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Informative regression model under random censorship
from both sides and estimation of survival function

F.A. Abdikalikov 1, A.A. Abdushukurov 2

1National University of Uzbekistan, Tashkent,
2National University of Uzbekistan, Tashkent, a abdushukurov@rambler.ru

In survival data analysis, response random variable (r.v.) Z , the survival
time of a patient, that usually can be influenced by r.v. X, often called prog-
nostic factor. In fact, in practical situations often occurs that not all of sur-
vival times Z1, ..., Zn corresponding to n individuals, are completely observed,
they may be censored. In this article we consider the case, when lifetimes
censored from both sides. So let

{
(Zk, Lk, Yk, Xk) , k = 1.n

}
are independent

replicas of vector (Z,L, Y,X), where components of vector (Z,L, Y ) are inde-
pendent for given covariate X. Our sample will be consist of n vectors S(n) ={(
ξi, χ

(0)
i , χ

(1)
i , χ

(2)
i , Xi

)
, 1 6 i 6 n} where ξi = Li ∨ (Zi ∧ Yi) , χ

(0)
i =

I (Zi ∧ Yi < Li) , χ
(1)
i = I (Li 6 Zi 6 Yi) , χ

(2)
i = I (Li 6 Yi < Zi) with

I (A) - denoting the indicator of event A, a∧b = min(a, b), a∨b = max(a, b). In

sample S(n) the r.v.-s of interest Zi are abservable when χ
(1)
i = 1. We denote

by Fx, Gx and Kx the conditional distribution functions (d.f-s) of r.v.-s Zx, Yx
and Lx respectively, given that X = x and suppose that they are continuous.
Let 0 6 x1 6 x2 6 ... 6 xn 6 1 denote n fixed design points of covariate X.

Let’s Hx and Nx are conditional d.f-s of r.v.-s ξx and ηx = Zx∧Yx for X =
x. Then Hx (t) = Kx (t)Nx (t) and Nx (t) = 1− (1− Fx (t)) (1−Gx (t)) , t >
0. We suppose that the censoring is informative so that the d.f.-s Kx and Gx
are expressed from d.f. Fx with following formulas for all t > 0{

1−Gx (t) = (1− Fx (t))θx ,

Kx (t) = (Nx (t))βx ,
(1)

where θx and βx are positive unknown parameters. Model (1) generalize well-
known proportional hazards model of Koziol-Green [2], which follows from
(1) for βx = 0 ,in the absence of random censorship on the left (Kx (t) ≡ 1)
and without presence of covariate X. The following theorem characterizes the
model (1).

Theorem 1. Equalities (1) hold if and only if, when r.v. ξx and vector(
χ

(0)
x , χ

(1)
x , χ

(2)
x

)
are independent.

Should also be noted that model (1) in the absence of covariate X was investigated
in [1]. Further assume that the model (1) holds. Then for survival function 1 − Fx
has the representation 1− Fx (t) =

[
1− [Hx (x)]λx

]γx
, t > 0, where λx = 1

1+βx
and

γx = 1
1+θx

. Using this representation, we construct the following estimate for 1−Fx
:

1− Fxh (t) =
{

1− [Hxh (t)]λxh
}γxh

, t > 0, (2)

3
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where λxh = 1 − p(0)
xh , γxh = p

(1)
xh

(
1− p(0)

xh

)−1
, p

(m)
xh =

n∑
i=1

χ
(m)
i ωni (x;hn) , m =

0, 1, 2, Hxh (t) =
n∑
i=1

I (ξi 6 t)ωni (x;hn) ,and {ωni (x;hn)}ni=1 are Gasser-Mullers

weights.

ωni (x;hn) =

 xn∫
0

1

hn
π

(
x− y
hn

)
dy

−1 xi∫
xi−1

1

hn
π

(
x− y
hn

)
dy, i = 1, ..., n;

xo = 0, π (t) is known density function(kernell) and hn ↓ 0, n → ∞. For the
estimates (2) we have prove the following results:

(A) Exponential estimator for probability P

(
sup

τ6x6T
|Fxh (t)− Fx (t)| > ε

)
,

where ε > 0, τ 6 T ;
(B) Strong uniform consistency with rate of convergence:

sup
τ6x6T

|Fxh (t)− Fx (t)| a.s.
= O

((
logn

nhn

)1/2
)

;

(C) Asymptotic representation by sum of independent r.v.-s:

Fxh (t)− Fx (t) =

n∑
i=1

ωni (x;hn) Ψtx
(
ξi, χ

(0)
i , χ

(1)
i , χ

(2)
i

)
+O

(
logn

nhn

)
;

(D) Asymptotic normality:

(nhn)
1/2 (Fxh (t)− Fx (t))⇒ N

(
ax (t) , σ2

x (t)
)
.

(E) Weak convergence of stochastic process Wnx(t) = (nhn)1/2 (Fxh(t)− Fx(t)),
τ 6 t 6 T , in D[τ, T ] Gaussian process Wx(t) in Skorochod space

Wnx(t)
D⇒ Wx(t) in D[τ, T ].
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Mean residual life function estimation in the dependent
models of random censorship
A.A. Abdushukurov 1, N.T. Dushatov 2

1National University of Uzbekistan, a abdushukurov@rambler.ru
2National University of Uzbekistan, n dushatov@mail.ru

In survival analysis (in engineering, in medical - biological researches)
our interest focused on estimation of mean residual life function en(x) =
en(x, F ) = E(X − x/X > x) of random variable (r.v.) X with survival func-
tion SX(x) = 1 − F (x) = P (X > x), x > 0, F (0) = 0. However, in practical
situation r.v. X is often censored. Consider the model of random censoring
from the right, in which r.v. X with distribution function (d.f.) F is censored
from the right by possible depending from X r.v. Y with d.f. G,G(0) = 0. Let
{(Xi, Yi) , i > 1} is sequence of independent realization of pair (X,Y ) with

bivariate d.f. H(x, y) = P (X 6 x, Y 6 y), (x, y) ∈ R+2
= [0,∞]2. Observation

is available the sample V (n) = {(Zi, δi), 1 6 i 6 n} , where Zi = min(Xi, Yi)
and δi = I(Zi = Xi), I(A) is an indicator of the event A. In the sample
V (n) = {(Zi, δi), 1 6 i 6 n} the r.v.-s of interest Xi are observable only when
δi = 1.

Let’s consider the following estimation for e(x, F ) :

en(x) = e(x, Fn) = (SXn (x))−1 ·
+∞∫
x

SXn (t)dt, x ∈ [0, Z(n)].

Here Z(n) = max(Z1, ..., Zn) and SXn (x) = 1−Fn(x) is copula-estimate for SX

from [1-3] is defined as

SXn (x) = ϕ−1

ϕ(SZn (x)) ·

x∫
0

I(SZn (t−) > 0)SZn (t−)ϕ
′
(SZn (t))dΛXn (t)

x∫
0

I(SZn (t−) > 0)SZn (t−)ϕ′(SZn (t))dΛZn (t)

 ,
where

SZn (x) =
1

n

n∑
i=1

I(Zi > x),

ΛXn (x) =
1

n

n∑
i=1

I(Zi 6 x, δi = 1)

SZn (Zi) + 1
n

, ΛZn (x) =
1

n

n∑
i=1

I(Zi 6 x)

SZn (Zi) + 1
n

,

ϕ is strong generator (ϕ(0) = ∞) of Archimedean copula survival function
C(u, v) = ϕ−1[ϕ(u)+ϕ(v)] , ϕ−1 is inverse of ϕ and by the Sclar’s theorem for
bivariate survival function H(x, y) = P (X > x, Y > y) we have representation

ϕ
(
H(x, y)

)
= ϕ

(
SX(x)

)
+ ϕ

(
SY (y)

)
, (x, y) ∈ R+2

.
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Let’s introduce the weighted uniform measure εn(F ) = sup
06x<∞

χ(F (x)) ·

|e(x;Fn)− e(x;F )| , where weight function χ : [0, 1] → R
+

satisfies the fol-
lowing conditions:
(C1) Function χ is measurable and for every η > 0 : sup{χ(u) : u ∈
[0, 1− η]} <∞;
(C2) Function χ∗(u) = χ(u)/(1− u) is nondecreasing in a neighborhood of 1;
(C3) For TX = sup{x : SX(x) > 0}, let

TX∫
0

(SX(x))−1

TX∫
x

χ(F (y))dy

 dF (x) <∞.

Let’s enter also following regularity conditions for functions H, ϕ and Λ,
where under Λ we mean the cumulative hazard functions ΛX = − logSX

and ΛZ = − logSZ :
(C4) The generator function ϕ(·) is strictly decreasing on (0,1] and is suffi-
ciently smooth in the sense that the first two derivatives of the functions ϕ(x)

and ψ(x) = −xϕ
′
(x) are bounded for x ∈ [ε, 1], where ε > 0 is arbitrary.

Moreover, the first derivative ϕ
′

is bounded away from zero on [0, 1];

(C5) 0 <
TZ∫
0

[ψ(SZ(x))]2dΛ(x) <∞;

(C6)
TZ∫
0

∣∣ψ′(SZ(x))
∣∣ dΛ(x) <∞ , TZ = sup{x : SZ(x) > 0}.

Theorem. Let EX = e(0;F ) < ∞, conditions (C1)-(C6) are hold. Then
for n→∞,

εn(F )
P→ 0.

We discuss also the weak convergence of normed process
√
n(en(x)− e(x))

to the Gaussian process.
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Multi-channel queueing systems with various choice
rules of channel for service

Larisa G. Afanasyeva 1, Elena Bashtova 2

1Moscow State University, Russia, l.g.afanaseva@yandex.ru
2Moscow State University, Russia, bashtovaelena@rambler.ru

We consider a multichannel queueing system S with r identical servers.
The input A(t) is a regenerative flow. It means that there exists an increasing
sequence of random variables {θj , j > 0}, θ0 = 0, such that
{θj − θj−1, A(θj−1 + t)−A(θj−1), t ∈ [0, θj − θj−1)}∞j=1 is a sequence of i.i.d.
random elements. Then θj is the jth point of regeneration, τj = θj−θj−1 is the
jth regeneration interval and ξj = A(θj)−A(θj−1) is the number of customers
arriving during τj . We suppose that µ = Eτj <∞, a = Eξj <∞, j > 1. Then
there exists λ = lim

t→∞
t−1A(t) a.s. and λ is the intensity of the input flow A(t).

The service times {ηj}∞j=1 are supposed to be i.i.d.r.v.’s with d.f. B(x) and
finite mean b = Eηj . Besides, sequence {ηj}∞j=1 does not depend on A(t).

Note that the most part of flows used in queueing theory are regenerative.
Doubly stochastic Poisson process with regenerative random intensity, Markov
modulated, Semi-Markov flows and many others belong to this class. Besides,
a regenerative flow has a collection useful properties.

We consider various choice rules of channel for service. For instance rule
R0 implies that there exists the general queue and customers are served by the
first available server; in accordance with rule R1 a server has its own queue and
an arriving customer chooses a server with minimal queue in front of it; rule
R2 yields that an arriving customer is served by the jth server with probability
1/r independently of others; rule R3 proposes that the nth customer is directed
for service to the jth server if n = rm+ j, where m = 0, 1, . . . , j = 1, r.
Let qi(t) (i = 1, r) be the number of customers either waiting or being served

on the ith channel at time t,
−−→
q(t) = (q1(t), . . . , qr(t)) and Q(t) =

r∑
i=1

qi(t).

The corresponding workload processes are denoted by Wi(t) and
−−−→
W (t) =

(W1(t), . . . , Wr(t)). Let tn be the arrival time of the nth customer. We also

consider imbedded processes −→qn = −→q (tn − 0) and
−→
Wn =

−→
W (tn − 0).

For a choice rule R we introduce γR(t) = maxi6r, j6r(Wi(t)−Wj(t)). Let
K0 be the class of choice rules for which the stochastic process γR(t) is stochas-
tically bounded as t→∞ for every λ and b.
Assumption 1. P (ξ1 < 1, τ1 < η1) > 0.
Assumption 2. The distribution of the regeneration interval τj of the input

7
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flow A(t) has an absolutely continuous component.
Theorem 1. If Assumption 1 holds then for any rule of choice from class K0

processes
−→
Wn and

−→
Qn are ergodic if ρ = λbr−1 < 1. If Assumptions 1 and 2

are fulfilled then it is true for
−→
W (t) and

−→
Q(t). If ρ > 1 then all these processes

are stochastically unbounded.
Corollary 1. Theorem 1 is valid for queueing systems with choice rules
R0 −R3.
Theorem 2. If Eτ2+δ

j <∞, Eξ2+δ
j <∞, Eη2+δ

j <∞ and ρ > 1 then for any
choice rule from class K0 the process

Q̂T (t) =
Q(tT )− (ρ− 1)rb−1tT

σQ
√
tT

C-converges as T → ∞ to Wiener’s process on any finite interval [α, β]. Here
σ2
Q = σ2

A + rσ2
ηb
−3, σ2

A = µ−1σ2
ξ + µ−3a2σ2

τ − 2aµcov(τ1, ξ1).
If ρ = 1 then we get convergence to absolute value of Wiener’s process.

