radon transform (used in x-ray tomography to speed up data
collection process). These estimates have order of O(N−1). We also obtain
some estimates in case when projections are not identical but may differ by
some level ε in uniform metric (these situations may occur due to inaccuracies
in projection data). These estimates have order of O(ε) +O(N−1).

Acknowledgements. This work is supported by RFBR (grants 11–01–
00515a and 11-01-12026-ofi-m) and Ministry of Education and Science of Rus-
sian Federation (state contract No. 14.740.11.0996).
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Some moment inequalities of probability theory

Irina Shevtsova

Moscow State University, Institute of Informatics Problems of the Russian
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ishevtsova@cs.msu.su

Let X be a random variable (r.v.) such that E|X|r <∞ for some real and
positive r. Denote

αk = EXk, k = 1, 2, . . . , [r], βs = E|X|s, 0 < s 6 r, α0 ≡ β0 ≡ 1.

Theorem 1. If the r.v. X is lattice with span h > 0 and α1 = 0, β2+δ <∞
for some 0 < δ 6 1, then

h 6 (β2+δ/β2 + βδ)
1/δ;

if, in addition, the r.v. X has a symmetric distribution, then

h 6 max
{

(β2+δ/β2)1/δ, 2
√
β2

}
.

Theorem 1 improves and generalizes the well-known Mises inequality:

hβ2 6 2β3.
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Theorem 2. If α1 = 0, then for all λ > 1

|α3|+ 3β1β2 6 λβ3 +M(p(λ), λ)β
3/2
2 ,

where

p(λ) =
1

2
−
√
λ+ 1

λ+ 3
sin

(
π

6
− 1

3
arctan

√
λ2 + 2

λ− 1

λ+ 3

)
,

M(p, λ) =
1− λ+ 2(λ+ 2)p− 2(λ+ 3)p2√

p(1− p)
, 0 < p 6

1

2
, λ > 1,

with the equality attained for each λ > 1 at the special two-point distribution.
Theorem 2 improves Esseen’s moment inequality [1]

|α3|+ 3h 6 (
√

10 + 3)β3,

which was used by Esseen when he was solving the problem on the asymptot-
ically best constant in the central limit theorem

Theorem 3. If β3 <∞, then

E|X − α1|3 6
17 + 7

√
7

27
β3 < 1.3156 · β3,

with the equality attained at the special two point distribution.
Theorem 4. Take any b > 1. If EX = 0, EX2 = 1, E|X|3 = b, then

∣∣EX3
∣∣ 6 c(b)E|X|3, c(b) =

√
1

2

√
1 + 8b−2 +

1

2
− 2b−2 < 1,

with the equality attained for each b > 1 at the special two-point distribution.
Theorem 5. For any r.v. X with the characteristic function f(t) = EeitX ,

t ∈ R, and α1 = 0, β2 = 1, β3 <∞, the following estimates hold for all t ∈ R :

|f(t)− 1 + α2t
2/2| 6 γ3

(
β3

)
· β3|t|3,

|f(t)− 1 + α2t
2/2| 6

8

β2
3

(
β3|t|

2
− sin

(β3|t|
2
∧ π

2

))
+
((
|t| − π

β3

)+)2

,

|f(t)− 1 + α2t
2/2| 6 κ3β3|t|3 6 0.0992 · β3|t|3, if α3 = 0;

|f ′(t) + α2t| 6 γ2

(
β3

)
· β3t

2 ∧
[ 8

β3
sin2

(β3|t|
4
∧ π

4

)
+ 2
(
|t| − π

β3

)+]
;

|f ′(t) + α2t| 6 π−1β3t
2 6 0.3184 · β3t

2, if α3 = 0;

|f ′′(t) + α2| 6 γ1

(
β3

)
· β3|t| ∧ 2 sin

(β3|t|
2
∧ π

2

)
,

|f ′′(t) + α2| 6 κ1β3|t| 6 0.7247 · β3|t|, if α3 = 0;

|f ′(t) + α2t| 6 γ2

(
β3

)
· β3t

2 ∧
[ 8

β3
sin2

(β3|t|
4
∧ π

4

)
+ 2
(
|t| − π

β3

)+]
;

|f ′(t) + α2t| 6 π−1β3t
2 6 0.3184 · β3t

2, if α3 = 0;
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where

κ3 ≡ sup
x>0

(cosx−1+x2/2)/x3 = 0.0991 . . . , κ1 ≡ sup
x>0

1− cosx

x
= 0.7246 . . . ,

γn(b) = inf
λ>0

λc(b) + qn(λ)

n!
, qn(λ) = sup

x>0

n!

xn

∣∣∣∣eix−n−1∑
k=0

(ix)k

k!
−λ (ix)n

n!

∣∣∣∣, λ > 0.

This research was supported by the Russian Foundation for Basic Research
(projects 12-07-33063, 11-01-00515a and 11-07-00112a) and by the Ministry for
Education and Science of Russia (grant MK–2256.2012.1).
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Discrete analogues of stable distributions

Lenka Slámová 1, Lev Klebanov 2

1Charles University in Prague, Czech Republic, slamova.lenka@gmail.com
2Charles University in Prague, Czech Republic, klebanov@chello.cz

Stable distributions play an important role both in the theory and appli-
cations. A lot of phenomenas are modeled by continuous stable distributions,
however the character of the data would suggests a discrete approach. An
analogue of the stability property may be obtained also in the discrete case
when we chose a different normalization procedure. The aim of this talk is
to introduce two possible definitions of stability for integer valued random
variables, one for symmetric random variables and one for a general case.

The characteristic function of the symmetric discrete stable distribution is
given by

f(t) = exp {−λ (1− cos t)γ} , λ > 0, γ ∈ (0, 1].

We give the probabilities of the distribution, and we show how this distribu-
tion converges to absolutely continuous symmetric stable distribution. The
index of stability of the limiting stable distribution is α = 2γ. For γ = 1 we
thus obtained a discrete analogue of Gaussian distribution.
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The discrete stable distribution of integer valued random variables is de-
fined, and we show its characteristic function takes form

f(t) = exp
{
−λ1

(
1− eit

)γ
− λ2

(
1− e−it)

)γ}
, λ1, λ2 > 0, γ ∈ (0, 1].

The limiting distribution is absolutely continuous stable distribution with in-
dex of stability α = γ for γ < 1 and α = 2 for γ = 1.
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Control fractional dynamics

Maria Veretennikova 1, Vassili Kolokoltsov 2
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Firstly, you will be introduced to fractional calculus which has recently
gained popularity in a wide range of fields, in particular establishing itself
useful in modeling anomalous diffusion by suitable continuous time random
walks (CTRWs). Secondly, you will see how to write a dynamic programming
equation for the optimal payoff for a process in our consideration which is
derived from a scaled controlled CTRW. You will see the new equations derived
in my research for the different versions on the process. We will then discuss
existence and uniqueness of a classical solution to a simple version of the
resulting fractional Hamilton Jacobi Bellman type equation for the optimal
payoff function.

Acknowledgements, to V. N. Kolokoltsov, D. Spano, MASDOC and EP-
SRC grant EP/HO23364/1
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The Zolotarev polynomials revisited

Vladimir Vinogradov 1, Richard B. Paris 2, Olga Yanushkevichiene 3
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Linnik [2], Skorokhod [3] and Zolotarev [7] established important asymp-
totic properties of the extreme stable laws, which were originally anticipated
by Kolmogorov (see also Ibragimov and Linnik [1], and Zolotarev [8]). In par-
ticular, the “exponentially small” Poincaré series for the probability density
functions of the extreme stable laws were constructed therein.

The members of these series are expressed in terms of the polynomials
which we call the “Zolotarev polynomials” and denote by {Zk(ρ), k ≥ 0}.
Here, ρ ∈ R1. In contrast, Zolotarev [8] employed α = −ρ.

The first five Zolotarev polynomials are as follows:

Z1(ρ) = − 1

24
· (ρ+ 2) · (2ρ+ 1),

Z2(ρ) =
1

1152
· (ρ+ 2) · (2ρ+ 1) · (2ρ2 − 19ρ+ 2),

Z3(ρ) =
1

414720
· (ρ+ 2)(2ρ+ 1)(556ρ4 + 1628ρ3 − 9093ρ2 + 1628ρ+ 556),

Z4(ρ) = − 1

39813120
· (ρ+ 2) · (2ρ+ 1) · (4568ρ6 − 226668ρ5

− 465702ρ4 + 2013479ρ3 − 465702ρ2 − 226668ρ+ 4568),

Z5(ρ) = − (ρ+ 2)(2ρ+ 1)

6688604160
(2622064ρ8 + 12598624ρ7 − 167685080ρ6

− 302008904ρ5 + 1115235367ρ4 − 302008904ρ3

− 167685080ρ2 + 12598624ρ+ 2622064).

Also, Z0(ρ) ≡ 1.
We construct analogous closed–form saddlepoint-type approximations hav-

ing an arbitrary fixed number of refining terms for members of the power-
variance family of distributions, which are indexed by the power parameter p,
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whose domain is R1 \ (0, 1). (We refer to Vinogradov [4] as well as to Vino-
gradov, Paris and Yanushkevichiene [5], [6] for more detail on this family,
which recently has become popular in stochastic modelling.) Specifically, we
demonstrate that the successive terms of the corresponding “exponentially
small” Poincaré series are also expressed in terms of the Zolotarev polynomi-
als.

We discuss an interesting relationship between the Zolotarev polynomials
and the so-called Stirling coefficients, which are denoted by {γk, k ≥ 0} and
constitute the coefficients of the following (divergent) Poincaré series for the
reciprocal of the gamma function as z → +∞:

1

Γ(z)
∼ z1/2−z · ez√

2π
·
∞∑
k=0

γk · z−k.

In particular,

γ0 = 1, γ1 = − 1

12
, γ2 =

1

288
,

γ3 =
139

51840
, γ4 = − 571

2488320
, γ5 = − 163879

209018880
.

We conjecture that for each fixed k ≥ 0,

Zk(0) = γk.

We verified the validity of this hypothesis numerically for all non-negative
integer values of k ≤ 30.

We conclude by considering a new important special case for which p = −1.
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The rate of convergence for a class of Markovian queues
Alexander Zeifman

Vologda State Pedagogical University, Institute of Informatics Problems of the
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A class of Markovian non-stationary queueing models with batch arrivals
and group services was introduced and studied in our recent papers, see [2,3].

Erlang-type queueing model with group services was introduced and stud-
ied in [7]. Namely, in this paper criteria for weak ergodicity and bounds on the
rate of convergence have been obtained.

Another popular and one of simplest queuing systems is M/M/S queue.
There is a large number of investigations for this model in stationary and
non-stationary situations, see for instance, [1,4-6].

Here we consider a natural generalization of this model for the queue with
possible simultaneous services and obtain general bound on the rate of con-
vergence in weak ergodic situation.

Namely, we suppose that there are S servers and infinitely many waiting
rooms in the queueing system, an intensity of arrival of a customer to the queue
is λ(t), and an intensity of departure (servicing) of a group of k customers is

µk(t) = µ(t)
k

for all 1 ≤ k ≤ S.
Let X = X(t), t ≥ 0 be a queue-length process for the queue.
Then the probabilistic dynamics of the process is represented by the for-

ward Kolmogorov system:
dp

dt
= A(t)p(t),

where A(t) is transposed intensity matrix,

A(t) =



a00(t) µ1(t) µ2(t) µ3(t) · · · µr(t) · · ·
λ(t) a11(t) µ1(t) µ2(t) · · · µr−1(t) · · ·
0 λ(t) a22(t) µ1(t) · · · µr−2(t) · · ·
· · ·
0 0 · · · 0 λ(t) arr(t) · · ·
· · ·

 ,

where µk(t) = µ(t)/k, for k ≤ S, µk(t) = 0, k > S and aii(t) are such that
all column sums in A(t) equal zero for any t ≥ 0.
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Theorem 1. Let there exist δ < 1 such that

∞∫
0

α∗(t) dt = +∞,

where

α∗(t) =

S∑
k=1

(
1− δk

)
k

µ(t)−
(

1

δ
− 1

)
λ(t).