Consider the case ρ < 1. We study the time-compression asymptotics.
The input Aε(t) for Sεi is defined by the relation Aε(t) = A(αεt), where
αε = (1− ε)ρ−1.Then the traffic coefficient for system Sε is equal to 1− ε. Let
F εi (x) = limP(qεi 6 x), i = 1, r and F ε(x) = limP(Qε 6 x), i = 1, r.
Theorem 3. If Eτ2+δ

j < ∞, Eξ2+δ
j < ∞, Eη2+δ

j < ∞ then in time-
compression asymptotics for the choice rules R0 and R1

1− F ε(x/ε)→ exp(−2x/σ2
Q),

for choice rule R2

1−F εj (x/ε)→ exp(−2x/σ2
2), σ2

2 =
σ2
η

b2
+
r − 1

r
+
a−1σ2

ξ + µ−2aσ2
τ − 2µ−1cov(τ1, ξ1)

r
,

for a renewal A(t) and choice rule R3

1− F εj (x/ε)→ exp(−2x/σ2
3), σ2

3 =
σ2
η

b2
+

σ2
τ

rµ2
, as ε→ 0.

Corollary 2. If A(t) is a renewal process then for choice rules R0 and R1

EQε ∼ 1

2b2ε

(
σ2
η +

b2σ2
τ

µ2

)
, as ε→ 0,

for choice rule R2

EQε ∼ r

2b2ε

(
σ2
η +

r − 1

r
b2 +

b2σ2
τ

rµ2

)
, as ε→ 0,

for choice rule R3

EQε ∼ r

2b2ε

(
σ2
η +

b2σ2
τ

rµ2

)
, as ε→ 0.
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Model description.
We consider queueing systems with r independent channels. The servers are
indexed from 1 to r. Service times of customers are independent random vari-
ables. The service cumulative function of a customer which is assigned to the
i-th server is Bi(x) with finite expectation β−1

i and Laplace-Stieltjes trans-
formation βi(s). Arriving customers form the single queue and are served in
the order of their arrival. A waiting customer is assigned to the first available
server which has the lowest index.

The input flow X(t) is assumed to be regenerative. We use the notation: θi
are regenerative points of X(t), τi = θi − θi−1, (i = 1, 2, . . .) are regenerative
periods, ξi = X(θi)−X(θi−1) is the number of customers arrived during i-th
regenerative period. Assume that a = Eξi < ∞, τ = Eτi < ∞. Define the
arrival intensity λ of the process X(t) as follows: λ = limt→∞

X(t)
t

a.s. From
the strong law of large numbers we can conclude that λ = aτ−1.

Main results.
Consider a stochastic process W(t) = (W1(t), . . . ,Wm(t)) where Wi(t) is the
remaining time for server i which is required to serve all the customers arrived
before time t and assigned to the i-th server.
W(t) is a regenarative stochastic process with regenerative points θi that
satisfy the relation W(θi − 0) = 0. Under some conditions the process W(t)
reaches zero state from any bounded set.
Definition 1. Stochastic process W(t) is ergodic if there exists

lim
t→∞

P{W(t) < y} = F (y),

where F (y) is independent from the initial distribution W (0) and F (y) is r-
dimensional cumulative distribution function.
Definition 2. The process W(t) is stochastically bounded if ∀ ε > 0 ∃ y =
(y1, . . . , yr), ∃ t0 such that for t > t0

P{W(t) ≤ y} > 1− ε
Theorem 1. Process W(t) is ergodic iff it is stochastically bounded. Moreover,
if W(t) is not ergodic then ∀ε > 0, ∀y = (y1, . . . , yr), ∃ t0 such that for t > t0

P{W(t) ≥ y} > 1− ε

9
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Theorem 2. Under conditions P{ξ1 ≤ 1, ηi1 < τ1} > 0, ∀ i ≤ r

1. W(t) is ergodic if

ρ =
λ∑r
i=1 βi

< 1.

2. If ρ = 1 and Eτ2+δ
i <∞, Eξ2+γ

i <∞ for some δ > 0, γ > 0 then W(t)
is not ergodic.

3. If ρ > 1, then W(t) is not ergodic.

Unreliable servers.
Assume that the servers in the system described above are unreliable. We sup-
pose that servers can fail only when they are occupied (i.e. serve a customer).
Periods of functioning of the i-th server are exponentially distributed with the
mean value γ−1

i . Repair periods are independent of one another and of periods
of functioning and for the i-th server have distribution function Ri(x) with
the mean value ri. We make two different assumptions about what happens if
a server fails while serving a customer:

1. the customer leaves the system immediately after interruption;

2. the customer’s service is interrupted but will be continued from the be-
ginning by the same server

Theorem 3. Theorem 2 holds true if ρ = λ∑r
i=1 µi

where

1. for the first model case we suppose µ−1
i = (ri + γ−1

i )[1− βi(γi)]

2. for the second model case we suppose µ−1
i =

(ri+γ
−1
i )[1−βi(γi)]
βi(γi)
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Transfer theorems concerning asymptotic expansions for
the distribution functions of statistics constructed from

samples with random sizes

Vladimir Bening 1, Nurgul Galieva 2, Victor Korolev 3

1Faculty of Computational Mathematics and Cybernetics, Moscow State Uni-
versity; Institute of Informatics Problems, Russian Academy of Sciences, Russia;
bening@yandex.ru
2Kazakhstan Branch of Moscow State University, Kazakhstan; nurgul−u@mail.ru
3Faculty of Computational Mathematics and Cybernetics, Moscow State Uni-
versity; Institute of Informatics Problems, Russian Academy of Sciences, Russia;
vkorolev@cs.msu.ru

Consider random variables (r.v.’s) N1, N2, ... and X1, X2, ..., defined on
the same probability space (Ω, A, P). By X1, X2, ...Xn we will mean statisti-
cal observations whereas the r.v. Nn will be regarded as the random sample
size depending on the parameter n ∈ N. Assume that for each n ≥ 1 the
r.v. Nn takes only natural values (i.e., Nn ∈ N) and is independent of the se-
quence X1, X2, ... Everywhere in what follows the r.v.’s X1, X2, ... are assumed
independent and identically distributed.

For every n ≥ 1 by Tn = Tn(X1, ..., Xn) denote a statistic, i.e., a real-
valued measurable function of X1, ..., Xn. For each n ≥ 1 we define a r.v. TNn
by setting TNn(ω) ≡ TNn(ω)(X1(ω), ..., XNn(ω)(ω)), ω ∈ Ω.

The following condition determines the asymptotic expansion (a.e.) for the
distribution function (d.f.) of Tn with a non-random sample size.

Condition 1. There exist l ∈ N, µ ∈ R, σ > 0, α > l/2, γ > 0, C1 > 0, a
differentiable d.f. F (x) and differentiable bounded functions fj(x), j = 1, ..., l
such that

sup
x

∣∣∣P(σnγ(Tn − µ) < x
)
− F (x)−

l∑
j=1

n−j/2fj(x)
∣∣∣ ≤ C1

nα
, n ∈ N.

The following condition determines the a.e. for the d.f. of the normalized
random index Nn.

Condition 2. There exist m ∈ N, β > m/2, C2 > 0, a function 0 < g(n) ↑
∞, n → ∞, a d.f. H(x), H(0+) = 0 and functions hi(x), i = 1, ...,m with
bounded variation such that

sup
x>0

∣∣∣P( Nn
g(n)

< x
)
−H(x) −

m∑
i=1

n−i/2hi(x)
∣∣∣ ≤ C2

nβ
, n ∈ N.

11
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Define the function Gn(x) as

Gn(x) =

∞∫
1/g(n)

F (xyγ)dH(y) +

m∑
i=1

n−i/2
∞∫

1/g(n)

F (xyγ)dhi(y) +

+

l∑
j=1

g−j/2(n)

∞∫
1/g(n)

y−j/2fj(xy
γ)dH(y)+

+

l∑
j=1

m∑
i=1

n−i/2g−j/2(n)

∞∫
1/g(n)

y−j/2fj(xy
γ)dhi(y). (1)

Theorem 1. Let the statistic Tn = Tn(X1, ..., Xn) satisfy condition 1 and
the r.v. Nn satisfy condition 2. Then there exists a constant C3 > 0 such that

sup
x

∣∣P(σgγ(n)(TNn − µ) < x
)
−Gn(x)

∣∣ ≤ C1EN
−α
n +

C3 + C2Mn

nβ
,

Mn = sup
x

∞∫
1/g(n)

∣∣∣ ∂
∂y

(
F (xyγ) +

l∑
j=1

(yg(n))−j/2 fj(xy
γ)
)∣∣∣dy

and the function Gn(x) is defined by (1).

Let Φ(x) and ϕ(x) respectively denote the d.f. of the standard normal law
and its density.

Lemma 1. Let l = 1, 0 < g(n) ↑ ∞, F (x) = Φ(x), f1(x) = 1
6
µ3σ

3(1 −
x2)ϕ(x). Then the quantity Mn in theorem 1 satisfies the inequality Mn 6
2 + C̃|µ3|σ3, where

C̃ =
1

3
sup
u>0

{
ϕ(u)(u4 + 2u2 + 1)

}
=

16

3
√

2πe3
≈ 0.474752293191785...

Consider some examples of application of theorem 1.

Student distribution. Let X1, X2, ... be i.i.d. r.v.’s with EX1 = µ, 0 <
DX1 = σ−2, E|X1|3+2δ <∞, δ ∈ (0, 1

2
) and E(X1 − µ)3 = µ3. For each n let

Tn = 1
n

(X1 + ...+Xn). (2)

Assume that the r.v. X1 satisfies the Cramér condition (C)

lim sup
|t|→∞

|E exp{itX1}| < 1.

12
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Let Gν(x) be the Student d.f. with parameter ν > 0 corresponding to the
density

pν(x) =
Γ(ν + 1/2)√
πνΓ(ν/2)

(
1 +

x2

ν

)−(ν+1)/2

, x ∈ R,

where Γ(·) is the Euler’s gamma-function and ν > 0 is the shape parameter
(if ν ∈ N, then ν is called the number of degrees of freedom). In practice, it
can be arbitrarily small determining the typical heavy-tailed distribution. If
ν = 2, then the d.f. G2(x) is expressed explicitly as

G2(x) =
1

2

(
1 +

x√
2 + x2

)
, x ∈ R.

for ν = 1 we have the Cauchy distribution.
For r > 0 let

Hr(x) =
rr

Γ(r)

x∫
0

e−ryyr−1dy, x > 0,

be the gamma-d.f. with parameter r > 0. Denote

gr(x) =

∞∫
0

ϕ(x
√
y)

1− x2y
√
y

dHr(y), x > 0. (3)

Theorem 2. Let the statistic Tn have the form (2), where X1, X2, ... are
i.i.d. r.v.’s with EX1 = µ, 0 < DX1 = σ−2, E|X1|3+2δ < ∞, δ ∈ (0, 1

2
) and

E(X1−µ)3 = µ3. Moreover, assume that the r.v. X1 satisfies the Cramér con-
dition (C). Assume that for some r > 0 the r.v. Nn has the negative binomial
distribution

P(Nn = k) =
(k + r − 2) · · · r

(k − 1)!

1

nr

(
1− 1

n

)k−1

, k ∈ N.

Let G2r(x) be the Student d.f. with parameter ν = 2r and gr(x) be defined by
(3). Then for r > 1/(1 + 2δ), as n→∞, we have

sup
x

∣∣∣P(σ√r(n− 1) + 1(TNn − µ) < x
)
−G2r(x)− µ3σ

3gr(x)

6
√
r(n− 1) + 1

∣∣∣ =

=


O
(( logn

n

)1/2+δ)
, r = 1,

O
(
n−min(1,r(1/2+δ))), r > 1,

O
(
n−r(1/2+δ)), (1 + 2δ)−1 < r < 1.

13
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Laplace distribution. Consider the Laplace d.f. Λθ(x) corresponding to
the density

λθ(x) =
1

θ
√

2
exp
{
−
√

2|x|
θ

}
, θ > 0, x ∈ R.

Let Y1, Y2, ... be i.i.d. r.v.’s with a continuous d.f. Set

N(s) = min
{
i ≥ 1 : max

1≤j≤s
Yj < max

s+1≤k≤s+i
Yk
}
.

It is known that
P(N(s) ≥ k) =

s

s+ k − 1
, k ≥ 1 (4)

(see, e.g., [1] or [2]). Now let N (1)(s), N (2)(s), ... be i.i.d. r.v.’s distributed in
accordance with (4). Define the r.v.

Nn(s) = max
1≤j≤n

N (j)(s),

then, as it was shown in [3],

lim
n→∞

P
(Nn(s)

n
< x

)
= e−s/x, x > 0,

and for an asymptotically normal statistic Tn we have

P
(
σ
√
n(TNn(s) − µ) < x

)
−→ Λ1/s(x), n→∞, x ∈ R,

where Λ1/s(x) is the Laplace d.f. with parameter θ = 1/s.
Denote

ls(x) =

∞∫
0

ϕ(x
√
y)

1− x2y
√
y

de−s/y, x ∈ R. (5)

Theorem 3. Let the statistic Tn have the form (2), where X1, X2, ... are
i.i.d. r.v.’s with EX1 = µ, 0 < DX1 = σ−2, E|X1|3+2δ < ∞, δ ∈ (0, 1

2
) and

E(X1 − µ)3 = µ3. Moreover, assume that the r.v. X1 satisfies the Cramér
condition (C). Assume that for some s ∈ N the r.v. Nn(s) has the distribution

P(Nn(s) = k) =
( k

s+ k

)n
−
( k − 1

s+ k − 1

)n
, k ∈ N.