Then queue-length process X(t) is weakly ergodic, and the following bound
on the rate of convergence holds:

‖p∗(t)− p∗∗(t)‖1 ≤ 4 e−
∫ t
s α
∗(u) du

∑
i≥1

gi|p∗i (s)− p∗∗i (s)|

for any initial conditions p∗(s), p∗∗(s) and any s, t, 0 ≤ s ≤ t, where gi =∑i−1
n=0 δ

−n.
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Class of random vectors with strictly geometric stable
marginal distributions

Igor V. Zolotukhin 1, Lidia A. Zolotukhina 2

1Russian Academy of Sciences, Institute of Oceanology, St.Petersburg Department,
Russia, igor.zolotukhin@gmail.com
2State Marine Technical University, Faculty of Applied Mathematics and Mathemat-
ical Simulation, Russia, lidia.zolotukhina@gmail.com

We consider a class of random vectors of the form

V = (Z
1
α1
1 Y1, Z

1
α2
2 Y2, . . . , Z

1
αk
k Yk),

where Y = (Y1, . . . , Yk) is a vector with independent components. Each
component of the Yi(i = 1, . . . , k) has a strictly stable distribution with the
characteristic function gi(θi) and parameters αi, ηi, βi. Z = (Z1, Z2, . . . , Zk)
is the independent from Y random vector having Marshall-Olkin multivari-
ate exponential distribution with the parameters λε > 0; {ε} is a set of
k−dimensional indices ε = (ε1, . . . , εk), and each component of εi is 0 or 1.
Vector ε will be used for the coordinate hyperplane selection in k-dimensional
space.

Let us ΨV (θ), θ = (θ1, . . . , θk) is the characteristic function of V , and
ΨV (εθ) are its projections on the hyperplane ε. Let (ε, z) means the scalar
product of vectors ε and z; ε z is their coordinate-wise product. The sign •
denotes summation on some coordinate.

Theorem. Characteristic functions of V and its projections on the coor-
dinate hyperplanes can be found by the formulas

ΨV (θ) = Eei(θ,V ) =
1∑

ε∈{ε} λε −
∑k
i=1 ln gi(θi)

∑
ε∈{ε}

λε̄ΨV (ε ln g(θ)),

ΨV (εθ) =
1∑

γ:γε>0 λγ − (ε, ln g(θ))

∑
δ:δε>0

λδΨV (δ̄ε ln g(θ)).

Corollary. For the most frequently used case k = 2, βi = 0 (i = 1, 2), 0 <
α1 < 2, α2 = 2, the characteristic function can be written as

ΨV (θ1, θ2) =
λ••

λ•• + ηα1
1 |θ1|α1 + η2

2θ
2
2

(
λ11

λ••
+
λ10

λ••

λ•1
(λ•1 + η2

2θ
2
2)

+
λ01

λ••

λ1•

(λ1• + ηα1
1 |θ1|α1)

)
.
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In this case

ΨV (θ1, 0) =
λ1•

λ1• + ηα1
1 |θ1|α1

, ΨV (0, θ2) =
λ•1

λ•1 + ηα1
2 |θ2|α1

,

where λ1• = λ11, λ•1 = λ01 + λ11, λ•• = λ10 + λ01 + λ11.

Stochastic model for dynamics of financial flows in
savings-and-loans institutions

Igor V. Zolotukhin 1, Lidia A. Zolotukhina 2

1Russian Academy of Sciences, Institute of Oceanology, St.Petersburg Department,
Russia, igor.zolotukhin@gmail.com
2State Marine Technical University, Faculty of Applied Mathematics and Mathemat-
ical Simulation, Russia, lidia.zolotukhina@gmail.com

Work of the bank can be interpreted as the work of a queuing system, with
the incoming flow of contributions corresponding to the incoming requirements
stream. Number of deposits is the amount of requirements serviced at some
moment.

Let the contributor number i invest contribution ηi for the time τi, then
he return his money back. It is assumed that

1. Contributions form Poisson flow with the constant intensity λ.

2. Times of contributions τi are i.i.d. variables with the known reliability
function F̄ (t) = P (τ > t) and finite expectation Eτ = s.

3. The amounts of contributions ηi are also independent random variables
with the characteristic function of φ(θ) = Eeiθη, the expectation of Eη =
a, with the variance of var η = σ2 and with the finite third moment of
Eη3 = C <∞.

For stationary mode, number of deposits N , lying in the bank, has the
Poisson distribution. Then the amount of money in the bank at the moment t
is equal to

U(t) =

N(t)∑
i=1

ηi.

Theorem. Under the assumptions 1,2,3 the normalized process

◦
U(t) =

U(t)− EU(t)√
var U(t)

for stationary mode weakly converges to process Y (t) as λ→∞.
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Here Y (t) denotes stationary Gaussian normalized process with the nor-
malized correlation function

ε(τ) =
1

s

∞∫
τ

F (u)du.

In this case, EU(t) = λsa,DU(t) = λs(σ2 + a2).
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Task access procedures in multiprocessor system
Murad Agalarov 1, Yaver Agalarov 2
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The multiprocessor computer system (CS) of homogeneous processors
(PR), which receives the tasks of random length, that may require parallel
execution on multiple processors was considered in this paper. The number
of allocated processors to each incoming task is predetermined so that the all
tasks occupied the PR in average are performing the same time (ie, propor-
tional to the length of tasks). If the tasks are assigned to be performed on the
same number of PR then we say that they have a same type of stream. Types
of tasks are numbered 1 . . .M in ascending order of the resources allocated for
task performing. Group of processors allocated to perform a task of type i are
called a computing resource (CR) of type i = 1, ..., I. Tasks that require mul-
tiple CR are named as “long” tasks, otherwise as “short” tasks. Each group
of CR has its own hard drive of limited capacity to store the tasks which are
assigned to this CR.

Our problem is to investigate the dependence of output intensity of exe-
cuted tasks in CR on different access procedures [1]. Four types of tasks access
procedures for CS were considered in this paper:

1. PREV procedure. Long tasks are not allowed in CR and the short tasks
are allowed if there is a free CR of the same type or there is a free space
in the appropriate drive;

2. FULL procedure. Long tasks are allowed in CR if there is a required
number of free CR of appropriate type or there is a free space in the
appropriate drive;

3. APR procedure. Long tasks are allowed in CR if there is a free space in
the appropriate drives and there is a CR of appropriate types which are
free or in use by short tasks;
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4. DPR procedure. Long tasks are allowed in CR depending on the number
of tasks that are on CR and in storages.

In the cases of 1) and 2) the tasks are performed according to the FIFO
discipline. In the cases of 3) and 4) the long tasks are allowed to perform if
there are free necessary CR or by dropping the short tasks to the storage if
there are not. Interrupted short tasks can be re-entered to the CR in order
they received.

To get the DPR procedure we used the model with following simplify-
ing assumptions: the execution times for all tasks is exponentially distributed
random variables, the tasks streams of each type are Poisson.

Lets introduce the notations: ki– the number of tasks of i–stream in the
system,k = (k1, ..., kM ) – vector describing the state of the system, mj– the
total number of tasks at the j−st CR or its storage, Rj- the number of pro-
cessors on j-st type of CR, wj– the storage capacity of j–st type of CR, cji–
the number of CR of type j allocated for tasks from stream i, dj– the cost of
providing the j–st CR, ρj – the load of j−tasks, j = 1, ..., I ,i = 1, ...,M .

For this case we suggest the following rule defining thresholds in the DPR
procedure: if di(k̄) ≥ di then task of i stream is not allowed to the system;
else if di(k̄) < di then task is allowed to the system, where k̄ is the current
system state; di(k̄) =

∑I
j=1

∑cji
l=1 uml+1–is the cost function of providing the

CR for tasks of i stream; uml = djERj+wj (ρj)/Emj−1(ρj), where Emj (ρj) –
is the Erlang’s first formula for QS with mj devices and load ρj in case when
mj < Rj and the Erlang’s second formula for QS with Rj devices, mj−Rj free
space in storage device and load ρj in case when mj ≥ Rj , mj = 1, . . . , Rj+wj ,
j = 1, . . . , I, i = 1, . . . ,M .

We proved that DPR procedure always more effective than PREV in this
model. Numerical experiments for a comparative analysis of the effectiveness
of the above access tasks procedures were carried out using a computer model
of a the above computer system. The results show that none of the procedures
has advantages over the other in the whole range of the parameters of input
streams, but the DPR procedure is preferable to the other in terms of provid-
ing both high-intensity of total output stream of tasks and a relatively high
probability of long tasks execution.
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A discrete-time Geo/G/1/∞ with service interruptions
Ivan Atencia 1, Inmaculada Fortes 2, Sixto Sánchez 3
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In this paper we analyze a discrete-time queueing system in which an ar-
riving customer can decide, with a certain probability, to go directly to the
server expelling out of the system the customer that is currently in service or
to join the queue in the last place. We carry out an extensive analysis of the
system.

1. The Mathematical model

Customers arrive according to a geometric arrival process with rate a.
If, upon arrival, the service is idle, the service of the arriving customer
begins immediately, otherwise, the arriving customer either with prob-
ability θ expels the customer that is currently being served out of the
system and starts immediately its service, or with complementary prob-
ability θ̄ = 1− θ joins the last place of the queue.

Service times are governed by an arbitrary distribution {si}∞i=1, with
generating functions S(x) =

∑∞
i=1 si x

i.

2. The steady state probabilities

Let π0 be the stationary probability that in the moment immediately
after a potential arrival, that we denoted by m+, the system is empty and
πi,k; i ≥ 1, k ≥ 1 the stationary probability that there are k customers
in the system and that the customer just being served needs i more slots
to finish its service. We define πk =

∑∞
i=1 πi,k, k ≥ 1 as the probability

that there are k; k ≥ 1, customers in the system. The corresponding
generating function (GF) is given by πk(x) =

∑∞
i=1 x

iπi,k; k ≥ 1. The
main results of this paper are summarized in the following: theorem

The probability that the system is empty is given by

π0 =
S(ā+ aθ̄)− θ̄

1− θ̄
.

The stability condition of the system is S(ā+ aθ̄) > θ̄.

The joint generating function of the number of customers in the system
and the sojourn time spent in the server is given by

π(x, z) =
∞∑
i=1

∞∑
k=1

xizkπi,k =

=
S(x)− S(ā+ aθ̄z)

x− (ā+ aθ̄z)
· axz(1− θ̄z)
S(ā+ aθ̄z)− θ̄z

π0.
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3. Busy period

The generating function of the busy period is

h(x) =
[1− (1− aθ)x]S(x− aθx)

1− x [1− aθ S(x− aθx)]
.

4. Sojourn time of a customer in the server and in the queue

The generating functions of sojourn time of a customer in the server and
in the queue are given by

b(x) =
1

1− aθS(x− aθx) +
aθ

1− aθ ·
(1− aθ)x− S(x− aθx)

1− (1− aθ)x
w(x) = π+

0 + θ(1− π+
0 )

+ (1− θ) [1− (1− a θ)x][1− a θ + a θ h(x)]− a θ h2(x)

(1− a θ)[1− (1− a θ)x]h(x)

× π+((1− a θ)x, h(x)) + (1− θ) a θ x h(x)

1− (1− a θ)x π
+(1, h(x)),

where π+
0 and π+

i,k; i ≥ 1, k ≥ 1 are the stationary probabilities that
a customer arrives to an empty system and that an arriving customer
finds k other customers in the system and the customer that its currently
being served needs i more slots to finish its service.

The GF of the stationary distribution of the sojourn time of a customer
in the system is given by

v(x) = w(x)b(x).
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On the regenerative splitting method for effective
bandwidth estimation

Alexandra Borodina
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We consider the buffered stationary queue with service constant rate C
(the amount of work which leaves into every moment of discrete time). When
the buffer size b is fixed, and the service rate C is allowed to choose, then the
effective bandwidth (EB) estimation problem arises. The natural criterion for
the EB choice follows from issues of QoS. So, the EB problem is to find out the
minimal service rate which will ensure an overfull probability less than given
value Γ

P (W > b) ≤ Γ,

where W is stationary workload.
The EB estimation problem is reduced to estimation of Limiting Scaled

Cumulant Generating Function (LSCGF) of arrival process

ΛV (θ∗) = lim
n→∞

1

n
lnEeθV (n),

where V (n) is the total work which arrives in the interval [0, n − 1] and pa-
rameter θ∗ is unknown.

The large deviation theory [1, 2] gives us the exponential relation between
the buffer size and overfull probability and the following approximation

θ∗ = − ln Γ/b.

The regenerative method for EB estimation was offered in recent work [3,
4] and demonstrated the advantages in comparison with the traditional batch
means methods [5].

This work presents the splitting technique for regenerative EB estimation
in the cases when the variance of regenerative cycle length is large.
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A simple queueing model of loss-based overload control
in a SIP-servers network
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For analysis of overload control in SIP server signaling networks [1] we
propose a single-server queueing system M | M| 1| L|B with a finite buffer of
capacity B and with hysteretic overload control with the overload abatement
threshold L, 1 < L < B (Figure 1).

n

LB

λ (s,n) µ 

Figure 1: Queueing model of M | M| 1| L|B with hysteretic load control

The input stream is Poisson with an intensity of λ, the service time has
exponential distribution with parameter µ. The system can function in one of
two modes: normal load mode (s=0) and overload mode (s=1). When in the
normal load mode the buffer occupancy increases and reaches the value B the
system switches to the overload mode (s=1) and new customers arent accepted
in the system. In order to prevent oscillations the intensity of the input stream
is restored to the normal value λ only when the buffer occupancy decreases to
the overload abatement threshold L.

The state of the system is (s, n), where s ∈ {0, 1} is overload status, n is
buffer occupancy, n = 0, B. The service process is described by the Markov
process (the continuous time Markov chain) X(t), t > 0, with a finite state
space X = X0

⋃
X1, where X0 = {(s, n) : s = 0, 0 ≤ n ≤ B − 1} the set of
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normal load states, and X1 = {(s, n) : s = 1, L ≤ n ≤ B} the set of discard
states.

The input stream intensity λ(s, n) depends on a state of the system (Figure
2): when in the set of normal load states X0 the intensity is equal to λ > 0,
when in the set of discard states X1 the intensity is equal to 0.

The steady state probabilities of the process X(t) are

p0,k = ρkp0,0, k = 0, L− 1;

p0,k =
ρk − ρB

1− ρB−L+1
p0,0, k = L,B − 1;

p1,k =
ρB(1− ρ)

1− ρB−L+1
p0,0, k = L,B,

where p0,0 =
1− ρ− ρB−L+1 + ρB−L+2

1− ρB−L+1 − (B − L+ 1)ρB+1 + (B − L+ 1)ρB+2
and ρ 6= 1.

nL B

λ (s,n)

B-1L-1

λ

0

s=1

s=0

Figure 2: The intensity λ(s, n) of the input stream

We got formulas for calculation of the following characteristics of the sys-
tem.

The blocking probability P (X1) corresponding to probability of that the
SIP server is overloaded and doesn’t accept SIP messages:

P (X1) =
B∑
k=L

p1,k.

The mean value MQ of the buffer occupancy corresponding to average
number of messages, waiting for service by the SIP server:

MQ =

B−1∑
k=0

kp0,k +

B∑
k=L

kp1,k.
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The mean value Mτ1 of the return time τ1 to the set of normal load states
corresponding to the average time interval of functioning of the SIP server in
an overload mode when control is switch on:

Mτ1 = µ−1 (B − L+ 1) .

The mean value Mτ of the control cycle time τ of SIP-server:

Mτ =
Mτ1
P (X1)

.

In addition we formulated and solved two optimization problems: for the
mean value Mτ1 (L) and for the 95% quantile value τ0.95

1 (L) of the return
time τ1 with respect to the choice of the threshold L:

Mτ1 (L)→ min; τ0.95
1 (L)→ min;

R1 : P (X1) ≤ γ1; R1 : P (X1) ≤ γ1;
R2 : Mτ ≥ γ2, R2 : Mτ ≥ γ2.

The requirements for both the problems were the same: the blocking prob-
ability shouldn’t exceed the level γ1 defined by the international standards
(R1) and control cycle time should exceed the level γ2 (R2). To solve the op-
timization problem for τ0.95

1 (L) we got the distribution function Fτ1 (t) of the
random variable τ1 as it was done in [2,3].

For B = 100, L = 50, ρ = 1.2, µ = 24 s−1, γ1 = 0.169, γ2 = 16 s we got
the following values of systems characteristics: P (X1) = 0.16668, MQ = 70,
Mτ1 = 2.125 s, Mτ = 12.749 s. For both optimization problems we got the
same value of the overload abatement threshold L = 37 with corresponding
values Mτ1 (37) = 2.655 s, τ0.95

1 (37) = 3.2 s.
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Let Xi, i = 1, 2, ..., n,..., be a sequence of finite sets,
∏n
i=1 Xi be a Cartesian

product of Xi, i = 1, 2, ..., n, X∞ be a set of all sequences where i-th element
belongs to Xi. Define A be a σ-algebra on X∞, generated by cylindrical sets.
A is also Borel σ-algebra in Tichonof product X∞, where Xi, i = 1, 2, ..., n,...,
has a discrete topology [1]. On (X∞, A) a probability measure P0 is defined.
Assume P0, n is a project of P0 on the first n coordinates of sequences from
X∞. It is clear that for every Bn ⊆

∏n
i=1 Xi

P0, n(Bn) = P0(Bn ×X∞n ),

where X∞n =
∏∞
i=n+1 Xi. Let D0, n be a support of measure P0, n.

Denote ∆0, n = D0, n×X∞n . The sequence ∆0, n, n = 1, 2, ..., is nonincreas-
ing and

∆0 = lim
n→∞

∆0, n =

∞⋂
n=1

∆0, n.

The set ∆0 is closed and it is a support of P0. We also have a set of
probability measures {Pθ, θ ∈ Θ} on (X∞, A). Then as before we define
Pθ, n, Dθ, n, ∆θ, n, ∆θ. If ω(k) ∈

∏k
i=1 Xi, then ω̃(k−1) is obtained from ω(k)

by dropping the last coordinate.

Definition 1. Ban [1] in measure P0, n is a vector ω(k) ∈
∏k
i=1 Xi, k ≤ n,

such that

P0, n

(
ω(k) ×

n∏
i=k+1

Xi

)
= 0.

If P0, k−1(ω̃(k−1)) > 0 then ω(k) is the smallest ban.

If there exists ω(n) ∈
∏n
i=1 Xi such that P0, n(ω(n)) = 0 then there exists

the smallest ban. It follows that for every n the set D0, n, D0, n 6= ∅, is uniquely
determined by least bans in such sense that all elements of D0, n are obtained
by all possible extensions of smallest bans to the length n.

Let on (X∞, A) {P0, , Pm−1} be a set of probability measures. Let’s denote
Sk, n(j) be a number of smallest bans of length k in measure Pj, n, Sn(j) be
a set of smallest bans which lengths don’t exceed n in measure Pj, n. Let
~xn ∈

∏n
i=1 Xi be an initial section of sequence x, x ∈ X∞.
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Definition 2. Statistical decision function on space
∏n
i=1 Xi is a random

function d(~xn) determined on
∏n
i=1 Xi with values in set {0, ...,m− 1}. Con-

sistent decision function is defined by the following two conditions: for every i

lim
n→∞

Pi, n(d(~xn) = i) = 1,

lim
n→∞

Pi, n(d(~xn) = j, i 6= j) = 0.

Definition 3. Decision function is defined by the minimal bans if the
algorithm of its computation is defined by sets Sk, n(j), j = 0, ...,m − 1, k =
1, ..., n, n = 1, 2, ....

Theorem. Let measures P0, , Pm−1 be such that Pi(∆j) = 0, i 6= j. Then
there is the consistent decision function d(~xn) defined by bans.

Acknowledgements. This work was supported by the Russian Founda-
tion for Basic Research (grants 13-01-00215 and 13-07-00100).
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Optimization technique for flow control parameters in
computing system
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mkonovalov@ipiran.ru

The performance of existing and designed computing systems depends es-
sentially on workflow control strategy, that include task distribution and re-
source allocation. Parameter optimization for such strategies is an important
and complex mathematical and engineering problem. This report is aimed to
demonstrate one approach to problem solving, which may be proposed for a
wide range of application.

The technique is demonstrated on a relatively simple example of a server
on which to run job from the random flow. The server has a finite number
of serving places and infinite queue with FIFO service discipline. There is a
possibility to regulate the incoming workflow: the server can accept the task
(and get some fee), but it can also reject the task (and lose the payment).
It is dangerous to accumulate a great queue because of heavy fine in case of
task deadline excess. Thus, there is a problem of finding an optimal congestion
control strategy that maximize the total mean reward. That is, there must be
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defined the probability of rejection of the new tasks de-pending on the size
of the queue. It should be noted that the approximate mathematical solution
of the problem is possible only in the case of a Poisson input flow. In a more
adequate description, for example in terms of long-tailed distributions, the
analytical approach is practically unrealizable.

The approach proposed in the report, involves the implementation of two
of the main action: 1) creation of an adequate simulation model of the com-
puting facilities and 2) implementation of simulation experiments with the
use of adaptive algorithms, engaged in setting the parameters of congestion
control strategy. Details of the technology are contained in [1, 2]. In the case
of a simple server simulation does not cause any special difficulties. For more
complex system a special framework has been developed, based on the ideas
of parallel communicating processes. Adaptive algorithm based on the theory
of partially observed Markov decision process found the ability to optimize
an objective function, respectively carrying out the optimum setting of con-
gestion control parameters. The report provides the results of applying the
optimization technique to the congestion control in the simple server under
non-Poisson workload.
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On the overflow probability asymptotics
in a Gaussian queue
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We consider the so-called fluid queue with a constant service rate C driven
by the input process A(t) which is defined as follows:

A(t) = mt+X(t),

where m > 0 is the mean input rate and the process X is a sum of the inde-
pendent fractional Brownian motions (fBm’s), in general, with different Hurst
parameters. Physically, A(t) describe the amount of data (input traffic) arrived
into a communication node within time interval [0, t], t ≥ 0. To motivate our
interest to such systems, we consider Ni independent identical heavy-tailed
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on-off sources of type i = 1, ..., n. It then follows that the appropriately scaled
cumulative workload arrived during period [0, T t] converges weakly to a sum
of independent fBm’s provided first, number of sources Ni → ∞ for each i,
and then scaling factor T →∞, see Taqqu et al. [1].

Denote by r := C − m the utilization coefficient. If r > 0 then the sys-
tem is stable and stationary workload Q exists. The present work is focused
on the asymptotic analysis of the overflow probability P (Q > b), that is the
probability that the stationary workload exceeds a (large) threshold b. Such
a probability is an important ingredient of the QoS analysis of the telecom-
munication systems. We present the logarithmic asymptotics of the overflow
probability in the described system. The proof is mainly based on the technique
developed by Duffield and O’Connell [2].
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activity.
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Stationary distribution of M2|M2|1|R queue with bi-level
hysteric policy

Alexander Pechinkin 1, Rostislav Razumchik 2

1Institute of Informatics Problems of the Russian Academy of Sciences, Russia,
apechinkin@ipiran.ru
2Institute of Informatics Problems of the Russian Academy of Sciences, Russia,
rrazumchik@ieee.org

Queueing systems with hysteresis have recently begun to draw attention
of researchers due to their possible application in next generation networks,
namely for overload control in servers that deal with signalling processing
[1]–[3]. Among recent papers that deal with analysis of queues with hysteric
policies one can mention [4]–[10]. The utilized methods (including potential
method) allow one to obtain different stationary performance characteristics
under different assumptions about service time distribution and incoming flow.
In this study we analyze queueing system M2|M2|1|R with bi-level hysteric
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policy which is the generalization of model, presented in [4], and develop new
effective approach for calculation of its joint stationary distribution.

Consider the queueing system with two poisson incoming flows of customers
(say type 1 and type 2) with rate λ1 and λ2 respectively, finite queue of size
R <∞, and one server. If arriving customer sees R customers in the system,
it is considered to be lost. Type 1 customers have relative priority over cus-
tomers of type 2. Customers of type 1 and type 2 are served exponentially
with different service rates. The hysteric mechanism operates as follows. Sup-
pose we have numbers L, H such that 0 < L < H < R. When the system
starts to work it is empty and as long as the total number of customers in
the system remains below (H − 1), system is considered to be in “normal”
state. When total number of customers exceeds (H − 1) for the first time, the
system changes its state to “overload” and stays in it as long as the number
of customers remains between L and (R − 1). In “overload” state system ac-
cepts only type 1 customers till the number of customers drops down below
L after which it changes its state back to “normal”, or exceeds (R − 1) after
which it changes its state to “blocking”. In the “blocking” state systems does
not accept new arriving customers until the total number of customers drops
down below (H + 1), after which system’s state changes back to “overload”.

The proposed method allows computation of main performance character-
istics of the system and calculation of joint stationary distribution of number
of type 1 and type 2 messages in the queue and system’s state for relatively
high values of thresholds.

In order to check theoretical results there was built a simulation model
using GPSS software. The comparisons of numerical and simulation results
showed good accuracy.
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Symbolic software tools for distributions
parametrization in nonlinear stochastic systems
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In [1–2] one- and multidimensional distributions for analytical modeling
methods and symbolic software tools based on parametrization by moments,
quasimoments, coefficients of orthogonal expansions etc for nonlinear Euclidian
stochastic systems (StS) are described. Corresponding means for multichannel
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circular and spherical StS are considered in [3–5]. The paper is devoted to
symbolic software tools for StS on manifolds (MStS) based on mathematical
foundation given in [6]. Special attention is paid to normal and ellipsoidal
approximation methods.

The original software tools “MStS-Analysis” are instrumented in MATLAB
for nonlinear continuous and discrete MStS. Its current experimental version
uses functions of MATLAB Symbolic Math toolbox and presents the set of
open program functions with numerical and graphic output.