Then

sup
x

∣∣∣P(σ√n(TNn(s)−µ) < x
)
−Λ1/s(x)− µ3σ

3ls(x)

6
√
n

∣∣∣ = O
( 1

n1/2+δ

)
, n→∞,

where ls(x) is defined in (5).

This research was supported by the Russian Foundation for Basic Re-
search (projects 11-01-12026-ofi-m, 11-01-00515a and 11-07-00112a), and by
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The concentration function (c.f.) of a random variable (r.v.) Z is defined
as

QZ(λ) = sup
x∈R

P(x 6 Z 6 x+ λ), λ > 0,

see, e.g., [1]).

Lemma 1. Let ξ and η be two r.v.’s. Then

sup
λ>0
|Qξ(λ)−Qη(λ)| 6 4 sup

x∈R
|P(ξ < x)− P(η < x)|.

Lemma 2. Let ξ be a r.v. with symmetric unimodal distribution. Then for
λ > 0

Qξ(λ) = P
(
|ξ| < λ

2

)
.

Consider random variables (r.v.’s) N1, N2, ... and X1, X2, ..., defined on
the same probability space (Ω, A, P). By X1, X2, ...Xn we will mean statisti-
cal observations whereas the r.v. Nn will be regarded as the random sample
size depending on the parameter n ∈ N. Assume that for each n ≥ 1 the
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r.v. Nn takes only natural values (i.e., Nn ∈ N) and is independent of the se-
quence X1, X2, ... Everywhere in what follows the r.v.’s X1, X2, ... are assumed
independent and identically distributed.

For every n ≥ 1 by Tn = Tn(X1, ..., Xn) denote a statistic, i.e., a real-
valued measurable function of X1, ..., Xn. For each n ≥ 1 we define a r.v. TNn
by setting TNn(ω) ≡ TNn(ω)(X1(ω), ..., XNn(ω)(ω)), ω ∈ Ω.

From lemmas 1 and 2 we obtain

Theorem 1. Assume that for some µ ∈ R, C > 0, σ > 0, ν ∈ R and
symmetric unimodal d.f. G(x) the statistic TNn satisfies the inequality

sup
x∈R

∣∣P(σnδ(TNn − µ) < x
)
−G(x)

∣∣ 6 C

nγ
.

Then for any n ∈ N we have

sup
λ>0

∣∣∣QTNn (λ)− 2G
(λσnδ

2

)
+ 1
∣∣∣ 6 4C

nγ
.

Let Gν(x) be the Student d.f. with parameter ν > 0 corresponding to the
density

pν(x) =
Γ(ν + 1/2)√
πνΓ(ν/2)

(
1 +

x2

ν

)−(ν+1)/2

, x ∈ R,

where Γ(·) is the Euler’s gamma-function and ν > 0 is the shape parameter
(if ν ∈ N, then ν is called the number of degrees of freedom). In practice, it
can be arbitrarily small determining the typical heavy-tailed distribution. If
ν = 2, then the d.f. G2(x) is expressed explicitly as

G2(x) =
1

2

(
1 +

x√
2 + x2

)
, x ∈ R.

for ν = 1 we have the Cauchy distribution.

Assume that a statistic Tn is asymptotically normal so that

sup
x∈R

∣∣∣P(σ√n(Tn − µ) < x
)
− Φ(x)

∣∣∣ 6 C0√
n
, n ∈ N, (1)

where the quantity C0 > 0 does not depend on n.

From theorem 1 and the results of [2] and [3] we obtain

Theorem 2. Assume that for some µ ∈ R, C0 > 0, σ > 0 the statistic Tn
satisfies (1). Assume also that for some r > 0 the r.v. Nn has the negative
binomial distribution

P(Nn = k) =
(k + r − 2) · · · r

(k − 1)!

1

nr

(
1− 1

n

)k−1

, k ∈ N.
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Then for r ∈ (0, 1
2
) and any n ∈ N

sup
λ>0

∣∣∣QTNn (λ)− 2G2r

(λσ√rn
2

)
+ 1
∣∣∣ 6 4C1

nr
.

If r = 1
2

, then

sup
λ>0

∣∣∣QTNn (λ)− 2

π
arctan

(λσ√n
2
√

2

)∣∣∣ 6 4C2
logn√
n
, n > 1.

If r > 1
2

, then

sup
λ>0

∣∣∣QTNn (λ)− 2G2r

(λσ√rn
2

)
+ 1
∣∣∣ 6 4C3√

n
,

Here G2r(x) is the Student d.f. with parameter ν = 2r and C1 = C1(r), C2,
C3 = C3(r) do not depend on n. In particular, if r = 1, that is, if the r.v. Nn
has the geometric distribution with parameter 1

n
, then

sup
λ>0

∣∣∣QTNn (λ)− λσ
√
n√

8 + λ2σ2n

∣∣∣ 6 4C3√
n
.

Consider the Laplace d.f. Λθ(x) corresponding to the density

λθ(x) =
1

θ
√

2
exp
{
−
√

2|x|
θ

}
, θ > 0, x ∈ R.

Let Y1, Y2, ... be i.i.d. r.v.’s with a continuous d.f. Set

N(s) = min
{
i ≥ 1 : max

1≤j≤s
Yj < max

s+1≤k≤s+i
Yk
}
.

It is known that
P(N(s) ≥ k) =

s

s+ k − 1
, k ≥ 1 (2)

(see, e.g., [4] or [5]). Now let N (1)(s), N (2)(s), ... be i.i.d. r.v.’s distributed in
accordance with (2). Define the r.v.

Nn(s) = max
1≤j≤n

N (j)(s), (3)

then, as it was shown in [6], for an asymptotically normal statistic Tn we have

P
(
σ
√
n(TNn(s) − µ) < x

)
−→ Λ1/s(x), n→∞, x ∈ R,

where Λ1/s(x) is the Laplace d.f. with parameter θ = 1/s. If the statistic Tn
satisfies relation (1), then, as was shown in [7],

sup
x∈R

∣∣∣P(σ√n(TNn(m) − µ) < x
)
− Λ1/m(x)

∣∣∣ 6 C4√
n
, n ∈ N,
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where the quantity C4 = C4(s) does not depend on n. This inequality and
theorem 1 imply the following result.

Theorem 3. Assume that for some µ ∈ R, C0 > 0, σ > 0 the statistic Tn
satisfies (1) and for an s ∈ N the r.v. Nn(s) is defined by (3). Then for any
n ∈ N we have

sup
λ>0

∣∣∣QTNn(s)
(λ)− 2Λ1/s

(λσ√n
2

)
+ 1
∣∣∣ 6 4C4√

n
.

We also consider some particular examples dealing with U -, L- and R-
statistics.

This research was supported by the Russian Foundation for Basic Re-
search (projects 11-01-12026-ofi-m, 11-01-00515a and 11-07-00112a), and by
the Ministry for Education and Science of Russian Federation (state contract
16.740.11.0133).
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Optimal control and stability of some inventory and
insurance models
Ekaterina Bulinskaya 1

1Moscow State University, Russia, ebulinsk@mech.math.msu.su

At first we consider stochastic models of systems with several replenish-
ment sources, arising in inventory, insurance and other applications. Our aim is
to establish the optimal control providing maximum (or minimum) of various
objective functions. To this end (see, e.g., Bulinskaya [1]) we study the asymp-
totic behavior of underlying discrete- and continuous-time processes. For il-
lustration, we formulate below some results for the discrete-time two-supplier
inventory model which can be considered as modification of that treated in
Bulinskaya [2].

Let fn(x) be the minimal n-step expected costs if x is the initial inventory
level. We denote by ci the order cost of a unit delivered by supplier i, i = 1, 2,
h the holding cost, r the deficit penalty, α being the discount factor. Then the
following Bellman equation is valid for n > 1

fn(x) = −c1x+ min
u>v>x

Gn(u, v), f0(x) ≡ 0,

Gn(u, v) = c2u+ (c1 − c2)v + pL(u) + qL(v) + αEfn−1(u− ξ1).

Here p is probability that the second (unreliable) supplier delivers order
immediately and q = 1 − p the probability of one-period delay, whereas
L(u) = E[h(u − ξ1)+ + r(ξ1 − u)+] gives mean costs during the first period
starting from the level u and ξ1 is the inventory demand in this period. It
is supposed that the sequence {ξk}k>1 consists of i.i.d. r.v.’s with a known
distribution function and the first supplier delivers orders immediately.

It is proved that optimal policy has a threshold character. Moreover, in
contrast with the case p = 0 considered previously, under some additional
assumptions it is optimal to use the unreliable supplier even for n = 1.

The second model deals with functioning of insurance company under the
following assumption. At the beginning of each period (usually year) it is
possible either to invest some money amount or borrow. The aim is to find a
decision minimizing the n-step expected costs.

We study several cases. The simplest assumption is the fixed premium c
acquired each period, the rates of investing and borrowing equal to r. If the
company capital is less than the demand of policyholders, an urgent loan can
be obtained at the rate q, q > r. Let x be the initial capital and demand
amounts in different periods form a sequence of i.i.d. r.v.’s with d.f. F .

Proposition.Under the above assumptions optimal decision for each n is
given by y∗(x) = F−1(1− rq−1)− x− c.

That means, the optimal policy is stationary. Moreover, if y∗(x) > 0 then it
is necessary to borrow this amount. If y∗(x) < 0 the company invests |y∗(x)|.
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In the second case not only the indemnity is supposed random but the
premium amount as well. If the investment and borrowing rates are the same
the optimal decision is independent of n. On the contrary, for different rates
the optimal decision depends on n.

Hence, another direction of our investigation is construction of stationary
asymptotically optimal policy in cases of known and unknown demand distri-
butions.

The study of the models stability to small fluctuations of parameters and
perturbations of underlying probability distributions is carried out along the
same lines as in Bulinskaya [3].

We apply not only the cost approach but a reliability one as well. However,
instead of the usual ruin probability studied in classical models, in the case of
borrowing it is appropriate to use the notion of absolute ruin (see, e.g., [4]).

Some numerical examples are also provided.

Acknowledgement. The research was partially supported by RFBR grant
10-01-00266.
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Stochastic characteristics of magnetoencephalogram and
myogramm signals

Margarita Dranitsyna 1, Grigory Klimov 2
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The brain functional mapping task was set at the Department of Math-
ematical Statistics, Faculty of Computational Mathematics and Cybernetics,
Lomonosov Moscow State University. We developed and analysed a mathe-
matical model of magnetoencephalogram and myogram signals. We described
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the main characteristics of these signals. Our findings underlay further signal
processing and localization algorithm development, including effective noise
filter and reduction.

We demonstrated non-stationarity of these signals. Hence, averaging of the
data characteristics shown not to be reasonable.

Regarding localization problems the assumption of noise normality can
either greatly simplify the model, or distort it. Therefore, we studied the noise
empirical distribution. To test noise normality assumption (null hypothesis)
we engaged Chi-square test with significance level α set at 0.05. For sample
size of 76000 the resulting Chi-square statistic was 1.275·103 while rejection
limit was 14.1. So we concluded that null hypothesis was not consistent with
empirical data.

Similarly normality assumption with regard to myogram noise was tested.
In this case resulting statistic was 3.5855·104 and null hypothesis was rejected.

Median equality hypothesis for several samples was also rejected. The sam-
ples assumed to be non-normal, Kruskal-Wallis analysis demonstrated that the
samples have significantly different medians.

Our findings demonstrated extreme complexity and specific nature of stud-
ied biomedical signals.
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Asymptotic distribution of smoothness estimator in
Besov spaces

Karol Dziedziul 1, Barbara Wolnik, Bogdan Cmiel

1Gdansk University of Technology, Gdansk, Poland, kdz@mif.pg.gda.pl

In the paper J. Nonparametr. Stat.23 (4) (2011), Dziedziul, Kucharska,
Wolnik define a parameter of smoothness of function. The parameter is given
in terms of a Besov spaces. They construct and examine properties of estimator
of the parameter of smoothness of density.
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Now we propose a modified estimator of the parameter of smoothness. Us-
ing this method we identify defects (singularities) of a density function, i.e
we assume that the density function has compact support and it is partially
smooth (smooth except a few points). By applying Daubechies’s wavelets we
find the singularities of density. To improve the rate of convergence of the esti-
mator we propose the procedure of sample enrichment, i.e. we add the control
sample from smoother density. Taking a sample from such new distribution
we prove asymptotic formulas for this estimator. The proof is based on Berry
Essen’s inequality.

On max-compound Cox processes

Margarita Gaponova 1

1Moscow State University, Russia, margarita.gaponova@gmail.com

Max-compound Cox process are used as mathematical models of flows of
catastrophic events insurance, financial mathematics, engineering, etc.

Let X1, X2 . . . be independent random variables with common distribution
function F (x). Let N(t) be a Cox process controlled by a random measure
Λ(t). Define the max-compound Cox process as

M(t) =

−∞, if N(t) = 0,

max
1≤k≤N(t)

Xk, if N(t) ≥ 1,
t ≥ 0.