Applications: Stochastic mechanical nonholonomial and control devices.
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Choice of optimal portfolio with transaction costs for
one-period deterministic model
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Unlike one-period transaction with a single asset, the scheme for calculating
the real net return on a one-period portfolio transaction has a number of
features. Consider n assets A1, . . . , An and the portfolio π, defined by the
position vector z = (z1, . . . , zn). Let S0 =

∑n
k=1 zkP

0
k , (resp. S1 =

∑n
k=1 zkP

1
k )

be the initial (resp. final) portfolio prices, where P 0
k (resp. P 1

k ) is the initial
(resp. final) price of Ak. Assume that S0 > 0. It is well-known [1, 3] that the
price return of π without commission is of the form

r(p) =
S1 − S0

S0
= r

(p)
1 w1 + . . .+ r(p)

n wn.

Here r
(p)
k (resp. wk) is the price return (resp. the weight) of Ak.

Now consider the portfolio π with commission α. Let C
(α)
0 = α

∑n
k=1 |zk|P

0
k

(resp. C
(α)
1 = α

∑n
k=1 |zk|P

1
k ) be the value of initial (resp. final) commission.

In this case the price return of π is defined by the formula

r(p)
α =

S1 − S0 − C(α)
0 − C(α)

1

S0 + C
(α)
0

.

This formula can be written as

r(p)
α =

n∑
k=1

r
(p)
k wk − α

n∑
k=1

(2 + r
(p)
k )|wk|

1 + α
n∑
k=1

|wk|
=

r(p) − α
n∑
k=1

(2 + r
(p)
k )|wk|

1 + α
n∑
k=1

|wk|
. (1)

According to (1), there is no simple linear relationship between r
(p)
α and wk,

k = 1, . . . , n. Moreover, when choosing the optimal portfolio, taxes further
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complicate the picture, especially if the current income tax τ (c) and price
income tax τ (p) are separated. In this case for the total income return we have

rα,τ = (1− τ (p))r(p)
α +

(1− τ (c))I(c)

S0 + C
(α)
0

= (1− τ (p))r(p)
α + (1− τ (c))r(c)

α .

Here I(c) =
∑n
k=1 zkI

(c)
k is the portfolio total current income, I

(c)
k is the current

income of Ak and r
(c)
α is the portfolio current return.

Note that the complexities encountered here are only analytical but not
computational.

Now let us consider the special case in which n = 2 (two dimensional

portfolios). From (1) it follows that r
(p)
α is a fractional-linear function on w1,

w2 for a given type of transaction, i.e. for a given position type (long or short)
for each asset. Namely

r
+(p)
α =

1− α
1 + α

r(p) − 2α

1 + α
, for w1 ≥ 0, w2 ≥ 0,

r
±(p)
α =

w1(r
(p)
1 (1− α)− 2α) + w2(r

(p)
2 (1 + α) + 2α)

1 + α(w1 − w2)
, for w1 ≥ 0, w2 < 0,

r
∓(p)
α =

w2(r
(p)
2 (1− α)− 2α) + w1(r

(p)
1 (1 + α) + 2α)

1 + α(w2 − w1)
, for w1 < 0, w2 ≥ 0,

It should be noted that the optimal portfolio without transaction costs may
be not optimal if the transaction costs are taken into account.

Consider the problem of finding the optimal two-dimensional portfolio (de-

noted by π∗ = (w∗1 , w
∗
2)) with commission for the case max(r

(p)
1 , r

(p)
2 ) > 0

and r
(p)
1 > r

(p)
2 . We shall search for the optimal portfolio in the admissible

region a ≤ w1, b ≤ w2, a, b ≤ 0. The optimal portfolio return is equal to

r
(p)
α (π∗) = max(r

+(p)
α , r

±(p)
α , 0) and

π∗ = (1− b, b), if r
±(p)
α ≥ max(r

+(p)
α , 0);

π∗ = (1, 0), if r
±(p)
α ≥ max(r

+(p)
α , 0);

the optimal portfolio does not exist, if max(r
+(p)
α , r

±(p)
α , 0) ≤ 0.

The last case means that the investor refuses to invest.
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We consider a finite capacity retrial queueing system Σ with renewal input
rate λ and a constant retrial rate. Rejected customers join an infinite-capacity
orbit and then try to rejoin the primary queue after an exponentially dis-
tributed time with (retrial) rate µ0. Thus, unlike classical retrial models, the
orbit rate in Σ does not depend on the orbit size (the number of orbit cus-
tomers). Such a system can be successfully applied to model the multi access
protocol ALOHA with restrictions for individual retrial rates and TCP proto-
cols provided most of the transfers are short.

We call this system unstable if the orbit size increases unlimitedly. Oth-
erwise, the system is stable. Indeed, under mild conditions the stable system,
being regenerative, obeys the stationary regime (the stationary distributions
of the basic processes describing the dynamics of the system, such like work-
load, orbit size, etc.). The following sufficient stability condition of system Σ
has been found in Avrachenkov and Morozov [1]:

(λ+ µ0)Ploss < µ0,

where Ploss is the stationary loss probability in an auxiliary loss system with
input rate λ + µ0. At the same time, stability criteria of such a system with
renewal input and with exponential service time have been found in Lillo [2].

In this regard, a contribution of our work is the studying by simulation
the stability region given by presented condition and comparing the results
with that given by the stability criteria, for the bufferless system Σ with ex-
ponential service time. For a non-Poisson input of primary customers, Ploss is
typically unknown, and we use a regenerative simulation to obtain a sample
mean estimator of Ploss instead, to check the fulfilment of presented condi-
tion. Moreover, we use antithetic (negatively correlated) variables to reduce
variance of the estimator, see Ross [3].
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Furthermore, we consider a rather new retrial queueing system with N
classes of customers and N orbits. Class-i primary customers are character-
ized by input rate λi, service rate µi and exponential retrial times with rate
µ

(i)
0 , i = 1, . . . , N . Such a system is motivated by multiple telecommunica-

tion applications, for instance wireless multi-access systems, and transmission
control protocols.

The stability analysis of this multi-class model is more complicated than
that of the single-class system. The multi-class Σ is stable if no orbit has infi-
nite growth. Again, using a regenerative approach we investigate the stability
region of the multi-class retrial system. For the single-server bufferless system
with Poisson inputs of primary customers, the following necessary stability
conditions are obtained

λiPb < µ
(i)
0 (1− Pb), i = 1, . . . , N,

where Pb is the stationary busy probability in an auxiliary loss system with
input rate

∑
i(λi + µ

(i)
0 ). Presented conditions have rather clear probabilis-

tic interpretation. Indeed, by the PASTA property, Pb is also the stationary
blocking probability for arriving primary customers. Then, in stable regime,
the left hand side of conditions is the rate of the blocked (primary) customers
going to orbit, while the right hand side is the rate of the orbit customers
which successfully enter the server.

As simulation results show, obtained conditions allow to delimit the sta-
bility region of a 2-orbit system with a remarkable accuracy. It means that
presented necessary conditions are in fact also sufficient conditions (that is
stability criteria), at least for the considered 2-orbit system with Poisson in-
puts and generally distributed service times.
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Queueing network model. Closed queueing network with M customers
and set of systems J = {1, 2, . . . , N} is considered. There are input Pois-
son flows of signals at rates νi and ϕi, i ∈ J . When arriving at the sys-
tem i ∈ J the signal at rate νi induces an ordinary customer at system,
if any, to become non-active. When arriving at the system i ∈ J the sig-
nal at rate ϕi induces an non-active customer, if any, to become an or-
dinary. Non-active customers are in a system queue and can not get ser-
vice. Signals do not need service. Service times are independent exponen-
tially distributed random values with parameters µi, i ∈ J . Let ni(t), n

′
i(t)

are numbers of ordinary and non-active customers at system i ∈ J at time

t accordingly. Consider X(t) =
(

(n1(t), n′1(t)), . . . , (nN (t), n′N (t))
)

. X(t) is a

continuous-time Markov chain. States space for process X(t) is Z = {(n, n′) =
((n1, n

′
1), . . . , (nN , n

′
N ))|ni, n′i ≥ 0, i ∈ J,

∑N
k=1(nk + n′k) = M}. When ar-

riving at the system i customer queues up to the system with the probability
fi(ni +n′i) and with the probability 1− fi(ni +n′i) the customer bypasses the
system i ∈ J (such customer is considered to be served). After finishing of
service process at system i ∈ J customer is routed to system j ∈ J with the
probability pi,j (

∑N
j=1 pi,j = 1), i ∈ J . Let pi,i = 0, i ∈ J .

A traffic equations system is:

εi =

N∑
j=1

εjpj,i, i ∈ J.

Theorem. X(t) is ergodic and has stationary distribution:

π(n, n′) =
1

G(M,N)

N∏
i=1

[( εi
µi

)ni( εiνi
µiϕi

)n′i ni+n′i∏
l=1

fi(l − 1)
]
.

Here εi, i ∈ J – is a traffic equations system solution, G(M,N) is found
from the normalization condition G(M,N) =

∑
(n,n′)∈Z

π(n, n′) = 1.
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Econometric analysis of Russian stock market

Ahmad Chokr

Peoples’ Friendship University of Russia, Russia, fifis-2008@mail.ru

When we consider stock market one of the main problem is to find the
relations between different stocks and try to explain how to predict the values
of the stocks using so called market index.

In our report we investigate Russian stock market. We consider the stocks
of the following russian companies:

1) Gasprom (GAZN);
2) Uralkalii (URKA);
3) Aeroflot (AFLT);
4) Lukoil (LKOM);
5) Noriskii nikel (GMKN);
6) Severstal (CHMF).

As market index we consider RTS STD.

First we investigate the applicability of CAPM to russian stock market (see
Sharp [1]). Next we find the cointegrated pairs of stocks.
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Percentage of prolongation of an insurance portfolio as
an indicator of its structure deterioration

Alexander Dombrovskiy

Peoples’ Friendship University of Russia, Russia, Sasch2086@mail.ru

Rate making and reserving in motor insurance (casco) are quite complex
and time-consuming tasks, one of the main steps of which is to identify and
evaluate all the risk factors influencing an insurance portfolio at any given
period of time. When analyzing the insurance portfolio of one of the companies
operating in the Russian market it has been suggested that one of such factors
can be the percentage of prolongation of the portfolio. This hypothesis suggests
that there is a direct correlation between the percentage of prolongation and
the ”quality” of the portfolio due to the fact that drivers who believe them to
be more susceptible to the insured event will be more likely to prolong their
policies than those who believe them to be more accurate and self-confident
on the road. Thus, the percentage of prolongation below expectations in one
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year (or equivalently higher than expected level of termination) will result in
higher claim frequency of the prolongation portfolio next year.

On the other hand it can be assumed that at the moment of policy renewal
a group of insured, which feels less confident about driving a car, will already
have some claims, what results in a higher premium for the next year. In this
situation, many insured simply decide to buy an insurance policy in another
company for much lower price. In this case our hypothesis will be rejected.

For the purpose of hypothesis testing data for the years 2008-2010 of the
above mentioned company was used. These data include information on the
percentage of policy termination and claim frequency broken down into major
risk factors: driver age and experience, vehicle sum insured and lifetime and
etc.

One of the possible ways to test our hypothesis can be based on the calcu-
lation of correlation coefficients between the percentage of policy termination
and claim frequency of the prolongation portfolio and further test whether this
coefficient is significantly greater than zero. But the data was available just
for three consecutive years, which is not enough to use the method.

Therefore, this analysis was built on the theory of generalized linear models.
Two GLMs were built for claim frequency: the first one includes percentage
of termination as a risk factor and the second one doesn’t. These models were
compared using likelihood-ratio-test. All calculations were made on the basis
of the statistical package R.

The calculations were as follows: for the policies that have been prolonged
in 2008-2009 analysis revealed the importance of the percentage of termination,
while for policies, renewed in 2010, it showed no significant influence on claim
frequency.

One possible explanation of the result is the following: peaks of the world
economic crisis came just exactly on 2008-2009, so the only least confident
insured decided to renew their policies in those years in the face of financial
difficulties. And from the beginning of 2010 there was an economic recovery
and this hypothesis was no longer so important.
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Ruin probability estimation in the model with
investments

Yulia Dubinina 1, Enrique Cortes 2

1Peoples’ Friendship University of Russia, Russia, jdubinina@mail.ru
2Peoples’ Friendship University of Russia, Russia, cortesenrique84@gmail.com

In actuarial mathematics is very important to investigate the influence of
investments to indices of insurance company.