For real functions a(t) and b(t) > 0 denote

FN (x, t) = P

(
1

b(t)

(
max

1≤k≤N(t)
Xk − a(t)

)
< x

)
In this work we describe necessary and sufficient conditions for weak con-

vergence of FN (x, t) to some distribution function H(x) when t → ∞ and
specific form of H(x) as well. Also some results concerning the convergence
rate are presented.

This research was supported by the Russian Foundation for Basic Research
(project 12-01-16086-mob-z-ross).
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Positioning of the spacecraft during docking to the ISS

Miroslav Goncharenko 1, Semen Nikiforov 2

1Moscow State University, Russia, goncharenko.mir@yandex.ru
2Moscow State University, Russia, nikisimonmsu@gmail.com

Space flights and orbital experiments are an important part of todays sci-
ence and national profile.

At the moment there is only space station. Since the station is permanently
inhabited and to support its functioning and crew life and conduct scientific ex-
periments reliable ferry and crew transport system is strongly required. Space
flights and orbital experiments are an important part of modern science and
national profile.

At the moment there is only space station. Since the station is permanently
inhabited and to support its functioning and crew life and conduct scientific
experiments reliable ferry and crew transport system is strongly required.

At the moment Russian spacecrafts Soyuz and Progress are the most reli-
able transport for the flights to the station, in particular due to the exclusive
automatic rendezvous and docking system Course.

At present time all dockings are carried out in automatic mode. In case of
some accident or Course system failure the spacecraft remains out of automatic
control.

So the task was to develop backup positioning system for such acciden-
tal situations. This system is based on a fundamentally different principle of
parameter calculation. It should work in parallel and provide equal accuracy
(deviation of docking station central axis should not exceed 7 cm).

The input signal assumed to be received from spacecraft front camera
(frame frequency is 25 per second). At the Department of Mathematical Statis-
tics, Faculty of Computational Mathematics and Cybernetics, Moscow State
University we work on developing of such system. Designed algorithm is based
on the processing of various station nodes and using them as input parameters.
Configuration of these nodes as well as their relative positions are documented
and known before. This is a real-time algorithm and hence it incorporates the
minimizing principle for required computations.

For instance, firstly preliminary computations are performed, then a certain
area is localized, and after specified.
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During a single frame processing the convolution with Gaussian derivatives
in various directions is calculated to localize the edges of different directions
with subsequent threshold processing (see [1, 2]) and build a map-edges for
final space craft positioning. These derivatives are defined as:

∂G(x, y, σ)

∂x
= − x

2πσ4
e
− x

2+y2

2σ2 .

Vector field of displacement between key frames based on optical flow equa-
tion assumed to underlie the calculation of the relative motion:

5I · V + It = 0,

where I(X, t) – image brightness at the point X = (x, y) at the moment t, V =
δX
δt

. We work on parameter refinement and adjustment for better reliability.
Here is link on a demo-video:

http://narod.ru/disk/50503495001.4ecfce02ab7b35a0454240fd51dce37f/

for demonstration plus ro ax ro dot.avi.html

The algorithm is tested on a special computer model of the ISS1.
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The splitting component model for finite normal
mixtures

A. K. Gorshenin 1

1Institute of Informatics Problems, Russian Academy of Sciences, Russia,
agorshenin@ipiran.ru

To investigate fine structure of compound process, stochastic models based
on finite normal mixtures are used. The paper suggests practically important
splitting component model for the finite scale and location mixtures. For each
situation theorems about parameter stability in terms of inequalities for Levy
distance between mixing distributions and Levy distance between mixtures are
proved. The stability implies correspondence of the models with experimental
data.

1The model developed by Department of Computational Mathematics and Cybernetics
Lomonosov Moscow State University members and graduate students under the direction
of V.V.Sazonov and S.B.Berezin
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Consider finite normal scale mixtures. All observations Xi, i = 1, . . . , k,
are independent and identically distributed and have cumulative distribution
function

G(x) = EΦ(Ux) =

k∑
i=1

piΦ(xσi),

k∑
i=1

pi = 1, pi > 0, σi > 0, i = 1, . . . , k,

where Φ(·) is standard normal cumulative distribution function, U is discrete
random variable taking value σi with probability pi, i = 1, . . . , k.

In this case the splitting components model can be represented in follow-
ing form. Assume that each observation Xi is independent and identically
distributed and has cumulative distribution function

Gp(x) =

k−1∑
i=1

piΦ(xσi) + (pk − p)Φ(xσk) + pΦ(xσ), σ > 0, 0 6 p 6 pk,

where all σi, pi are known, σ and p are parameters of model. Assume without
loss of generality 0 < σ1 6 σ2 6 . . . 6 σk−1 6 σ 6 σk.

Up is random discrete variable taking value σi with probability pi,
i = 1, . . . , k − 1, value σ with probability p, value σk with probabil-
ity pk − p. Lévy distance between U and Up is represented in form
L(U,Up) = min{σk − σ, p}.

Theorem 1. In splitting component model for finite normal scale mixtures
inequalities

σ1

√
2πe

max{1, σk}
L(G,Gp) 6 L(U,Up) 6 ϕ−1/2(σk)

(
1 +

σk√
2π

)1/2

L1/2(G,Gp)

hold under the assumptions above.

Proof of Theorem 1 can be found in [1].
Consider finite normal location mixtures. All observations Xi, i = 1, . . . , k,

are independent and identically distributed and have cumulative distribution
function

F (x) = EΦ(x− V ) =
k∑
i=1

piΦ(x− ai),
k∑
i=1

pi = 1, pi > 0, ai ∈ R, i = 1, . . . , k,

where V is discrete random variable taking value ai with probability pi,
i = 1, . . . , k.

In this case the splitting components model can be represented in follow-
ing form. Assume that each observation Xi is independent and identically
distributed and has cumulative distribution function

Fp(x) =

k−1∑
i=1

piΦ(x− ai) + (pk − p)Φ(x− ak) + pΦ(x− a), a ∈ R, 0 6 p 6 pk,
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where all ai, pi are known, a and p are parameters of model. Assume without
loss of generality a1 6 a2 6 . . . 6 ak−1 6 a 6 ak.

Vp is random discrete variable taking value ai with probability pi,
i = 1, . . . , k − 1, value a with probability p and value ak with probabil-
ity pk − p. Lévy distance between V and Vp is represented in form
L(V, Vp) = min{ak − a, p}.

Theorem 2. In splitting component model for finite normal location mix-
tures inequalities

√
2π

max{1, ak − ak−1}
L(F, Fp) 6 L(V, Vp) 6


(

1 +
1√
2π

)
L(F, Fp)

ϕ
(
ak + |ak| −min{0, ak−1}

)


1/2

hold under the assumptions above.

Proof of Theorem 2 can be found in [2]. The results can be used for testing
statistical hypotheses about the number of mixture components [3].
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Evolution of histograms and Fourier spectra in
structural plasma turbulence in L-2M stellarator

A. K. Gorshenin 1, D. V. Malakhov 2

1Institute of Informatics Problems, Russian Academy of Sciences, Russia,
agorshenin@ipiran.ru
2A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Russia

Fig. 1 shows the time evolution of the Fourier spectra of the low-frequency
plasma fluctuations under different external conditions. It is known (see, for
example, [1]) that these fluctuations are close to structural plasma turbulence
due to the similarities of autocorrelation functions, values of moments and
shapes of the probability densities. Development of new methods of analysis of
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Figure 1: Spectrum decomposition.

plasma turbulence is very important in fields of plasma physics and controlled
fusion.

Decomposition of the spectra into the components is discussed in [2]. Ap-
plication of this approach for series of the experimental spectra gives opportu-
nity to reveal components’ evolution in plasma turbulence. It can help identify
specific components which persist over time. With using the physical interpre-
tation of the components it can be possible to create more precise models of
the functioning of the plasma turbulence.

Acknowledgements. The work is supported by Russian Foundation for
Basic Research, project 12-07-31267, and the Ministry for Science and Educa-
tion of Russian Federation, state contract P770.
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Optimal investment for an Erlang(n) risk process

Alexander Gromov 1

1Moscow State University, Moscow, Russia, gromovaleksandr@gmail.com

Introduction. We consider an insurance company and a risky asset in
which the company can invest the surplus.

Let Ti be the occurrence time of the i-th claim, Nt the number of claims
in time interval (0; t] and Yi > 0 the amount of the i-th claim. Claim sizes Yi
are assumed i.i.d. Let St =

∑Nt
i=1 Yi denote the aggregate claim process; s > 0

is the initial surplus and c > 0 is the premium intensity of the insurer. Then
the risk process Rt = s+ ct− St.

We model the risk process of the insurance company as the Sparre-
Andersen process with claim inter-arrival time distributed as Erlang(n) with
scale parameter β, i.e. claim arrival times Ti are i.i.d. random variables with
density function q(x) = βnxn−1e−βx/(n− 1)!.

The price Zt of the risky asset is modelled by geometric Brownian motion
with parameters µ and σ, i.e. Zt = exp{σWt + (µ − 2−1σ2)t}, where Wt is a
standard Brownian motion.

We assume that the company follows some investment strategy {At}, where
At is the amount invested at time t into the risky asset. We assume that
processes S and W are independent, and filtration {Ft} is generated by the
Brownian motion {Wt}.

In described scenario our goal is to find the optimal investment strategy
{At} which maximizes the survival probability. In this paper we consider both
finite and infinite time horizon. Let τA denote the ruin time of the company
using strategy At, i.e. τA := inf{t ≥ 0 : RAt < 0}. Then δA(s) = P [τA =
∞|RA0 = s] ( in the finite horizon case δAT (s) = P [τA > T |RA0 = s] for some
T < ∞) is the survival probability of the insurer using strategy {At} with
initial surplus s. We calculate the value function δ(s) = supA{δA(s)} to find
optimal strategy {A∗t } where supremum is attained.

Hamilton-Jacobi-Bellmann equation Following the approach pro-
posed in Dickson and Hipp [1], Hipp and Plum [2] or Schmidli [3] in this
case it is also convenient to find optimal strategy by solving the corresponding
Hamilton-Jacobi-Bellmann equation.

Suppose that the function δ(s) has the n-th derivative, stochastic integrals
with respect to Brownian motion are martingales and all limits and expecta-
tions can be interchanged. For instance, we obtain the following equation for
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the optimal survival probability δ(s) in the infinite time horizon case

sup
A≥0

{(
−(c+ µA)

d

ds
− σ2A

2

d2

ds2
+ β

)n
δ(s)− βnE[δ(s− x)]

}
= 0.

In this paper we prove the existance of the optimal investment strategy in
described cases and provide some numerical examples in order to illustrate the
theory.
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Lower bounds for average observations number in
selection and ranking of binomial and Poisson

populations.

Iskander Kareev 1

1Kazan Federal University, Russia, kareevia@gmail.com

Let we have m populations with identical distributions up to unknown
parameter θ ∈ Θ ⊂ R. The parameter of i-th population will be denoted as θi.
The study considers the procedures of selecting and ranking the populations
with respect to their parameter values.

More specifically, we consider the selection procedures whose purpose is
to select a population with the largest value of θ and the ranking procedures
whose purpose is to rank the populations in ascending order of θ values. For
given 0 < ∆ < 1, let indifference zone be θ[m−1]

/
θ[m] ≤ 1 − ∆ for selection

procedures, and θ[i]

/
θ[i+1] ≤ 1 − ∆, 0 ≤ i ≤ m − 1 for ranking procedures

where θ[1] ≤ · · · ≤ θ[m]. The procedures are required to have at least 1 − α
probability of the correct decision whether the population parameters satisfy
the indifference zone conditions.

The main question of the work is constructing lower bounds for the average
sample size ν = ν1 + · · ·+ νm of selection and ranking procedures for binomial
and Poisson population distributions. Lower bounds for general selection and
ranking problems were obtained in articles [1] and [2] by using the universal
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lower bounds of Volodin [3] and Malyutov [4]. We apply the results of [1] and
[2] to the parameters of the binomial and Poisson distributions.

Let ω(x, y) = x(lnx − ln(1 − y)) + (1 − x)(ln(1 − x) − ln y) – Wald’s
function, I(θ, ϑ) – Kullback-Leibler information divergence. Let us remind that
the information divergence for the probability of success in Bernoulli trials is

I(θ, ϑ) = θ ln
θ(1− ϑ)

ϑ(1− θ) + ln
1− θ
1− ϑ.

We assume for binomial distribution that θ[m] < 1 − ∆. The information
divergence for the parameter of Poisson distribution is

I(θ, ϑ) = ϑ− θ + θ ln
θ

ϑ
.

Then for both cases of population distribution and any selection procedure
true the lower bound for the mean of sample size

Eθν ≥ ω(α, α)

m−1∑
i=1

I

(
θ[i],

1− t
1−∆

θ[m]

)−1

where t is a root in interval [0, 1− θ[m−1]

/
θ[m]] of equation

m−1∑
i=1

I(θ[m], (1− t)θ[m])

I(θ[i], (1− t)θ[m]

/
(1−∆))

= 1.

For ranking procedures and m ≥ 3 we have the lower bound

Eθν ≥ ω(α, α)

(
1

I(θ[1], ϑ1)
+

m−1∑
i=2

1

2I(θ[i], ϑi)

)
where

ϑ1 = min{v1(2), (1−∆)θ[3]},

ϑi = min{max{vi(1), θ[i−1]

/
(1−∆)2}, (1−∆)θ[i+2]},

ϑm−1 = max{vm−1(1
/

2), θ[m−2]

/
(1−∆)2}

and vi(c) with c > 0 is a value of ϑ such that

I(θ[i], ϑ) = cI(θ[i+1], (1−∆)ϑ), θ[i] ≤ ϑ ≤
θ[i+1]

1−∆
.

The efficiency of well known selection and ranking procedures relatively
obtained bounds is under investigation.
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Asymptotic analysis in the large deviation zones for the
distribution and density functions of the random sums
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Let’s consider a weighted sum of a random number (r.n.) of summands

ZN =

N∑
j=1

ajXj , Z0 = 0,

where {X,Xj , j ≥ 1} is a family of i.i.d. random variables (r.vs.) with
mean EX = µ, variance DX = σ2, distribution and density functions
FX(x) = P(X < x), pX(x) ≤ C <∞, for all x ∈ R, respectively. Here C > 0.
In addition, it is assumed that 0 ≤ aj <∞, and a non-negative integer-valued
random variable (r.v.) N with mean EN = α, variance DN = β2 and distri-
bution P(N = l) = ql, l ∈ N0 is independent of Xj .
Since the appearance of the H.Robbins’s results in 1948 the sums of the r.n.
of summands have been investigated in the theory probability for quite some
time. The principal results on asymptotic of the distributions of sums of the
r.n. of r.vs. are summarized in [3].
Denote TN,r =

∑N
j=1 a

r
j , r ∈ N, T0,r = 0, r = 1, 2, .... It is clear, ETN,r =∑∞

l=0 Tl,rql, DTN,r = ET 2
N,r − (ETN,r)

2. We say that X satisfies generalized
Berntein’s condition (Bγ), if there exist constants γ ≥ 0 and K > 0 such that

|EXk| ≤ (k!)1+γKk−2EX2, k = 3, 4, .... (Bγ)

Furthermore, we suppose that the r.vs. TN,1, TN,2 satisfy conditions (L) and
(L0), respectively, if there exist constants K1, K2 > 0 and p ≥ 0 such that

|Γk(TN,1)| ≤ (1/2)k!Kk−2
1 (DTN,1)1+(k−2)p, k = 2, 3, ..., (L)
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|Γk(TN,2)| ≤ k!Kk−1
2 (ETN,2)1+(k−1)p, k = 1, 2, .... (L0)

The first condition is used if µ 6= 0, and the second one if µ = 0.
We restrict our attention to the research of the upper estimate of the normal
approximation to the sum Z̃N = (ZN−EZN )/(DZN )1/2, large deviation theo-
rems both in the Cramer and power Linnik zones and exponential inequalities
for a tail probability P(Z̃N ≥ x). For the purpose the cumulant and character-
istic function methods are used (see [4] for more details). Note that cumulant
method was offered by V.Statulevičius in 1966.

Undoubtedly, there are a large amount of literature on theorems of large
deviations for the random sums under different assumptions and with various
applications (for example [1]), however in our knowledge, there are only a few
papers, for example, V.Statulevičius (1973), L.Saulis and D.Deltuvienė (2007)
on large deviations in the Cramer zone in case the cumulant method is used.
Denote a = sup{aj , j = 1, 2, ...} < ∞, (b ∨ c) = max{b, c}, b, c ∈ R. In the
paper [2], we present the accurate upper estimate for the kth order cumulants
and large deviation theorems for the distribution function of the sum Z̃N (see
Lemma and Theorem below). In [2] only the case µ 6= 0 was considered.

Lemma. If for the r.v. X condition (Bγ) is fulfilled and the r.vs. TN,1,
TN,2, satisfy conditions (L), (L0), respectively, then

|Γk(Z̃N )| ≤ (k!)1+γ/∆k−2
∗ , k = 3, 4, ...,

where

∆∗ =

{
∆N , if µ 6= 0,

∆N,0, if µ = 0.

Here

∆N = L−1
N

√
DZN , LN = 2

(
K1|µ|(DTN,1)p ∨ (1 ∨ σ/(2|µ|))aM

)
,

where DZN = σ2ETN,2 + µ2DTN,1, M = 2(σ ∨K).

∆N,0 = L−1
N,0

√
DZN , LN,0 = 2aM

(
1 ∨K2(ETN,2)p/(4a2)

)
,

where DZN = σ2ETN,2.

Theorem. Let X and TN,1, TN,2 satisfy conditions (Bγ), (L), (L0), re-
spectively. Then relations

1− FZ̃N (x)

1− Φ(x)
→ 1,

FZ̃N (−x)

Φ(−x)
→ 1,

hold for x ≥ 0, such that

x =

{
o((DTN,1)(1/2−p)ν(γ)), if µ 6= 0,

o((ETN,2)(1/2−p)ν(γ)), if µ = 0,
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if DTN,1 →∞, ETN,2 →∞, in case 0 ≤ p < 1/2. Here ν(γ) = (1+2(1∨γ))−1,
and Φ(x) is the standard normal distribution function.
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Tail conditional expectations for multivariate
generalized Cox processes
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The main goal of our report is the estimation of impact of one portfolio
component in full risk. This problem is very popular in financial mathematics
(see for example [1] and [2]).

Let N(t) = (N1(t), . . . , Nm(t)) be a multivariate Poisson process (with
dependent components in general), {Xj = (Xj1, . . . , Xjm)} be a sequence of
i.i.d. random vectors woth finite second moments, Λ(t) = (Λ1(t), . . . ,Λm(t)) be
a multivariate random process such that: Λk(0) = 0, Λk(t) has nondecreasing
paths, E(Λk(t)) = bk · t, V ar(Λk(t)) = s2

k · t, bk > 0, s2
k > 0 for all k = 1,m.

The processes (N(t), t ≥ 0) and (Λ(t), t ≥ 0) are independent.
We consider the following variant of multivariate generalized Cox process:

C(t) = (C1(t), . . . , Cm(t)):

Ck(t) :=

Nk(Λk(t))∑
j=1

Xjk .

Recently ([3]) we have proved the following
Theorem 1. The convergence

C(t)−A(t)√
t

⇒ Z , t→∞ , (1)
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holds for some random vector Z, where Ak(t) = ak · lk · t, if and only if the
convergence

Λ(t)− Ã(t)√
t

⇒ V , t→∞ , (2)

holds for some random vector V , where Ãk(t) = lk · t. Moreover

Zk
d
=
√
lk(σ2

k + a2
k) ·Wk + ak · Vk , (3)

where W = (W1, . . . ,Wm) are i.i.d.r.v. with standard normal distributions and
W and V are independent.

Our result is the analog of the result from [1].
Due to theorem 1 for large t we have

Ck(t) =
d
≈
√
lk(σ2

k + a2
k) · Z ·

√
t+ ak ·

√
t · Vk + ak · lk · t .

Let S = C1(t) + . . .+ Cm(t). It is easy to calculate

E(Ck(t)) = ak · lk · t+ ak ·
√
t · Vk =: µk , D(Ck(t)) = lk(σ2

k + a2
k) · t =: d2

k · t ,

µS(t) = E(S(t)) =
∑
k

µk(t) , σ2
S = D(S(t)) =

∑
k

d2
k · t =: d2 · t .

Our main result is the following
Theorem 2. Under above conditions for large t we have

E(Ck(t)|S > x) ≈ aklkt+ EV [λ(A(x, t)−
∑
k

akVk/d)]
d2
k

d

√
t , (4)

where

A(x, t) =
x− µSt
d
√
t

.

In the case of independent increments of the process Λ(t) random vector
V has multivariate normal distribution and we can calculate expression (4)
explicitely using the result from [2].
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Multivariate analog of Birnbaum-Saunders distribution

Yury Khokhlov 1, Ekaterina Smirnova 2
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2Peoples Friendship University of Russia, Russia, sukmanova-kate@mail.ru

The univariate family of distributions proposed by Birnbaum and Saunders
([1]), also known as the fatigue life distributions, has been widely applied for
describing fatigue lifetimes. This family was originally derived from a model
for which failure follows from the development and growth of a dominant
crack (see also [2]). But they consider the length of a crack only but not its
direction. We propose a multivariate analog of this model where we consider
the development of a crack in space. A few papers are devoted to multivariate
versions for BS distribution and all of them have used the analytical approach
(see [3], [4]). We follow original approach from [1].

Let {ξn} be a sequence of independent identically distributed random
vectors in Rm with mean vector µ = (µ1, . . . , µm)T and covariance matrix
A = (aij), g(x), x ∈ Rm be continious real-valued positive function. Following
paper [2] we consider the process of development of crack in Rm:

Xk+1 = Xk + ξk+1 · g(Xk) , X0 = 0.

Fix some vector h = (h1, . . . , hm)T with positive components and consider
random vector τ = (τ1, . . . , τm)T , where τj is the passage time of the level hj
by Xk,j . Next let t = (t1, . . . , tm) = (u · s1, . . . , u · sm) be vector with positive
components, where (without loss of generality) we assume t1 < . . . < tm.
Define vector a(h) = (a1(h1), . . . , am(hm))T with components

aj(hj) =

∫ hj

0

dxj
g(x

,

vector µ◦ t := (µ1 · t1, . . . , µm · tm)T and matrix A◦ t by the rule: all elememnts
of first column and row are multiplied by t1, next all elements of second column
and row (with the exception of used ones) are multiplied by t2 and so on.

35



XXX International Seminar on Stability Problems for Stochastic Models

Using the method from the paper [2] it can be shown that for large u

P (τ > t) ≈ Φ((A ◦ t)−1/2(a(h)− µ ◦ t)) , (1)

where Φ(x), x ∈ Rm is the distribution function of standard normal distribu-
tion in Rm.

The expression (2) defines of multivariate analog Birbaum-Saunders dis-
tribution.

In our report we give more explicite description of this distribution and
investigate its properties.
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A limiting description of parallel minimax control in a
random environment (two-armed bandit problem)

Alexander Kolnogorov 1
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Let’s consider a computer system processing a large number T items of
data. Two universal methods of data processing are available, numbered by
` = 1, 2. One can consider a result of processing of the t-th item of data as
a current value of a random controlled process ξt, t = 1, . . . , T , which values
depend only on currently chosen method ` and are often interpreted as current
incomes. The goal of the control is to maximize or to minimize (in some sense)
the total expected income. Values of the process may have different meanings.
For example, they may be equal to the duration of the processing. Or they
may have binary values: ξt = 1 if the processing is successful and ξt = 0 if it is
not. In the first case the goal is to minimize the total expected duration of the
processing and in the second case the goal is to maximize the total expected
successfully processed data.
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The core of the problem is that the best method is not known in advance
because it may be different for different data. So, it should be estimated mean-
while the control process. This is the problem of rational adaptive control in a
random environment which is also well-known as the two-armed bandit prob-
lem (see e.g. Sragovich [1], Berry and Fristedt [2]). The usual approach to the
control is to process data sequentially, one by one. However, if the problem
is considered in minimax setting it turned out that the control may be im-
plemented in parallel almost without the lack of its quality, i.e. under mild
conditions minimax risks in both cases of parallel and sequential controls have
close values. For example, T = 106 items of data may be partitioned into
N = 50 groups each containing K = 2 · 104 items of data so that data in each
group are processed in parallel and the results of processing are summarized.
Calculations show that N = 50 or even N = 30 provides a high quality of
the control. A direct determination of minimax strategy and minimax risk is
practically impossible. However, it is shown in Kolnogorov [3, 4] that they
can be found as Bayes’ ones corresponding to the worst prior distribution
on the set of parameters. The strategy can be determined numerically and
has a simple threshold type. The results are explicit ones if ξt, t = 1, . . . , T
are normally distributed. However, according to the central limit theorem the
summarized incomes of groups of data may have distributions close to normal
even if original distributions of ξt, t = 1, . . . , T were not those.

A sequential design of optimal minimax control and its limiting descrip-
tion are considered. The results of numerical experiments and Monte Carlo
simulations are given.
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Nonlinear Markov processes and mean field games

Vassili N. Kolokoltsov 1

1The University of Warwick, UK, v.kolokoltsov@warwick.ac.uk, Supported by the
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and by IPI RAN, grants RFBR 11-01-12026 and 12-07-00115.

Highlights:
(i) Nonlinear Markov semigroup is a nonlinear deterministic dynamic sys-

tem on the set of measures preserving positivity.
(ii) Nonlinear Markov process can be defined as (a) family of processes

(parametrized by initial distributions) s.t. to each trajectory there corresponds
a ’tangent’ (time non-homogeneous) Markov process; (b) future depends on
the past via its present position and distribution.

(iii) The first derivative with respect to initial data describes the interacting
particle approximation (to which the nonlinear dynamics serves as the dynamic
LLN).

(iv) The second derivative describes the limit of fluctuations of the evolu-
tion of particle systems around its LLN (probabilistically the dynamic CLT).

(v) Controlled version lead to nonlinear Markov (or measure-valued) con-
trol arising in the limit of large number controlled interacting particle systems.