In our model we assume that the capital of insurance company at the
moment t is ruled by the classical Cramer-Lundberg risk process:

R(t) = u+ c · t−
N(t)∑
j=1

Xj ,

where
1) u – initial capital;
2) (N(t), t ≥ 0) – homogeneous Poisson process;
3) {Xj , j ≥ 1} - i.i.d.r.v.
Next we assume that part α(t) of the capital is invested in risky asset S(t)

and part 1 − α(t) – in riskless asset B(t). The dynamics of these assets is
represented by equations:

dS(t) = S(t)(µdt+ σdW (t)) ,

dB(t) = rB(t)dt ,

where 0 < r < µ, σ > 0, (W (t), t ≥ 0) – Brownian process.
Then the full capital X(t) of insurance company is described by the equa-

tion:

dX(t) = [α(t)µ+ (1− α(t))r)dt+ α(t)σdW (t)] ·X(t) + dR(t) ,

X(0) = u.
In our report we represent the analog of Gerber formula for ruin probability.

Networks with multimode strategies of service and
several types of customers

Yulia Dudovskaya

Gomel State University, Belarus, dudovskaya@gmail.com

Open queueing networks with several types of customers, Poisson incoming
flow, exponential service in the nodes and Markov routing are studied. In each
of the nodes there is the only device, which can operate in several regimes.
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Queueing networks with multiregime service strategies have been investi-
gated relatively recently. The necessity of their study was caused by practical
considerations, because such networks allow us consider models with partially
nonreliable devices. In practice the situation when devices in the network nodes
are unreliable or partially unreliable often meets. Therefore search of the mod-
els in which devices in the nodes can work in several regimes answering different
degrees of their working capacity is very important. When the node transits to
the regime with the bigger number (in less ”reliable” regime) productivity of
the node decreases. The device can partially lose working capacity (the case of
complete loss of working capacity isn’t considered here) both during customer
service, and in a free condition from customers.

Transitions of the node from one operating regime to another one are
caused by internal possibilities of devices and also existence of the signals
circulating in the network and reducing the number of an operating regime.

Abstract description of network states is used. Such description was con-
sidered in the article [1].

Conditions of ergodicity, sufficient conditions of multiplicativity and an
analytical view of stationary distribution of network states probabilities are
found.
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Modelling of fractional Levy motion

Maxim Filippov

Tver State University, Russia, maxson@inbox.ru

Recently some generalization of fractional Brownian motion has been rep-
resented in De Nicola [1].

Let (BH(t), t ≥ 0) be fractional Brownian motion with Hurst parameter
H, (L1

α(t), t ≥ 0), (L2
α(t), t ≥ 0) be α-stable subordinators, 0 < α ≤ 1, and

BH , L1
α and L2

α are independent. Consider the new process

X(t) :=

{
BH(L1

α(t)) , t ≥ 0,
−BH(L2

α(t)) , t < 0,

This model has the properties of long-range dependence and heavy tails
of distributions. But it is very difficult to calculate in explicite form the most
important characteristics of the teletfaffic when it is modelled by such model.
So we need to use the simulation.

98



XXXI International Seminar on Stability Problems for Stochastic Models

In our report we represent the collection of algorithms and programs for
simulation of such process.
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Optimal investment strategy in the risk model with
capital injections

Alexander Gromov

Moscow State University, Russia, gromovaleksandr@gmail.com

In this research we consider a discrete time risk model, i.e. the surplus of an
insurance company is considered only at times 0, 1, 2, . . .. Let Yk be the total
amount of claims in k-th period, occuring at the end of the period. We assume
that Y1, Y2, . . . are i.i.d. r.v. with absolutely continuous distribution function
Q(y) and probability density function q(y). We denote the insurance premium
income per each time unit as c. We also assume that whenever a claim causes
the surplus of the company fall below fixed level L > 0, additional capitals
should be injected in order that the company never goes to ruin. Note that
this kind of modification of the discrete time risk model was initially proposed
by Dickson and Waters in [1].

In order to minimize the amount of capital injections the insurance com-
pany invest money into some risky asset. Let Zk be the return of a risky asset
in period k, i.e. if we invest one monetary unit at time k−1, we get back 1+Zk
units at time k. We suppose that R1, R2, . . . — are i.i.d. and independent of
Y1, Y2, . . . r.v. with common probability distribution function H(z). Moreover,
we assume that market is arbitrage-free, so 0 < P (Zk ≥ 0) < 1 and EZk > 0.
In this paper we consider adopted investment strategies A = {A0, A1, . . .},
where Ak ≥ 0 a.s. is the amount invested into the risky asset at the begin-
ning of k-th period. In this scenario the surplus process Rk of the insurance
company becomes

RAk = max(L,RAk−1 + c+Ak−1Zk − Yk), k = 1, 2, . . . , R0 = s,

where s > 0 is the initial reserve. Suppose that the company works for n ≤ ∞
time periods, then the total amount of capital injected is

WA
n (s) := E(

∞∑
k=1

vk max(0, L−RAk−1 − c−Ak−1Zk + Yk)|RA0 = s),
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where v ∈ (0, 1) is the unit time discount factor. And our goal is to minimize
this amount over all admissible investment strategies Wn(s) := infAW

A
n (s).

In this case the value function Wn(s) satisfies the Bellmann equation:

Wn(s) = v inf
α≥0
{Emax(0, L−s−c−αZ1+Y1)+EWn−1(max(L, s+c+αZ1−Y1))}

(1)
with W0(s) = 0. We prove the following
Theorem. 1) For each n ≤ ∞ the function Wn(s) ∈ C2[0,∞). Moreover,
W ′n(s) ∈ [−1, 0] and W ′′n (s) ≥ 0.
2) For each n the infimum in Bellmann equation is taken at point α∗n(s), which
is the unique solution to the following equation

E[Z(Q(s+ c+ αZ1 − L)− 1 +W ′n−1(s+ c+ αZ1 − Y1))] = 0.

3) For n < ∞ the optimal investment strategy is A∗k = α∗n−k(Rk), k =
0, . . . , n − 1, where α∗k(s) minimizes the right-hand side of the equation (1)
for n=k. For n = ∞ the optimal investment strategy is A∗k = α∗(Rk), where
α∗(s) minimizes the right-hand side of the equation (1) for n =∞.

In this paper we also prove some properties of the optimal investment level
α∗n(s) and provide some numerical examples to illustrate the theory.
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A continuous inventory optimal control problem for
discrete semi-Markov model

Alexey Ivanov 1, Peter Shnourkoff 2

1Higher School of Economics, A.I.Valerevich@gmail.com
2Higher School of Economics, P.Shnurkov@hse.ru

A system used for storing and delivery some inventory is considered. The
exact value of inventory at the moment t > 0 is defined by stochastic process
x(t) ∈ (−∞, τ ], where τ - is the maximum storage capacity. A negative value of
the inventory is related to inventory deficiency. We assume that the inventory
consumption in the model goes with constant rate α > 0.
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We partition the set (−∞, τ ] into finite number of subsets in the following
way: [

0, τ
(0)
1

)
,
[
τ

(0)
1 , τ

(0)
2

)
, . . . ,

[
τ

(0)
N0−1, τ

(0)
N0

]
, where τ

(0)
N0

= τ ;

(
−∞, τ (1)

N1

]
,
(
τ

(1)
N1
, τ

(1)
N1−1

]
,
(
τ

(1)
1 , τ

(1)
0

]
, where τ

(1)
0 = (0−).

If at the moment t̃ > 0 right after an inventory replenished the process x(t̃)

is within
[
τ

(0)
i , τ

(0)
i+1

)
then the moment when a replenish order of inventory has

been done is planed after time ξ
(0)
i , where ξ

(0)
i is a random variable having

distribution function G
(0)
i (t), i = 0, N0 − 1.

When an inventory replenish gets ordered the delivery period gets started.
Denote by η

(0)
k a random variable which describes a delivery duration if

at the order moment t̂ > 0 the system inventory value x(t̂) = x − αξ
(0)
i ∈[

τ
(0)
k , τ

(0)
k+1

)
; if the system inventory value x(t̂) = x − αξ

(0)
i ∈

(
τ

(1)
k+1, τ

(1)
k

]
then duration of the delivery is described by random variable η

(1)
k . Functions

H
(0)
k (t), k = 0, N0 − 1 and H

(1)
k (t), k = 0, N1 are the distribution functions for

random variables η
(0)
k and η

(1)
k respectively.

Let µ
(0)
k = Mη

(0)
k <∞, k = 0, N0 − 1 and µ

(1)
k = Mη

(1)
k <∞, k = 0, N1 are

given values which describes mathematical expectations of delivery duration.
At the end of a delivery duration period the inventory is replenished.

The system inventory replenished is related to process x(t) transition from
one of the admissible subsets to another. To describe this procedure we denote
the next probabilistic characteristics of the system:{

β
(0)
kl

}N0−1

l=k
- transition probabilities from

[
τ

(0)
k , τ

(0)
k+1

)
to
[
τ

(0)
l , τ

(0)
l+1

)
,

where k = 0, N0 − 1.{
β

(1)
kl

}N0−1

l=0
- transition probabilities from

(
τ

(1)
k+1, τ

(1)
k

]
to
[
τ

(0)
l , τ

(0)
l+1

)
,

where k = 0, N1.
For the considered model we assume that an inventory value after replen-

ished moment is a positive value always.
An exact inventory value after replenished is defined by probabilistic dis-

tributions Bl(x), where l = 0, N0 − 1 for each of the subsets
[
τ

(0)
l , τ

(0)
l+1

)
.

Characteristics
{
β

(0)
kl

}N0−1

l=k
, where k = 0, N0 − 1;

{
β

(1)
kl

}N0−1

l=0
, where k =

0, N1 and Bl(x), where l = 0, N0 − 1 are assumed as given.
A process x(t) evolution after an order for replenish as well as after a

replenished moment depends on a subset in which the process has got into. In
other words, for the rules of system functioning described above the process
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x(t) has Markov condition in the moments of orders for replenish and in the
moments right after replenished.

Along with the main process x(t) we denote an auxiliary semi-Markov
process ζ(t), t ≥ 0 having the finite set of states.

Let {tn}∞n=0 is a sequence of inventory replenished moments. Let ζn - subset
in which process x(t) has got into at the moment tn + 0: ζn = k if x(tn + 0) ∈[
τ

(0)
k , τ

(0)
k+1

)
, where k = 0, N0 − 1. The defined sequence {ζn}∞n=0 is the Markov

chain. Let’s define the process related to sequence {ζn}∞n=0 by the following
interrelation:

ζ(t) = ζn where tn ≤ t < tn+1; n = 0, 1, 2, . . .

The process ζ(t) is a controlled semi-Markov process having finite set of
states E = {0, 1, . . . , N0 − 1}. The process ζ(t) is controlled in the moments
tn; the controlled parameter un - a time interval between a moment right after
inventory replenished and a moment when the next replenish of the inventory
is to be ordered. Exactly, un = ξ

(0)
k if ζn = k. The set of admissible controlled

decisions un is U = [0,∞).

The optimal control problem of the described stochastic model is related
to choosing distribution functions G

(0)
k (t) = P (ξ

(0)
k < t), k = 0, N0 − 1 so

that the quality index of controlling the system I(G
(0)
k (·), k = 0, N0 − 1)

approaches to an absolute extremum.

The main results obtained in the research.

The functionals related to the quality of the system control are obtained
in the analytic form. The statement that the optimal strategy of controlling
the system is a deterministic strategy is proved. Analytic form representation
for the function the absolute extremum of which is determined as the optimal
control strategy is obtained also.

Pair trading

Arthur Khafizov

Peoples’ Friendship University of Russia, Russia, artur.rudn@mail.ru

One of the main problem in financial mathematics is how to predict the
value of one security if we can observe the other one only. In such situation we
can use the effect of so called of cointegration of two time series.

Let we have two time series (Xt, t ≥ 0) and (Yt, t ≥) which are not station-
ary (for example they are 1-order integrated) but for some β ∈ R1 the series
Zt = Yt − β ·Xt is stationary. In this case we say that Xt and Yt are cointe-
grated. It means that these series have some common long-term tendency.
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Next using the methods from the theory of stationary process we can con-
struct formally some prediction for process (Zt, t ≥ 0). If we have the trajectory
of (Xt, t ≥ 0) we can find some prediction for (Yt, t ≥ 0).

In our report we represent several procedures which realized this plan for
some special type of processes.
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Portfolio of options with dependent underlying assets

Yury Khokhlov 1, Ivan Shestakov 2

1Peoples Friendship University of Russia, Russia, yskhokhlov@yandex.ru
2Peoples Friendship University of Russia, Russia, Shestakovivpet@mail.ru

In paper Cox [1] it was represented a simple discrete-time option price
formula. It is assumed that the stock price follows a multiplicative binomial
process over discrete periods. In such model some Binomial Option Pricing
Formula has been derived. Next it was shown that famous Black-Scholes for-
mula can be derived as a limit one.