Plan of the talk:
(i) Nonlinear Markov semigroups and processes: definitions and examples.
(ii) Well posedness and sensitivity analysis.
(iii) Interacting particles: mean field and k-ary interactions. Nonlinear

Markov processes as dynamic LLN.
(v) Fluctuations and CLT
(vi) Further developments: nonlinear Markov control and mean field games.
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On convergence of the distributions of random sums and
statistics constructed from samples with random sizes to

exponential power laws

Victor Korolev 1, Vladimir Bening 2, Lilya Zaks 3
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Let 0 < α 6 2. Exponential power distribution is the absolutely continuous
distribution defined by its Lebesgue probability density

`α(x) =
α

2Γ( 1
α

)
· e−|x|

α

, −∞ < x <∞. (1)

With α = 1 relation (1) defines the classical Laplace distribution with zero
mean and variance 2. With α = 2 relation (1) defines the normal (Gaussian)
distribution with zero mean and variance 1

2
.

The class of distributions (1) was introduced and studied by M. T. Subbotin
in 1923 [1]. Along with the term generalized Laplace distribution going back
to the original paper [1] at least three other different terms are used for dis-
tribution (1). For example, in [2] this distribution is called exponential power
distribution, in [3] and [4] it is called generalized error distribution whereas
in [5] the term generalized exponential distribution is used. Distributions of
type (1) are widely used in Bayesian analysis and various applications from
astronomy to signal and image processing.

Probably, by now the simplicity of representation (1) has been the main
(at least, important) reason for using the exponential power distributions in
many applied problems as a heavy-tailed (for 0 < α < 2) alternative to the
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normal law. The “asymptotic” reasons of possible adequacy of this model have
not been provided yet. Here we demonstrate that the exponential power dis-
tribution can be limiting in rather simple limit theorems for regular statistics
constructed from samples with random sizes, in particular, in the scheme of
random summation. Hence, along with the normal law, this distribution can
be regarded as an asymptotic approximation for the distributions of some
processes, say, similar to (non-homogeneous) random walks.

By gα,θ(x) we denote the probability density of the strictly stable law
with characteristic exponent α and parameter θ defined by the characteristic
function

fα,θ(t) = exp
{
− |t|α exp

{
− iπθα

2
signt

}}
, t ∈ R, (2)

with 0 < α 6 2, |θ| 6 θα = min{1, 2
α
− 1} (see, e. g., [6]. The standard normal

distribution function will be denoted Φ(x). Denote

hα/2(z) =
α

Γ( 1
α

)

√
π

2
·
gα/2,1(z)
√
z

, z > 0,

wα/2(z) = z−2hα/2(z−1) =
α

Γ( 1
α

)

√
π

2
·
gα/2,1(z−1)

z3/2
, z > 0.

It can be easily verified that hα/2(z) and wα/2(z) are the probability densities
of nonnegative random variables. The distribution functions corresponding to
the densities `α(x), hα/2(z) and wα/2(z) will be denoted by the corresponding

capital letters: Lα(x), Hα/2(z) and Wα/2(z). The symbol
d
= will stand for the

coincidence of distributions.

Lemma 1. Exponential power distribution (1) is a scale mixture of normal
laws:

Lα(x) =

∞∫
0

Φ
(
x
√
z
)
dHα/2(z), (3)

Lα(x) =

∞∫
0

Φ
( x√

z

)
dWα/2(z). (4)

If Zα is a random variable having the exponential power distribution with

parameter α, then Zα
d
= X·

√
Uα/2, whereX and Uα/2 are independent random

variables such that X has the standard normal distribution, Uα/2
d
= V −1

α/2, and
Vα/2 is an absolutely continuous random variable whose probability density is
hα/2(z).

Consider a sequence of independent identically distributed random vari-
ables X1, X2, . . ., defined on a probability space (Ω, A, P). Assume that
EX1 = 0, 0 < σ2 = DX1 <∞. For a natural n > 1 let Sn = X1 + . . .+Xn. Let
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N1, N2, . . . be a sequence of nonnegative integer random variables defined on
the same probability space so that for each n > 1 the random variable Nn is
independent of the sequence X1, X2, . . . A random sequence N1, N2, . . . is said
to be infinitely increasing (Nn −→ ∞) in probability, if P(Nn 6 m) −→ 0 as
n→∞ for any m ∈ (0,∞).

Lemma 2. Assume that the random variables X1, X2, . . . and N1, N2, . . .
satisfy the conditions specified above and Nn −→ ∞ in probability as n→∞.
A distribution function F (x) such that

P

(
SNn
σ
√
n
< x

)
=⇒ F (x) (n→∞),

exists if and only if there exists a distribution function Q(x) satisfying the
conditions Q(0) = 0,

F (x) =

∞∫
0

Φ

(
x
√
y

)
dQ(y), x ∈ R, P(Nn < nx) =⇒ Q(x) (n→∞).

Proof. This lemma was proved in [8]

Theorem 1. Assume that the random variables X1, X2, . . . and N1, N2, . . .
satisfy the conditions specified above and Nn −→ ∞ in probability as n→∞.
Then

P

(
SNn
σ
√
n
< x

)
=⇒ Lα(x) (n→∞),

if and only if

P(Nn < nx) =⇒Wα/2(x) (n→∞).

This statement is a direct consequence of lemma 2 with Q(x) = Wα/2(x)
and representation (4).

For n > 1 let Tn = Tn(X1, . . . , Xn) be a statistic, that is, a measurable
function of the random variables X1, . . . , Xn. For each n > 1 define the random
variable TNn by letting TNn(ω) = TNn(ω)

(
X1(ω), . . . , XNn(ω)(ω)

)
for every

elementary outcome ω ∈ Ω. We will say that the statistic Tn is asymptotically
normal, if there exist δ > 0 and θ ∈ R such that

P
(
δ
√
n
(
Tn − θ

)
< x

)
=⇒ Φ(x) (n→∞). (5)

Lemma 3. Assume that Nn −→∞ in probability as n→∞. Let the statistic
Tn be asymptotically normal in the sense of (5). Then a distribution function
F (x) such that

P
(
δ
√
n
(
TNn − θ

)
< x

)
=⇒ F (x) (n→∞),
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exists if and only if there exists a distribution function Q(x) satisfying the
conditions Q(0) = 0,

F (x) =

∞∫
0

Φ
(
x
√
y
)
dQ(y), x ∈ R, P(Nn < nx) =⇒ Q(x) (n→∞).

This lemma is a particular case of theorem 3 in [9], the proof of which
is, in turn, based on general theorems on convergence of superpositions of
independent random sequences [10]. Also see [7], theorem 3.3.2.

Theorem 2. Assume that Nn −→ ∞ in probability as n → ∞. Let the
statistic Tn be asymptotically normal in the sense of (5). Then

P
(
δ
√
n
(
TNn − θ

)
< x

)
=⇒ Lα(x) (n→∞),

if and only if
P(Nn < nx) =⇒ Hα/2(x) (n→∞).

This statement is a direct consequence of lemma 3 with Q(x) = Hα/2(x)
and representation (3).

We also give simple examples of mixed Poisson random variables satisfying
the conditions of theorems 1 and 2.

This research was supported by the Russian Foundation for Basic Re-
search (projects 11-01-12026-ofi-m, 11-01-00515a and 11-07-00112a), and by
the Ministry for Education and Science of Russian Federation (state contract
16.740.11.0133).
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On convergence of random walks having jumps with
finite variances to stable Lévy processes
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In [1, 2] some functional limit theorems were proved for compound Cox pro-
cesses with square integrable leading random measures. However, the class of
limit processes for compound Cox processes having jumps with finite variances
and such leading random measures cannot contain any stable Lévy process be-
sides the Wiener process. The aim of the present work is to fill this gap.

Let D = D[0, 1] be a space of real-valued right-continuous functions defined
on [0, 1] and having left-side limits. Let F be the class of strictly increasing
continuous mappings of the interval [0, 1] onto itself. Let f be a non-decreasing
function on [0, 1], f(0) = 0, f(1) = 1. Let

‖f‖ = sup
s 6=t

∣∣∣∣log
f(t)− f(s)

t− s

∣∣∣∣ .
If ‖f‖ < ∞, then the function f is continuous and strictly increasing, hence,
it belongs to F .

Define the metric d0(x, y) in D[0, 1] as the greatest upper bound of positive
numbers ε for which F contains a function f such that ‖f‖ 6 ε and

sup
t
|x(t)− y(f(t))| 6 ε.
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It can be shown that D[0, 1] is complete with respect to the metric d0. The
metric space (D[0, 1], d0) is referred to as the Skorokhod space.

We will consider stochastic processes as random elements in D ≡
(D[0, 1], d0) in the following sense. Let D be the class of Borel sets of the
space D. The class D is the σ-algebra generated by the open sets of D. A
mapping X of the basic probability space (Ω, A, P) to D is measurable if
{ω : X(ω) ∈ B} ∈ A for any set B ∈ D. By a stochastic process we will mean a
measurable mappingX of Ω toD. By the distribution of a stochastic process we
will mean the probability measure PX on the measurable space (D, D) defined
for any set A ∈ D by the relation PX(A) = P

(
{ω : X(ω) ∈ A}

)
≡ P(X ∈ A).

The symbol =⇒ will denote weak convergence: the sequence {Xn(t)}n>1 of
stochastic processes weakly converges to a stochastic process X(t), that is,
Xn(t) =⇒ X(t), if ∫

w(ω)PXn(dω) −→
∫
w(ω)PX(dω)

for any continuous bounded function w.
By a Lévy process, as usual, we will mean a homogeneous stochastically

continuous stochastic process X(t), t ∈ [0, 1], with independent increments
such that X(0) = 0 a.s. and the sample paths X(t) ∈ D[0, 1]. As is easily
seen, for each t ∈ [0, 1] the random variable X(t) has an infinitely divisible
distribution.

The strictly stable distribution function with the characteristic exponent
α ∈ (0, 2] and parameter θ (|θ| 6 θα = min{1, 2

α
− 1}) determined by the

characteristic function

gα,θ(s) = exp
{
− |s|α exp

{
− iπθα

2
signs

}}
, s ∈ R,

will be denoted Gα,θ(x). The value θ = 0 corresponds to symmetric strictly
stable laws. The values θ = 1 and 0 < α 6 1 correspond to one-sided strictly
stable distributions. As is known, if ξ is a random variable with the distribution
function Gα,θ(x), 0 < α < 2, then E|ξ|δ < ∞ for any δ ∈ (0, α), but the
moments of orders greater or equal to α of the random variable ξ do not exist
(see, e.g., [3]).

The distribution function of the standard normal law (α = 2, θ = 0) will
be denoted Φ(x). It is well known that

Gα,0(x) =

∞∫
0

Φ
( x√

u

)
dGα/2,1(u), x ∈ R (1)

(see, e.g., [3] or [4]). To representation (1) there corresponds the representation
in terms of characteristic functions:

gα,0(s) =

∞∫
0

exp
{
− s2u

2

}
dGα/2,1(u), s ∈ R. (2)
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A Lévy processX(t), t ∈ [0, 1], is called α-stable, if P
(
X(1) < x

)
= Gα,θ(x),

x ∈ R. It can be shown that if X(t), t ∈ [0, 1], is a Lévy process, then X(t) is

α-stable if and only if X(t)
d
= t1/αX(1), t ∈ [0, 1] (see, e.g., [5]).

Consider a sequence of compound Cox processes

Zn(t) =

N
(n)
1 (Λn(t))∑
i=1

Xn,i, t > 0, (3)

where {N (n)
1 (t), t ∈ [0, 1]}n>1 are Poisson processes with unit intensity; for

each n = 1, 2, ... the random variables Xn,1, Xn,2, ... are identically distributed,
moreover, for each n > 1 the random variables Xn,1, Xn,2, ... and the process

N
(n)
1 (t), t ∈ [0, 1], are independent; for each n = 1, 2, ... the random measure

Λn(t), t ∈ [0, 1], is a Lévy process independent of the process

Xn(t) =

N
(n)
1 (t)∑
i=1

Xn,i, t > 0,

such that Λn(0) = 0, Λn(1)
d
= knU

(n)
α,1 , where {kn}n>1 is an infinitely increas-

ing sequence of natural numbers and U
(1)
α,1, U

(2)
α,1, ... is a sequence of identically

distributed a.s. positive random variables having one-sided strictly stable dis-
tribution with parameters α ∈ (0, 1] and θ = 1. For definiteness, we assume
that

∑0
i=1 = 0. From the abovesaid it follows that EΛβn(1) <∞ for any β < α

and
Λn(t)

d
= t1/αΛn(1)

d
= t1/αknU

(n)
α,1

d
= t1/αknU

(1)
α,1, t > 0. (4)

Assume that
EXn,1 = 0 and 0 < σ2

n ≡ EX2
n,1 <∞. (5)

Let t = 1. Denote Nn = N
(n)
1 (Λn(1)). Assume that, as n→∞,

P(Xn,1 + ...+Xn,kn < x) −→ Φ(x), (6)

with the same {kn}n>1 as in the definition of the random measures Λn(t).
From the classical theory of limit theorems it is known that (6) holds, if, as
n→∞,

knσ
2
n −→ 1 (7)

and
knEX

2
n,1I(|Xn,1| > ε) −→ 0 (8)

for any ε > 0.
Moreover, by virtue of (4) it is obvious that

Λn(1)

kn

d
=
knU

(1)
α,1

kn
= U

(1)
α,1.
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therefore, formally,
Λn(1)

kn
=⇒ U

(1)
α,1. (9)

But, as it was shown in [6] (also see, e.g., [7] or [8]), (9) is equivalent to

Nn
kn

=⇒ U
(1)
α,1. (10)

By the Gnedenko–Fahim transfer theorem [9] (also see theorem 2.9.1 in [8])
conditions (6) and (10) imply that, as n→∞,

Zn(1) = Xn,1 + ...+Xn,Nn =⇒ Z, (11)

where Z is the random variable with the characteristic function

f(s) =

∞∫
0

exp
{
− s2u

2

}
dP(U

(1)
α,1 < u), s ∈ R.

But by virtue of (2)

f(s) =

∞∫
0

exp
{
− s2u

2

}
dGα,1(u) = g2α,0(s), s ∈ R,

that is, the limit random variable Z in (11) has the symmetric strictly stable
distribution with the characteristic exponent α0 = 2α.

Consider an α0-stable Lévy process Z(t), t ∈ [0, 1], such that Z(1)
d
= Z.

Since Zn(t) and Z(t) are Lévy processes, almost all their sample paths belong
to the Skorokhod space D.

Using theorem 15.6 from [10] we obtain the following result.

Theorem. Let α ∈ (0, 1] and a compound Cox process Zn(t) (see (3)) be

controlled by the Lévy process Λn(t) such that Λn(1)
d
= knU

(n)
α,1 , where {kn}n>1

is an infinitely increasing sequence of natural numbers and U
(1)
α,1, U

(2)
α,1, ... is a

sequence of identically distributed a.s. positive random variables having one-
sided strictly stable distribution with parameters α and θ = 1. Assume that
the random jumps {Xn,j}j>1, n = 1, 2, ..., of the compound Cox process Zn(t)
satisfy conditions (5), (7) and (8) with the same numbers kn. Then the ran-
dom walks generated by these compound Cox processes weakly converge in
the Skorokhod space D = (D[0, 1], d0) to a 2α-stable Lévy process Z(t) with
P
(
Z(1) < x

)
= G2α,0(x).

This research was supported by the Russian Foundation for Basic Re-
search (projects 11-01-12026-ofi-m, 11-01-00515a and 11-07-00112a), and by
the Ministry for Education and Science of Russian Federation (state contract
16.740.11.0133).
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On convergence of the distributions of random sums to
generalized variance gamma distributions

Victor Korolev 1

1 Faculty of Computational Mathematics and Cybernetics, Moscow State Uni-
versity; Institute of Informatics Problems, Russian Academy of Sciences, Russia;
vkorolev@cs.msu.ru

In this communication we demonstrate that any distribution belonging to
the class of generalized variance gamma distributions, the class of variance-
mean mixtures of normal laws with generalized gamma mixing distributions,
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can be limiting in rather simple limit theorems for random sums of i.i.d. ran-
dom variables (r.v.’s). This class is more general and flexible than the class of
generalized hyperbolic distributions widely used in various applied problems.

The class of generalized gamma-distributions (GG-distributions) was first
described in 1962 in [1] as a family which contains both gamma-distributions
and Weibull distributions. This class is similar to the class of generalized in-
verse Gaussian distributions but, unlike the latter, it contains distributions
whose densities have tails with exponential-power type of decrease.

The GG-distribution is defined by its density

f(x; ν, κ, δ) =
|ν|

δΓ(κ)

(x
δ

)κν−1

exp
{
−
(x
δ

)ν}
, x > 0, (1)

with parameters ν ∈ R, κ > 0 and δ > 0 responsible for exponential power,
shape and scale, where Γ(κ) =

∫∞
0
xκ−1e−xdx is Euler’s gamma-function.

The class of GG-distributions includes practically all most widely used
absolutely continuous distributions concentrated on R+. In particular, it con-
tains gamma-distributions (ν = 1) including exponential (ν = 1, κ = 1),
Erlang (ν = 1, κ ∈ N) and chi-square (ν = 1, δ = 2) distributions, Nakagami
distributions (ν = 2), half-normal distribution (the distribution of the absolute
value of a standard normal r.v. or, which is the same, the distribution of the
maximum of the standard Wiener process on [0, 1]) (ν = 2, κ = 1

2
), Rayleigh

distributions (ν = 2, κ = 1), chi-distributions (ν = 2, δ =
√

2), Maxwell
distribution (ν = 2, κ = 3/2), Weibull distribution (κ = 1), inverse gamma-
distributions (ν = −1) including Lévy distribution (ν = −1, κ = 1/2). The
lognormal distribution is the limiting case of GG-distribution with κ → ∞.
The wide applicability of GG-distributions can be explained by that almost all
of them can be limiting in various limit theorems of probability theory, e.g.,
dealing with the schemes of summation or maximum of independent r.v.’s.

In [2], the family of distributions

W (x;α, ν, κ, δ) =

∞∫
0

Φ

(
x− αu√

u

)
f(u; ν, κ, δ)du, (2)

was introduced, where f(u; ν, κ, δ) is the density of GG-distribution (see (1)).
In [2] distributions (2) were called generalized variance gamma distributions
(GVG distributions). The class of GVG distributions contains many gener-
alized hyperbolic distributions including variance gamma distributions (with
mixing gamma-distributions), skew Student distributions (with mixing inverse
gamma-distributions), normal\\inverse Gaussian distributions (with mixing
Lévy distributions). But along with these laws, GVG distributions also include
variance-mean mixtures of normal laws with Weibull-type mixing distributions
in which the exponential power can be arbitrary.

Assume that all the r.v.’s discussed below are defined on the same probabil-
ity space (Ω, A, P). Let {Xn,j}j>1, n = 1, 2, ... be a double array of row-wise
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i.i.d. r.v.’s. Let {Nn}n>1 be a sequence of nonnegative integer-valued r.v.’s
independent of Xn,1, Xn,2, ... for each n > 1. Let Sn,k = Xn,1 + ... + Xn,k.
To avoid misunderstanding, assume

∑0
j=1 = 0. The symbol =⇒ will denote

convergence in distribution.
The Lévy distance which metrizes convergence in distribution in the space

of distribution functions (d.f.’s) will be denoted L( · , · ),

L(F, G) = inf{ε : G(x− ε)− ε 6 F (x) 6 G(x+ ε) + ε ∀x ∈ R}.

To each pair of d.f.’s (F, H) put into correspondence the set M(F |H) con-
taining all d.f.’s Q(x) with Q(0) = 0 providing the representation of the char-
acteristic function (ch.f.) corresponding to the d.f. F as a power mixture of
ch.f.’s corresponding to the d.f. H:∫ ∞

−∞
eitxdF (x) =

∫ ∞
0

hx(t)dQ(x), where h(t) =

∫ ∞
−∞

eitxdH(x), t ∈ R.

Everywhere in what follows the convergence will be meant as n→∞.

Lemma 1. Assume that there exist kn ∈ N, n > 1, and a d.f. H(x) such
that

P
(
Sn,kn < x

)
=⇒ H(x).

Assume that Nn →∞ in probability. Then the convergence

P
(
Sn,Nn < x

)
=⇒ F (x) (3)

of the distributions of random sums to a d.f. F (x) takes place if and only if
there exists a weakly compact sequence of d.f.’s {Q∗n(x)}n>1 such that

(i) Q∗n(x) ∈M(F |H), n = 1, 2, ...,

(ii) L(Q∗n, Qn) −→ 0,

where Qn(x) = P(Nn < knx), x ∈ R.

This statement is a particular case of theorem 4.2.1 in [3].

Let a function H(x; y) be defined on R × R. Assume that H(x; y) is mea-
surable with respect to y for each fixed x ∈ R and is a d.f. as the function of
x for each fixed y ∈ R. Let Q be a family of d.f.’s. Denote

F =

{
F (x) =

∫ ∞
−∞

H(x; y) dQ(y), x ∈ R : Q ∈ Q
}
.

The family F is called identifiable, if the equality∫ ∞
−∞

H(x; y) dQ1(y) =

∫ ∞
−∞

H(x; y) dQ2(y), x ∈ R,

with Q1 ∈ Q, Q2 ∈ Q implies Q1(y) ≡ Q2(y).
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The standard normal d.f. will be denoted Φ(x). It is well known that general
scale-location mixtures of normal laws are not identifiable. However, the family
FΦ of one-parameter variance-mean mixtures of normal laws

FΦ =

{
F (x) =

∫ ∞
0

Φ
(x− αy
σ
√
y

)
dQ(y), x ∈ R : Q ∈ Q

}
with fixed α ∈ R and σ > 0 turns out to be identifiable, since the family of
d.f.’s

{
Φ
(
(x− αy)/(σ

√
y)
)

: y > 0
}

is additively closed (see [4], [5]).
With the account of the identifiability of FΦ, lemma 1 implies

Theorem 1. Let there exist kn ∈ N, n > 1, and α ∈ R such that

P
(
Sn,kn < x

)
=⇒ Φ(x− α). (4)

Assume that Nn → ∞ in probability. Then the convergence (3) of the distri-
butions of random sums to a d.f. F (x) takes place if and only if there exists a
d.f. Q(x) such that Q(0) = 0,

F (x) =

∫ ∞
0

Φ
(x− αz√

z

)
dQ(z) and P(Nn < xkn) =⇒ Q(x).

Remark 1. Condition (4) holds in the following situation. Assume that
0 < DXn,j <∞. Also assume that the r.v.’s Xn,j can be represented as

Xn,j = X∗n,j + αn,

where αn ∈ R, EX∗n,j = 0, 0 < DX∗n,j = σ2
n < ∞, so that EXn,1 = αn and

DXn,1 = σ2
n. Let αnkn → α and knσ

2
n → 1. Then, as is known (see, e.g., [6]),

relation (4) holds if and only if the Lindeberg condition holds: for any ε > 0

lim
n→∞

knE(X∗n,1)2I(|X∗n,1| > ε) = 0,

(here I(A) is the indicator function of a set A).

Corollary 1. Let there exist kn ∈ N, n > 1, and α ∈ R such that (4)
holds. Assume that Nn →∞ in probability. Then the distributions of random
sums converge to a generalized variance gamma distribution:

P
(
Sn,Nn < x

)
=⇒W (x;α, ν, κ, δ)

if and only if
P(Nn < xkn) =⇒ F (x; ν, κ, δ), (5)

where F (x; ν, κ, δ) is a GG-d.f. corresponding to the density f(x; ν, κ, δ) (see
(1)).

We also give some simple scheme which allows to easily construct r.v.’s
satisfying (5) and discuss convergence rate estimates in corollary 1.
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Reconstruction of tomographic images using
Fourier-Wavelet decomposition

Alexey Kudryavtsev 1, Oleg Shestakov 2

1Moscow State University, Russia, nubigena@hotmail.com
2Moscow State University, The Institute of Informatics Problems of RAS, Russia,
oshestakov@cs.msu.su

Tomographic techniques of image reconstruction are widely used in dif-
ferent fields of science and technology. The main mathematical tool in many
tomographic experiments is the Radon transform:

Rf(ϕ, s) =

∫
Lϕ,s

f(x, y)dl, s ∈ R, ϕ ∈ [0, 2π),

where Lϕ,s is the line defined by the angle ϕ and the distance s. In real tomo-
graphic experiments one always have to deal with the noisy measurements. So
we consider the following model:

Xu,v = (Rf)u,v + εu,v, u = 1, . . . , 2J , v = 1, . . . , 2J . (1)
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Here J is some positive integer number, Xu,v are the observed data, and εu,v
are independent normal variables with zero mean and variance equal to σ2.

Nonlinear wavelet methods of de-noising are becoming more and more pop-
ular because of their ability to capture local singularities of images (see [1]).
One possibility is to use the following approximate image decomposition (see
[2]):

f =

2J−1∑
n=0

J−1∑
j=0

2j−1∑
k=0

βn,j,k〈Rfn, ψj,k〉un,j,k,

where {ψj,k} is a wavelet basis generated by a certain mother wavelet ψ, βn,j,k
are normalization constants, Rfn are Fourier harmonics of Rf , and {un,j,k}
is a corresponding “vaguelette” basis, which appears to be stable if mother
wavelet ψ satisfies certain regularity conditions (see [2]).

To filter out the noise we use thresholding method with soft-thresholding
function ρTj (x) = sgn(x) (|x| − Tj)+, and obtain an estimate of the image:

f̂ =

2J−1∑
n=0

J−1∑
j=0

2j−1∑
k=0

βn,j,kρTj (Yn,j,k)un,j,k, (2)

where Yn,j,k are noisy decomposition coefficients of the image. Here we use
individual threshold Tj =

√
2 ln 2j+Jσ for each decomposition level j. This

threshold is called “universal” (see [2]).
Risk (average mean squared error) of soft thresholding method is defined

as

rJ =

2J−1∑
n=0

J−1∑
j=0

2j−1∑
k=0

β2
n,j,kE(2J/2〈Rfn, ψj,k〉 − ρTj (Yn,j,k))2. (3)

This expression contains unknown values 〈Rfn, ψj,k〉, so it cannot be calculated
and has to be estimated. Following D. Donoho and I. Johnstone (see [3]) we
propose to use SURE estimate

r̂J =

2J−1∑
n=0

J−1∑
j=0

2j−1∑
k=0

β2
n,j,kFTj (Yn,j,k), (4)

where FTj (x) = (x2 − σ2)I(|x| ≤ Tj) + (σ2 + T 2
j )I(|x| > Tj). This estimate

is unbiased, i.e. Er̂J = rJ . We prove that under certain conditions it is also
asymptotically normal. The following theorem holds.