We propose some multivariate generalization of this result. It is consid-
ered the European call option on two stocks without dividents. The prices of
these stocks follows some multivariate generalization of multiplicative bino-
mial process. The main feature of our models is that the prices of stocks are
dependent.

In our report we represent some analog of Binomial Option Pricing for-
mula and show that some multivariate analog of Black-Scholes formula can be
derived as a limit one.
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The preliminary analysis and the data processing,
intended for creation of a mathematical market model of

grain crops in Russia

Peter Shnourkoff 1, Vladimir Klosinskiy 2

1Higher School of Economics, PShnurkov@hse.ru
2Higher School of Economics, klosinskiy@mail.ru

The purpose of the present paper is a preliminary analysis of the available
information related to the grain market, based on the concept of mathematical
model of control of the Russian market of cereals. Here is a description of the
basic parameters of a mathematical model characterizing the state and ontrol.

As a basic parameter characterizing the state of the object (grain market)
would naturally consider price per unit volume (tonne) grain, which is formed
as a result of trades on the stock exchange.

It is necessary to clarify whether the definition of the state take into account
additional factors, namely, a kind of grain culture and region of Russia. If Yes,
then you must build mathematical models for each region and each type of
grain separately.

The general structure of these models will be the same, but their specific
characteristics can vary significantly. Each model you must set specific values
for maximum and minimum levels of rates. These values should be set, on the
basis of economic considerations. Price is valid if it takes values from the set
between the minimum and maximum levels.

Prices above the maximum permissible values conditionally corresponds
to unacceptable levels, the values of the top, below the minimum allowed
conditionally unacceptable level indicate the lower. On the basis of the broad
economic patterns of behaviour of prices in commodity markets, it can be
assumed that control in this economic system is connected to the external
impact on the market, sold in the form of interventions. Under the intervention
as a whole requires understanding the following two possible types of influences
on the market:

1) Supply to the market lump of significant volumes of grain from State
intervention fund. Such action should lead to lower prices in a short
period of time.

2) Buying on the market lump of significant volume of grain and put it in
the State Interventional Fund. Such action should lead to an increase in
prices in a short period of time.

Used grain prices, trades and volumes of interventions. The following shows
the association of price and volume of intervention.
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Figure 1: Price. Center - Wheat 3rd class. Annual schedule of prices (2011)

Figure 2: The annual quarterly volume chart of interventions (2011)

The designations employed

∆ν
(.)
i - of intervention for the i-th quarter of the year

An analysis of the available data generally confirms the above associations
between external (control) impacts, implemented in the form of interventions,
and the price of the cereals. Next, you must determine which rule will change
the price of grain in any possible relevance of intervention (volume of supply
or procurement). The idea of such a rule must be probabilistic in nature as to
define deterministic way to change prices in a market where there are random
factors is not possible. This will be the next stage of the development of a
mathematical model.
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Market network construction: choice a measure of
association and probability of the errors

Alexander Koldanov

Department of Applied Mathematics and Informatics of Higher school of eco-
nomics in Nizhny Novgorod - Russian Federation.

Tel: +79107904164, E-mail: akoldanov@hse.ru

In this report the problem of market network construction is considered.
A vertices of the market network correspond to the stocks and edges of the
network correspond to the interaction between every pair of the stocks. Interac-
tion between stocks is measured by correlation. The complexity of the system
is reflected in the associated graph. The minimum spanning tree (MST), pla-
nar maximally filtered graph (PMFG), market graph (MG), maximum cliques
(MC) and maximum independent sets (MIS) of the market graph give an in-
teresting information about financial market structure. The prices of stocks on
financial market have a large element of randomness. Any measure of interac-
tion between stocks therefore has to be extracted from the joint distributions
of corresponding stochastic process. Once the measure is defined one can use
a statistical procedures to estimate its value from observations. To study the
statistical uncertainty of the network market analysis we introduce the con-
cepts of true network model and sample network model. True network model
is generated by the stochastic process using the true value of the measure of
interaction and sample network model is obtained by statistical estimation
of the measure of interaction. The aim of the present report is to discuss a
different ways for the network construction and estimate the statistical uncer-
tainty of the network market analysis. We propose a general approach to the
network construction on the base of idea of measure of association introduced
by Kruskal and developed by Lehman and show that existing network models
can be obtained from this approach. We show that the statistical uncertainty
of the MC and MIS is essentially lower than the statistical uncertainty of MG
which is essentially lower than statistical uncertainty of MST and PMFG

Tests of the Neyman structure for the marker graph
construction

Petr Koldanov

Department of Applied Mathematics and Informatics of Higher school of eco-
nomics in Nizhny Novgorod - Russian Federation.

Tel: +79049282609, E-mail: pkoldanov@hse.ru

In this report we consider the problem of market graph construction from
the mathematical statistics point of view. Construction of these graph is based
on the analysis of simultaneous behavior of the stocks. As a statistical model of
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the financial market we use the Markowitz type model. We consider construc-
tion of the sample market graph as a multiple decision statistical procedures.
In our investigation we consider the class of unbiased multiple decision statis-
tical procedures in the sense of Lehmann. We construct the conditional multi-
ple statistical procedure for the identification of the true market graph. This
procedure is based on tests of the Neyman structures and Pearson tests for
generating hypothesis. The result is obtained by application of the Lehmann’s
theory of multiple decision problems to the method of construction of the
market graph. The equations for calculating the thresholds for tests of the
Neyman structure are given and analyzed. The numerical results of compari-
son for Pearson test and conditional test are given.

Development of mathematical model for description of
grain market of Russia

Peter Shnourkoff 1, Daniil Novikov 2

1Higher School of Economics, PShnurkov@hse.ru
2Higher School of Economics, even.he@yandex.ru

The purpose of this paper is the presentation of the ideas and concepts that
form the basis of the concept of mathematical model control some processes
occurring in the Russian market of cereals. The estimated model must have a
stochastic nature, i.e. constitute some random process. Indeed, in a free market
there are objectively random factors that cannot be described by deterministic.

In a basis of the concept of control processes occurring in the market of
grain are supposed to put developed by P.V.Shnurkov stochastic Semi-Markov
model with periodic external impacts.

In this model assumes the existence of periodic external impacts, which
are controlled. Once the process reaches some specified set of boundary condi-
tions, which will be known as valid, it is subjected to external impact, which
consists in forcibly transfer inside the set limit (the importance of the process
of forcibly transferred from one state to another in accordance with specified
discrete probabilistic distributions, which describe the system control). Then
the process begins to evolve again without external influences (control) until
again won’t be out of the permissible limits.

In theory, the problem of optimal control in the Semi-Markov model is a
task of identifying two discrete probability distributions, which describe the
transfer process from the top or bottom of the inside the plenty of states.
Optimal distributions of some fixed functionality are extreme-quality score -
this is an indicator of control quality. It is proved that the optimal distribu-
tions are confluent, but optimum control strategy-deterministic. Such optimal
strategy can be defined as the point of extremum of a specified function of two
integer variables I(k0, k1), where k0, k1 - states from plenty of internal (valid)
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Figure 1: The graph characterizing theoretical model - trajectory of semi-
Markov process

states, which should be transferred from the lower or upper boundary levels
respectively.

The main components of the mathematical model of the market of cereals
are parameters describing the condition and control.

Now we shall provide the short description of application of this mathemat-
ical model. As a basic parameter characterizing the state of the object (grain
market) would naturally consider price per unit volume (tonne) grain, which is
formed as a result of trades on the stock exchange. Price control is carried out
by means of intervention. There are two types of interventions-purchasing and
inventory. According to the contents they are characterized as follows: either
a purchase of grain available on the market (purchased grain is placed in the
Interventional Fund) or selling grain from the intervention fund.

The general concept of the proposed mathematical model of control is as
follows. The control is at times when the price goes from a given set of allowed
values and takes either the top or bottom is invalid an invalid value. Direct
control action leads to return valid values in a variety of prices, i.e. the one
allowable levels.

Optimal control of the price of grain is carried out in accordance with
the above theoretical results for semi-Markov model with periodic external
impacts.
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Developing a new approach to the problem of optimal
control in the open dynamical model of a three-sector

economy

Peter Shnourkoff 1, Elizaveta Pantyukhova 2

1Higher School of Economics, Russia, pshnurkov@hse.ru
2Higher School of Economics, Russia, elizaveta70590@gmail.com

In some works of V. A. Kolemaev it was developed and analyzed a dy-
namic model of three-sector economy. The zero sector produces job objects,
the first- means of labor, the second-consumables. In particular, in [1] there
was considered an open version of the model, taking into account the impact
of foreign trade.

Here is a list of the main indicators of this model:

Yj - the volume of output in the j-th sector;

Kj - the main production funds (capital) in the j-th sector;

Lj - the number of employed in the j-th sector;

Ij - the volume of investments in the j-th sector;

Xj - imports of goods-sector j (j = 1, 2);

Z0 - the export volume of materials.

v - the growth rate of employment;

q0 - the world price of exported materials;

q+
1 , q+

2 - world prices of imported consumer goods and investment;

µj - wear out factor of MPF j-th sector

λj = µj + v - the coefficient of reduction of assets through depreciation of
physical capital and the increase in the number of employed j-th sector.

An analytical study of dynamic model of three-sector economy will be
produced in the unit settings. This small Latin letters are indicated by the
appropriate amount related to the volume of labour resources in the sector and
small Latin letters with cover are related to the total. (In addition θj =

Lj
L

to
the j-th-share sector in the allocation of labor resources).

The basic dynamic and balance sheet ratios describing the open model of
three-sector economy are given in [1].

New mathematical optimal control problem

New statement of a problem of optimal control may be developed. In order
to do this, we introduce some additional assumptions in the original model.

Problem management is considered in the specified target timescale [0, T ].
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State of the system is described by a dynamic set of parameters specific
to sectors of the capital. Control settings are specific investments i1 (t) and
specific volume of imports x1 (t) in the first sector.

We introduce several additional assumptions regarding key ratios of the
models:

2.1. The distribution of investments: I0 = ρ [Y1 +X1 − I1],
I2 = (1− ρ) [Y1 +X1 − I1], where ρ, 0 < ρ < 1 - the specified number.
2.2. Specific import volumes in the first and second sector are in a constant

ratio: x2 = wx1, where w - given a positive number.
2.3. Limit on the share of export: Suppose that z0 ≤ z∗0 , where z∗0 - the

maximum share of exports. Then from the assumption 2.2. it should be: x1 ≤
q0θ0z

∗
0

q+1 θ1+q+2 θ2w
.

2.4. Restrictions on specific investments in the establishing fund sector:
imin ≤ i1 ≤ ε1 (y1 + x1).

As a criterion of optimality is considered a mixed target functionality con-
sisting of integral and terminal components. Integral component is the dis-
counted consumption at a given time interval. Terminal element characterizes
the effect on the efficiency of the system parameter values of capital at the end
of the process of the management .

We can obtain the differential equations on the functions of system states
k0 (t) , k1 (t) , k2 (t), that will play the role of differential due to the optimal
control problem.

It is expected that the initial values of parameters of system states are set.
Restrictions on management are based on assumptions 2.3., 2.4.
As a result, we get a new setting of optimal control problem in canonical

form:

1.
T∫
0

e−δtθ2 (A2k
α2
2 + wx1) dt+ ψ (k0 (t) , k1 (t) , k2 (t))→ max

2. Differential association:
�
k0 = −λ0k0 + ρl1,0 (x1 +A1k

α1
1 − i1)

�
k1 = −λ1k1 + i1
�
k2 = −λ2k2 + (1− ρ) l1,2 (x1 +A1k

α1
1 − i1)

3. Initial conditions: k0 (0) = k0,0, k1 (0) = k1,0, k2 (0) = k2,0

4. Restrictions on management: imin ≤ i1 ≤ ε1 (y1 + x1)

0 ≤ x1 ≤ min

(
γ1A1k

α1
1 ,

q0θ0z
∗
0

q+1 θ1+q+2 θ2w

)
The subject of our future study will be the task of optimal control. This

issue is examined through the principle of Pontryagin’s maximum. From the
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condition of maximum Pontryagin’s function defines the structure of optimal
control. Further we study adjoint equations and differential association.
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Trajectory analysis of control process for optimal control
of investments in the model of a three-sector economy
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In this research, we consider the optimal control problem for an economic
system whose behavior is described by the dynamical model of a three-sector
economy. The results are summarized in [1,2]. For the state parameters of the
system we take the capital-labor ratio functions (specific capital) in each sector
and for the control parameter we take the amount of specific investments in
the capital generating sector. The solution of the optimal control problem
under consideration is based on the Pontryagin maximum principle. We find
the optimal control structure depending on some auxiliary function, which is
expressed in terms of conjugate variables. Analytic solutions of the systems
of differential equations for the state variables and the conjugate variables
are obtained. The system of differential equations (differential association),
describing the dynamics of the system states has the form:

k̇0(t) = −λ0k0(t) + l
(1)
0 ρ(A1k

α1
1 (t)− i1(t)),

k̇1(t) = −λ1k1(t) + i1(t),

k̇2(t) = −λ2k2(t) + l
(1)
2 (1− ρ)(A1k

α1
1 (t)− i1(t))

In previous papers [1, 2] there were obtained optimal control structure, and
solutions of differential equations and conjugate parameters. Four basic modes
of optimal control were analyzed on the time interval [0, T ]. For each of the
options issued to differential equation k0(t), k1(t), k2(t) for relative depending
on the control structure.

Further it is shown how k0(t), k1(t), k2(t) behave at different optimal con-
trol regimes. Below we state stationary solutions of a differential system asso-
ciation for the first option of the structure of optimal control with additional

111



XXXI International Seminar on Stability Problems for Stochastic Models

condition. Suppose that k0(t) = k0, k1(t) = k1, k2(t) = k2, k0, k1, k2 some val-
ues. Then the only stationary solution of the system of differential equations
is: 

k
(0)
0 = 1

λ 0
l
(1)
0 ρ(1− γ)A1

(
γA1
λ1

) α1
1−α1

,

k
(0)
1 =

(
γA1
λ1

) 1
1−α1

,

k
(0)
2 = 1

λ 2
l
(1)
2 (1− ρ)(1− γ)A1

(
γA1
λ1

) α1
1−α1

.

Consider the behavior of the function k1(t). If, for a specific set of values

for the parameter t inequality k1 = k1(t) < k
(0)
1 holds, then ∆k1 > 0, the

function k1(t) is decreasing on t. At the same time, as can be seen from the
explicit representation of function k1(t):

lim
t→∞

k1(t) = k
(0)
1 =

(
γA1

λ1

) 1
1−α1

.

Based on the findings, you can depict the character of solutions of differential
equation about k1(t) from the above-mentioned system, depending on the
initial values k1,0, i.e. the phase trajectory of this equation.

Figure 1: The behavior of functions of the capital-labor ratio of the first sector
in a given interval of time

There has been stability on the trajectories of stationary solutions at cor-
responding control regimes. By analogy we study behavior of trajectories for
functions k0(t) and k2(t) for the four best optimal control structure options.

112



XXXI International Seminar on Stability Problems for Stochastic Models

References

1. P. V. Shnurkov, V. V. Pisarenko. Optimal control of investments in the
capital generating sector in the dynamical model of a three-sector econ-
omy, All-Russian conference ”Applied Probability Theory and Theoret-
ical Informatics” , April 17 - 18, 2012. Theses of reports.

2. P. V. Shnurkov, V. V. Pisarenko. Optimal control of investments in the
capital generating sector in the dynamical model of a three-sector econ-
omy, The international conference ”Probability Theory and Its Appli-
cations” is devoted to the 100 anniversary since the birthday of B. V.
Gnedenko. Moscow,June 26 - 30, 2012. Theses of reports.

The estimation of financial stability of insurance
company

Elena Puzikova

Peoples’ Friendship University of Russia, Russia, puzikova.lena@mail.ru

In actuarial mathematics one of the main problem is to investigate how
the capital of insurance company depends on some parameters of its activity.

In our report we consider the following model of surplus of insurance com-
pany:

U(t) = C0 + Y1(t)−R(t)− Y2(t) + PI(t) ,

where
1) C0 – initial capital;
2) Y1(t) = a · t – the premium process;
3) R(t) = b · t – own expences;

4) Y2(t) =
N(t)∑
j=1

Xj – claims process;

5) PI(t) – return from investments.
We assume that (N(t), t ≥ 0) is a homogeneous Poisson process, {Xj , j ≥

1} are i.i.d.r.v.

In our report we consider the following problems:

1) optimal investment control;
2) ruin probability as a function of the parameters of insurance company

activity;
3) calculating of financial stability characteristics as a function of the pa-

rameters of insurance company activity.
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Modelling of multivariate Cox process

Olga Rumyantseva

Moscow State University, Russia, rumyantseva-olga@mail.ru

We consider the multivariate analog of generalized Cox process (one di-
mensional process see in Bening [1])

Let N(t) = (N1(t), . . . , Nm(t)) be a multivariate Poisson process (with
dependent components in general), {Xj = (Xj1, . . . , Xjm)} be a sequence of
i.i.d. random vectors woth finite second moments, Λ(t) = (Λ1(t), . . . ,Λm(t)) be
a multivariate random process such that: Λk(0) = 0, Λk(t) has nondecreasing
paths, E(Λk(t)) = bk · t, V ar(Λk(t)) = s2

k · t, bk > 0, s2
k > 0 for all k = 1,m.

The processes (N(t), t ≥ 0) and (Λ(t), t ≥ 0) are independent.
We consider the following variant of multivariate generalized Cox process:

C(t) = (C1(t), . . . , Cm(t)):

Ck(t) :=

Nk(Λk(t))∑
j=1

Xjk .

If we want to use this model in practical problems we need to simulate this
process.

In our report we propose the algorithms and programs for simulation of
such processes.
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On Markov reliability model of a system,
operating in Markov random environment

Vladimir Rykov, Tran Anh Nghia
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University of Russia, Moscow, Russia, vladimir rykov@mail.ru

Keywords: Reliability Models, Random Environments
Most of complex technical systems and biological objects are usually op-

erating in changing environment, which can have a regular (seasons etc.) as
well as random (weather, rein, smog, etc.) character. At that the mean time
of environment changing can be co-measured with that failures and repair or
to be both smaller or grater it. Therefore the influence of this circumstances
to their reliability characteristics is an important problem.
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There are some papers, devoted to queueing systems in random environ-
ment investigation. One of the first it was the paper of Eisen and Tainiter, who
investigated the system M/M/1(ME) under assumption that the random en-
vironment takes only two states. Here and later the notation (ME–Markov
Environment in commas) denoted that the system operates in Random En-
vironment. The same system has been considered in Naor and Yehiali, and
than generalized for the case of any finite number of environment’s states by
Yechiali. Newts used matrix-analytical method for investigation of one and
multi-channel queueing systems in random environment. Than the models
M/M/1(ME) and M/M/∞(ME) have been considered in papers of Purdue
and O’Cinneide & Purdue. For biblography see, fro example [1]. In further
these investigations developed in different directions connected with general-
ization of input flows, service mechanisms and environment processes. For the
contemporary results and the bibliography see, for example, [2]. However the
problem of renewable systems reliability operating in random environment is
not enough studied yet. One of aspects of the talk consists in description and
studying of this problem.

The long time system behavior is usually described with steady state prob-
abilities. However, because there is no infinitely long existing systems in most
real situation it is necessary to study their life time (before entering in sone
full failure subset of states) as well as their behavior during this time. The
system behavior before its full failure is described with its conditional states
probabilities given life time didn’t end. Closed form representation of these
probabilities in general case are hardly possible. But really, because a system
usually many times visit any of its not absorbing states during its life time,
an interesting problem is study limits of these probabilities for t → ∞. The
problems of these limits existence for Markov processes and especially for birth
and death processes have been considered by several authors. Evaluation of
the convergence rate to the quasi-limiting probabilities for queueing models
by Granovsky and Zeifman has been studied. For bibliography see for example
[3] and the bibliography therein.

In [4] generalized birth and death processes as a model for systems degrada-
tion has been introduced and studied, where also the problem of quasi-limiting
probabilities has been discussed. Therefore the another aspect of the paper is
devoted to studying of a system life time under random environment as well
as their behavior during this time.

In the paper a simple Markov reliability model of a system operating in
Markov environment is proposed. The system behavior is described by two-
dimensional Markov process with block-wise infinitesimal matrix. Algorithms
for calculation of steady state and quasi-stationary probabilities as well as
reliability function based on this special form of infinitesimal matrix are given.
The influence of random environment to the system reliability characteristics
is numerically investigated for a special cases.

Some examples of proposed approach for study of reliability of hybrid in-
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formation transmission systems, operating in random environment, has been
considered in [5, 6].
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Development of the semi-Markov stock management
model with a discrete set of states and a random delay

of delivery

Peter Shnourkoff 1, Dmitry Vovk 2

1Higher School of Economics, Russia, pshnurkov@hse.ru
2Higher School of Economics, Russia, vovkdmitrij@gmail.com

This paper examines the stochastic semi-Markov stock management model
of some goods with possible deficit. The flow of the applications for this product
is determined as Poisson stream with the intensity λ.The amount of product in
the system can take discrete values in the range [−N1, N0], where N0, N1> 0
are predefined integers. ValueN0 - is the highest level of real stock. The amount
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of stock in the range [−N1, N0] characterizes the deficit when bids for the good
are accepted for registration. Applications received at the time when the deficit
is set to (−N1) are lost. The decisions are taken at the time of replenishment.
If at this moment the state of the process is equal to i then the level of reserve
for next query is determined as ri where −N1 ≤ ri ≤ i−1. Next time when the
process hits the value ri new level of reserve ri+1 is set. And so on. Random
time τ between the moment of the order and the moment of replenishment
has a specified distribution H(x). The size of replenishment is random and it

has discrete distribution with probabilities β
(0)
kj , β

(1)
kj ,−N1 + 1 ≤ k ≤ ri − 1 ,

j > 0.
Replenishment procedure is designed in the way that the basic process is

transferred from the state (k) which it takes directly before the replenishment
to the state j, j = 1, . . . , N0 the shortage of product is always filled in.

Let us introduce random processes describing the functioning of the system.
Let ξ(t) – the basic process that describes the level of stock at the moment t.
The set of spaces is determined as X = {−N1,−N1 + 1, . . . ,−1, 0, 1, . . . , N0}.
Denote {t(0)

n , n = 0, 1, . . .} - sequential moments of replenishment; t
(0)
0 = 0;

ξ
(0)
n = ξ(t

(0)
n + 0) - the state of the process directly after replenishment. We

introduce a random process ξ(0)(t) determined by the ratios ξ(0)(t) = ξ
(0)
n

when t
(0)
n ≤ t ≤ t

(0)
n+1. From now the process ξ(0)(t) will be referred to as the

”maintainer”. The set of states for this process is X(0) = {0, 1, . . . , N0}, {ξ(0)
n }

and it constitutes the embedded Markov chain for the main process.
Denote pij , i, j,= 0, 1, . . . , N0 transition probabilities of Markov chains,

embedded in main semi-Markov process ξ(0)(t).

pij = P (ξ
(0)
n+1 = j

∣∣ξ0
n = i), i, j = 0, 1, . . . , N0

Adduce explicit form for transition probabilities for unembedded Markov
chain:

1) Let i - to be afixed state, 0 ≤ ri ≤ i, i, j = 0, 1, . . . , N0

p
(I)
ij =

ri∑
k=0

β
(0)
kj

∞∫
0

(λx)ri−k

(ri − k)!
e−λxdH(x)+

−1∑
k=−N1+1

β
(1)
kj

∞∫
0

(λx)ri−k

(ri − k)!
e−λxdH(x)+

+

 ∞∑
k=ri+N1

∞∫
0

(λx)k

k!
e−λxdH(x)

β(1)
−N1,j

. (1)

2) Let i -to be a fixed state, ri = −N1 + 1,−N1 + 2, . . . ,−1

p
(II)
ij =

ri∑
k=−N1+1

β
(1)
kj

∞∫
0

(λx)ri−k

(ri − k)!
e−λxdH(x)+
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+

∞∑
k=ri+N1

∞∫
0

(λx)k

k!
e−λxdH(x)β

(1)
−N1,j

. (2)

3) Let i-to be afixed state,ri = −N1

Because −N1 is the minimum level of stock in the system we get ratio:

p
(III)
ij = β

(1)
−N1,j

. (3)

Let us obtain the equation for the stationary probabilities of embedded
Markov chain. Note that the transition probabilities pij for each fixed value i
depends on the values ri.

So, let us fix the control parameters corresponding to the statesof embedded
Markov chain (r0, ri, . . . , rN0). For each kind of set (r0, ri, . . . , rN0), expression
for the transition probabilities are determined by ratios (1)-(3). For a given
set (r0, ri, . . . , rN0) define the following set S0 , S1, S2, that represent a subset
of the states (0, 1, . . . , N0).

S0 = {i ∈ {0, 1, . . . , N0} : ri ≥ 0};

S1 = {i ∈ {0, 1, . . . , N0} : −N1 + 1 ≤ ri ≤ −1};

S2 = {i ∈ {0, 1, . . . , N0} : ri = −N1};

Then the system of equations for stationary probabilities takes the form:

πj =
∑
i∈S0

πip
(I)
ij +

∑
i∈S1

πip
(II)
ij +

∑
i∈S2

πip
(III)
ij j = 0, 1, . . . , N0

Next step is to obtain the indicators of quality management the semi-
Markov model, which depends particularly from the stationary distribution.

The estimation of ruin probability in multivariate
collective risk model

Ekaterina Smirnova

Peoples’ Friendship University of Russia, Russia, sukmanova-kate@mail.ru

In actuarial mathematics great importance has always been given to esti-
mations of ruin probability of insurer. The multivariate collective risk model
allows to consider the dependence between claims of different fields of in-
surance, operated by insurance company. Claims happened in different fields
of insurance are mutually dependent very often, that affects the process of
changing the value of the insurance reserve. The process of reserve changing
can usually be presented in a form:

U(t) = u+ c · −S(t) ,
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where U(t) = (U1(t), . . . Um(t)) - the process of insurer reserve; u =
(u1, . . . , um) - the initial insurer capital distributed between m fields of in-
surance; c = (c1, . . . , cm) - vector of intensity of premiums incoming for each
fields of insurance; S(t) = (S1(t), . . . , Sm(t) - total indemnity for each field of
insurance by the moment t.

Let us consider the multidimensional index i = (i1, . . . , im) consisted of 0
and 1, where ik = 1 when claims of the contract k were paid and 0 in other
case. Denote by I the set of all possible values of i. Let N (i)(t), t ≥ 0 be
the number of claims happened up to the moment t and having the structure
corresponding to the index i. Then

Sk(t) =
∑
i∈I

N(i)∑
j=1

X
(i)
j,k ,

where X
(i)
j,k is the claim corresponding to k-th field of insurance.

Let Tk be the moment of ruin in k-th field of insurance.
It is very important for the insurer that each field of insurance is not loss-

making. That is why the ruin moment of the insurance company is determined
as T = min{Tk, k = 1,m}.

In the report some properties of the vector (T1, . . . , Tm) would be investi-
gated and also there would be derived estimations of ruin probability.
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Lower bounds on the convergence rate of the Markov
symmetric random search

Alexey Tikhomirov

Novgorod State University, Russia, Tikhomirov.AS@mail.ru

The convergence rate of the Markov random search algorithms designed for
finding the extremizer of a function is investigated. It is shown that, for a wide
class of random search methods that possess a natural symmetry property, the
number of evaluations of the objective function needed to find the extremizer
accurate to ε cannot grow slower than | ln ε|.

Let the objective function f : X 7→ R (where, for instance, X = Rd) take
its minimal value at a single point x∗. Consider the problem of finding the
global minimizer x∗ of this function up to a given accuracy ε (approximation
by argument). One way of solving this problem is to use Markov random
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search algorithms (see [1]–[3]). Such algorithms have long been used for solving
difficult optimization problems. Note that the simulated annealing algorithm,
which is a well-known stochastic global optimization algorithm, belongs to this
class.

In this paper, we consider the case X = Rd with the Euclidean metric ρ.
The closed ball of radius r centered at the point x is denoted by Br(x) = {y ∈
Rd, such that ρ(x, y) ≤ r}.

Throughout this paper, we assume that the objective function f : Rd 7→ R is
measurable, and takes its minimum value at a unique point x∗ = arg min{f(x),
such that x ∈ Rd}.

A random search is defined as an arbitrary sequence of random variables
{ξn}n≥0 taking values in Rd. Following [2], we give a general scheme of Markov
random search algorithms.

Algorithm 1 (A general scheme of Markov algorithms).

Step 1. Set ξ0 = x and set iteration number n = 1.

Step 2. Obtain a point ηn in Rd by sampling from a distribution
Pn(ξn−1, · ). The transition probability Pn(ξn−1, · ) depends on the iteration
number n and on the preceding search point ξn−1.

Step 3. Set

ξn =

{
ηn with probability Qn,

ξn−1 with probability 1−Qn.

Here Qn is the acceptance probability ; this probability may depend on ηn, ξn−1,
f(ηn), f(ξn−1).

Step 4. Check a stopping criterion. If the algorithm does not stop, substi-
tute n+ 1 for n and return to Step 2.

Here, x is the starting point of the search. Different rules of specifying
the acceptance probabilities Qn and the transition probabilities Pn(x, · ) lead
to different variants of the Markov random search algorithms. We will con-
sider the Markov random search whose transition probabilities Pn(x, · ) have
symmetric densities pn(x, y) of the form

pn(x, y) = gn,x
(
ρ(x, y)

)
, (1)

where ρ is a metric and gn,x are nonincreasing nonnegative functions defined
on (0,+∞). The Markov search defined by Algorithm 1 with the transition
probabilities with densities (1) is called the Markov symmetric random search.

We use a random search for finding the minimizer x∗ with a given accu-
racy ε (approximation with respect to the argument). In this case, we want
the search to hit the ball Bε(x∗). Denote by τε = min{n ≥ 0, such that
ξn ∈ Bε(x∗)} the time when the search first hits the ε-neighborhood of the
global minimizer. The distribution of the random variable τε provides sufficient
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information about the quality of the random search (see [2, p. 127]). Indeed,
τε steps of Algorithm 1 require τε + 1 evaluations of f .

The main result of this paper is Theorem 1. It is proved that the compu-
tational effort of the Markov symmetric random search needed to guarantee
the required accuracy ε of the solution cannot grow slower than | ln ε|.

Theorem 1. Let the function f : Rd 7→ R take its minimum value at
a unique point x∗. Consider the Markov symmetric random search {ξn}n≥0

defined by Algorithm 1 whose transition probabilities have densities of form
(1). Let x be the starting point of the search, 0 < ε < δ = ρ(x, x∗), and n ∈ N.
Then, it holds that

E τε ≥ ln(δ/ε) + 1, P(τε ≤ n) ≤ ε

δ

n−1∑
i=0

lni(δ/ε)

i!
. (2)

Let the optimization space X = R and f(x) = |x|. In this case it is easy
to construct the Markov symmetric random search with E τε = 2 ln(δ/ε) + 2.
This result shows that estimates (2) are accurate estimates of the convergence
rate.

References

1. S. M. Ermakov, A. A. Zhigljavsky. On the Random Search of Global Ex-
tremum. Teor. Veroyatn. Ee Primen., 1983, No. 1, p. 129–136.

2. A. Zhigljavsky, A. Z̆ilinskas. Stochastic Global Optimization, Springer,
Berlin, 2008.

3. A. Tikhomirov, T. Stojunina, V. Nekrutkin, Monotonous Random Search
on a Torus: Integral Upper Bounds for the Complexity. Journal of Sta-
tistical Planning and Inference, 2007, 137, p. 4031–4047.

4. A. S. Tikhomirov, Lower Bounds on the Convergence Rate of the Markov
Symmetric Random Search. Computational Mathematics and Mathe-
matical Physics, 2011, vol. 51, No. 9, p. 1524–1538.

121



XXXI International Seminar on Stability Problems for Stochastic Models

Stationary waiting time in queuing system with negative
customers, bunker and phase-type service times under
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In this study queue with Poisson flows of ordinary and negative customers
is being considered. Ordinary customer upon arrival occupies one place in the
queue in the buffer of infinite capacity. Arriving negative customer moves one
ordinary customer which is the last one in the queue in the buffer into another
queue called bunker (of finite capacity r). Negative customer itself leaves the
system. If customer arrives at full bunker it is lost. If at the moment of arrival
of negative customer buffer is empty (or system is empty), it leaves the system
without causing any impact on it. After service completion first customer in
the queue in the buffer goes to server. If upon service completion the queue in
the buffer is empty then first customer in the queue in the bunker enters server.
Service times of customers from both buffer and bunker have phase-type distri-
bution of order g <∞. This paper continues the research of queueing systems
with negative customers and bunker for superseded customers conducted in
[1-3]. Stationary waiting time distribution of arbitrary customer is obtained in
terms of Laplace-Stieltjes transform.
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Multichannel queuing systems with bounded waiting
time and regenerative input flow

Andrey Tkachenko

Moscow State University, tkachenko.av.87@gmail.com

We consider queuing systems with r heterogeneous channels.The service
time ηin of the n-th customer by the i-th server has distribution function Bi(x)
with finite mean β−1

i . Let β =
∑r
i=1 βi. Customers are served in order of their

arrivals at the system. Service times of customers are independent random
variables.

The input flow X(t) is assumed to be regenerative. Let θi be the i-th regen-
eration point of X(t), τi = θi−θi−1, ξi = X(θi)−X(θi−1) (i = 1, 2, . . . ; θ0 = 0).
Then τi is the regeneration period, ξi is the number of customers arrived dur-
ing the i-th regeneration period. Assume that a = Eξi < ∞, τ = Eτi < ∞,
and λ = lim

t→∞
X(t)
t

= aτ−1 a.s..

Let {vn}∞n=1 be the sequence of independent identical distributed random
variables and it does not depend on the input flow and service times. The
random variable vn can be an improper one, i.e. α = P{vn =∞} ≥ 0. Denote
C(x) = P{vn ≤ x|vn < ∞}. Moreover vn bounds the waiting time of the
nth customer in the system, i.e. if the nth customer does not start it’s service
during the time vn then it leaves the system without service at all. Let q(t)
be a number of customers in the system at time t. Under some additional
assumptions q(t) is a regenerative process and θi is it’s point of regeneration
if q(θi − 0) = 0.

Theorem 1. The process q(t) is ergodic iff ρ = αλβ−1 < 1.
The proof is based on the lemma about stochastic boundedness and ergod-

icity of the regenerative process proved in [Afanasyeva, Tkachenko, 2013] and
construction of majorizing process. Then results for regenerative process with
finite mean of the period of regeneration [Thorisson, 1987] are applied.

First we give the following result concerning so called super-heavy traffic
situation (ρ ≥ 1).

Theorem 2. If ρ > 1 (ρ = 1) and for some δ > 0

Eτ2+δ
1 <∞, Eξ2+δ

1 <∞, E(ηi1)2+δ <∞, i = 1, r, (?)

then the normalized process q̂n(t) = q(nt)−β(ρ−1)nt

σ̂
√
n

weakly converges on any

finite interval [0, t] to Brownian motion (absolute value of Brownian motion)
as n→∞. Here

σ̂2 = σ2
X + σ2

β , σX =
ασ2

ξ

τ
+

(αa)2σ2
τ

τ3
− 2aα2cov(ξ1, τ1)

τ2
,

σ2
β =

r∑
i=1

σ2
i β

3
i , σ

2
τ = V ar(τ1), σ2

ξ = V ar(ξ1), σ2
i = V ar(ηi1), i = 1, r.
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In order to prove this theorem we use Brownian approximation for modified
multichannel systems [Iglehart, Whitt, 1970] and construct two majorizing
systems.

Second we focus on the process q(t) in the heavy-traffic situation (ρ ↑ 1).
We consider time-compression asymptotic. Namely the input flow is given by
the relation

Xn(t) = X

(
ρ−1

(
1− 1√

n

)
t

)
so that the traffic coefficient depends on the parameter n and ρn ↑ 1 as n→∞.
Let qn(t) be the process q(t) for the system with input flow Xn(t).

Theorem 3. Under conditions (?) the normalized process q̃n(t) = qn(nt)√
n

weakly converges on any finite interval [0, t] as n→∞ to the diffusion process

with reflecting at the origin and coefficients (−β, σ̃2), where σ̃2 = σ2
β +

σ2
X
ρ
.

The proof is based on the construction of the functional limit of the fluid
process [Whitt, 2001] and some estimates for number of customers in the
system.
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òåîðèè âåðîÿòíîñòåé è ìàòåìàòè÷åñêîé ñòàòèñòèêè, ñâÿçàííûå ñ

ìîäåëèðîâàíèåì èíôîðìàöèîííûõ ñèñòåì�,

Ìåæäóíàðîäíûé ðàáî÷èé ñåìèíàð �Ïðèêëàäíàÿ òåîðèÿ

âåðîÿòíîñòåé è òåîðåòè÷åñêàÿ èíôîðìàòèêà�.

Ñáîðíèê òåçèñîâ

Ðåöåíçåíò: äîêòîð ôèç.-ìàò. íàóê, ïðîôåññîð Â.Í. Áàñêàêîâ

Òåõíè÷åñêèé ðåäàêòîð: êàíäèäàò ôèç.-ìàò. íàóê È.Ã. Øåâöîâà

Îðèãèíàë-ìàêåò ïîäãîòîâëåí Þ.Ñ. Íåôåäîâîé

Ïîäïèñàíî â ïå÷àòü 08.04.2013

Òèðàæ 120 ýêç.
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