Theorem. Let mother wavelet ψ have sufficient number of vanishing mo-
ments and satisfy certain conditions, which ensure that basis {un,j,k} is stable
(see [2]). Let f have compact support and be Lipschitz continuous of order
γ > 0. Then

r̂J − rJ
σ2β2

0,0,0

√
2/7 22J

=⇒ N(0, 1) as J →∞. (5)
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In (5) we do not use traditional normalization which involves variance of r̂J ,
because this variance depends on the unknown values 〈Rfn, ψj,k〉. Proposed
normalization allows to construct asymptotic confidence intervals for rJ .

Acknowledgements: this work is supported by RFBR (grants 11–07–
00112a, 11–01–00515a and 11-01-12-26-ofi-m)
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Multistate Markov models penalized estimates

Anatoli Michalski 1

1Institute of Control Sciences, Moscow, Russia, ipuran@yandex.ru

Many reliability processes are described in terms of Markov multistate
models. The number of states and definitions of states depend on the problem
at hand. Often transitions between the states are made at random times with
intensities, depending on different covariates and, possible, on time. If the
matrix of transition intensities is given, then one can calculate probability that
the system made transition from state Si to state Sj for the given time. This
is direct problem, which can be solved using the set of Kolmogorov equations.

Identification of transitions intensities matrix is an inverse problem and
depending on the characteristics of the data can be solved with different re-
sults. If the data present the sequence of states combined with times, when
the transitions between the states were made {S1, t1, ..., Sn, tn}, then the max-
imum likelihood estimates for transitions intensities are λ̂ij = nij/Ti. Here nij
denotes the observed number of transitions from the state Si to the stateSj ,
Ti is the total time spent by all objects at the stateSi.

Often the states of the objects are observed not at the moments of the
transitions but at the times, not dependent on the states as in the case of
regular investigations. In this case one knows the states of the object at the
given times but does not know the moments of transitions. This is a case of
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interval censored observations [1]. To obtain the estimates for the transition
intensity matrix one is to maximize the likelihood function and this problem
is ill-posed and instable [2]. It is proposed in the report to stabilize the max-
imum likelihood estimates by maximization of posterior probability for the
transitions intensity matrix. This leads to penalized likelihood maximization
with penalty term, derived from the natural condition on the time, which the
process stays in the selected state.
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On the Gaussian asymptotics of the binomial
distributions

Sergey Nagaev 1, Vladimir Chebotarev 2, Konstantin Mikhailov 3
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Let X have a two-point distribution P(X=a)=q, P(X=d)=p, p + q = 1,
where a < 0 < d, EX = 0, EX2 = 1. Denote its distribution func-

tion by F (x). Define α3(p) = EX3, β3(p) = E|X|3, τ =
(

6
β3(p)n

)1/3

,

δn,p(x) = F ∗n(x) − Φ(x/
√
n ), ∆n(p) = supx |δn,p(x)|, where Φ(x) =

1√
2π

∫ x
−∞ e

−t2/2 dt. Evidently, ∆n(p) coincides with the distance in uniform
metric between the standardized binomial distribution and the standard nor-
mal distribution.

Note that ∆n(p) is attained at a discontinuity point of the convolu-
tion F ∗n. Denote this point by x0. Four cases are possible: δn(p, x0+) =
∆n(p), δn(p, x0−) = ∆n(p), δn(p, x0+) = −∆n(p), δn(p, x0+) = −∆n(p).
Consider, for instance, the case δn(p, x0+) = ∆n(p). Define

A(p, n, x) =
α3(p)

3! 2π
√
n

∫
|u|6τ

√
n−1

u2e−u
2/2 sin y

y

∣∣∣
y= uh

2
√
n−1

sin
( ux√

n− 1

)
du,

B(p, n, x0) =
1

h

∫ x0+h

x0

(
Φ(u/

√
n)− Φ(x0/

√
n)
)
du,

where h is an arbitrary positive number. Note that 0 < B(p, n, x0) < h

2
√

2πn
.

Let P (x) be the uniform distribution on [−h/2, h/2].
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Theorem 1. For each discontinuity point x0 of the function F ∗n the fol-
lowing equality holds,

δn,p(x0+) = (P ∗ δn,p)(x0 + h/2) +B(n, p, x0).

Let us introduce the condition

4

n
6 p 6 0.5, n > 200. (1)

Further, let K1(p, n), K2(p, n) and K3(p, n) be the functions from [1].

Theorem 2. Let n > 200. Then for each x,

(P ∗ δn,p)(x) = A(p, n, x) +R(p, n),

where |R(p, n)| 6
3∑
i=1

Ki(p, n), if the condition (1) is fulfilled. In addition, for

every fixed p ∈ (0; 0.5], the sequence R0(p, n) =
√
n

β3(p)

3∑
i=1

Ki(p, n) is O(1/
√
n),

decreasing in n > max{200; 4/p}.
Corollary 1. Let n > 200. Then for each discontinuity point x0 of the

function F ∗n,

δn,p(x0+) = A(p, n, x0 + h/2) +B(n, p, x0) +R(p, n),

where R(p, n) is the function from Theorem 2.

Remind the Esseen function E(p) = 2−p
3
√

2π [p2+(1−p)2]
(see [1], [2]), and the

Esseen constant CE ≡
√

10+3

6
√

2π
= 0.409732 . . . .

Using the inequality |A(p, n, x0 + h/2) +B(p, n, x0)| 6 α3(p)

6
√

2πn
+ 1

2
√
pq2πn

=
β3(p)√
n
E(p), we obtain

Theorem 3. Let 4
n
6 p 6 0.5, n > 1600. Then

∆n(p) 6
β3(p)√
n
E(p) + |R(p, n)|,

where R(p, n), being the function from Theorem 2, satisfies the inequality√
n

β3(p)
|R(p, n)| < 0.4138− CE = 0.004067 . . . .

Theorem 4.

C0 ≡ sup
n, p

√
n

β3(p)
∆n(p) < 0.4138. (2)

Note that from the bound ∆n(p) 6 0.3328√
n

(
β(p) + 0.429

)
proved in [3] for

arbitrary i.i.d.r.v’s we obtain that in the case 0 < p 6 1/400 the following

bound holds,
√
n

β3(p)
∆n(p) < 0.34.
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As to the case 1 6 n 6 1600, we show by using a computer that
max

16n<1600
max

p∈(0,0.5]

√
n

β(p)
∆n(p) < CE .
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Asymptotic properties of grid method estimators in the
normal mixture separation problems

Alexey Nazarov 1

1Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State
University, Russia, nazarov.vmik@gmail.com

The problem of separation of mixtures of probability distributions is tra-
ditionally reduced to the problem of parameter estimation within a certain
mathematical model framework. In this case the number of estimated pa-
rameters is relatively small. However, in cluster analysis and non-parametric
density estimation problems it is required to construct an estimate of mixing
distribution function based on the corresponding mixture realizations.

EM-algorithm and its modifications (see [1]) are often used to find maxi-
mum likelihood estimates in problems of separation of mixtures. In this case,
the estimate of the mixing distribution is concentrated at a fixed number of
points (atoms). However, the classical EM-algorithm has some major disad-
vantages. For example, the number of atoms and the starting point in max-
imization procedure should be specified explicitly. The EM-algorithm is also
very sensitive to the choice of the initial approximation: it is possible to obtain
quite different results using different starting points on the same set of mixture
realizations.

To overcome the above disadvantages, in [1–3] the so-called grid methods
of separation of mixtures were proposed. These methods are based on the
assumption that the mixing distribution estimate should be sought in the
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class of distributions concentrated on the set of fixed points (the grid). In this
communication it is shown that grid method estimators in normal mixtures
decomposition problems are consistent within some subclasses of mixtures. A
necessary condition of consistency is that the grid size should be a certain
function of the sample size.

This fact proves that grid methods provide reasonable estimates and can
be used in various practical problems.
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Lower bounds for the stability of normal mixture models
with respect to perturbations of mixing distribution

Alexey Nazarov 1

1Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State
University, Russia, nazarov.vmik@gmail.com

Many popular stochastic models are based on the usage of mixtures of
probability distributions. For example, these models are used in modeling the
evolution of prices of financial instruments or turbulent plasmas. They are also
used in solving pattern recognition problems. Examples of random processes
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whose one-dimensional distributions are mixtures of normal distributions can
be found in [1] and the references therein.

We consider the problem of stability of a mixture of probability distribu-
tions with respect to perturbations of mixing distribution. The first results of
this type for the special case, a simple Tukey contamination model [2], was ob-
tained in [3]. A solution of this problem for another special case can be found
in [4] where estimates of the distance between the normal distribution and
a scale mixture under certain conditions imposed on the mixing distribution
were presented. Upper bounds in this stability problem were considered in [5].

The aim of this study is to obtain the lower bounds in mixture stability
problem. Inequality estimating the distance between two mixing distributions
through the closeness of the corresponding mixtures is presented. Existence
theorem for stability estimates is proved for subclasses of scale and shift mix-
tures of normal distributions. The estimate for the class of shift mixtures of
normal distributions is obtained in an explicit form. It is also demonstrated
that the presented results cannot be radically improved without additional
assumptions.

The obtained results are important for the study of the asymptotic proper-
ties of estimates in the problem of separation of mixtures by the grid methods
[3].
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Estimates of the accuracy of the approximation to the
distributions of the negative binomial random sums

Yulia Nefedova 1

1Moscow State University, Russia, y.nefedova@gmail.com

Let X1, X2, . . . be independent random variables with the common distri-
bution function F (x) = P(X1 < x) and satisfying the conditions

EX1 = 0, σ2 = EX2
1 , β2+δ = E|X1|2+δ <∞,

for some 0 < δ ≤ 1. Consider the negative binomial random sum

S(t) =

N(t)∑
i=1

Xi, t ≥ 0,

( 0∑
i=1

(·) ≡ 0

)
,

where the random variable N(t) has the negative binomial distribution with
parameters r > 0 p = (1 + t)−1, t > 0:

P(N(t) = k) =
Γ(r + k)

k! · Γ(r)
pr(1− p)k, k = 0, 1, 2, . . . .

Assume that the random variables N(t), X1, X2, ... are independent for each
t > 0.

As is well known, the negative binomial with parameters r > 0 and p ∈
(0, 1) is the mixed Poisson distribution with the mixing gamma-distribution
Gr,s(x) with shape parameter r > 0 and scale parameter s = p/(1 − p) =
1/t > 0.

The random sum S(t) is also called a mixed Poisson random sum and its
distribution is called compound mixed Poisson.

In the case r > δ/2 the convergence rate estimate in the limit theorem
for the negative binomial random sums to the scale mixture of normal law is
known. Under the above conditions on the moments of random variable X1

and condition r > δ/2 for each t > 0 the following analog of the Berry–Esseen
inequality holds

ρt ≡ sup
x

∣∣∣∣P(S(t) < xσ
√
rt)−

+∞∫
0

Φ

(
x√
λ

)
dGr,r(λ)

∣∣∣∣ ≤ C(r; δ)
β2+δ

σ2+δtδ/2
,
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where C(r; δ) = C(δ)Γ(r− δ
2
)/Γ(r), and the constant C(δ) is the same as in the

Berry–Esseen inequality for Poisson random sums. In particular C(1) ≤ 0.3041
(see [1]).

This statement was first proved in the paper [2] with a slightly worse con-
stant. The best known upper bounds for C(r; δ) are obtained by V. Korolev
and I. Shevtsova in [1]. The non-trivial lower bounds for C(r; δ) were find by
Yu. Nefedova in [3]. Moreover, it was shown that obtained minorants C(r; δ)
are positive for all δ ∈ (0, 1] and r > δ/2, so we can conclude that the or-
der O(t−δ/2) of convergence rate is correct as t → ∞ for the uniform in F
estimates ρt.

Here we construct the new, practically applicable estimates of the accuracy
of the approximation to the distributions of the negative binomial random
sums when the parameter r > 0 of the negative binomial distribution satisfies
the following condition: r ≤ δ/2.

We will show that in the case r < δ/2 the convergence rate estimate has
the order O(t−r) and in the case r = δ/2 the order is O(t−δ/2 ln(t)), t→∞.
In both cases, we prove that obtained order is correct.
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Fractional Levy process as a limit one in infinite source
renewal model of teletraffic

Carmine De Nicola 1, Yury Khokhlov 2, Michele Pagano 3, Oksana
Sidorova 4

1University of Salerno, Italy, denicola@diima.unisa.it
2Peoples Friendship University of Russia, Russia, yskhokhlov@yandex.ru
3University of Pisa, Italy, m.pagano@iet.unipi.it
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Recently (see [1]) we have proposed a new model of cumulative teletraffic
in the following form. Let (BH(t), t ≥ 0) be fractional Brownian motion with
Hurst parameter H, (L1

α(t), t ≥ 0), (L2
α(t), t ≥ 0) be α-stable subordinators,

0 < α ≤ 1, and BH , L1
α and L2

α are independent. Consider the new process

X(t) :=

{
BH(L1

α(t)) , t ≥ 0,
−BH(L2

α(t)) , t < 0,

This process capture both the properties of long range dependence and
heavy tails of distributions. Moreover the above process X is self-similar pro-
cess with Hurst parameter H1 = H ·α We have used it for estimation of buffer
overflow probability.

In our present report we show how to get this process as a limit one in
infinite source renewal model of teletraffic. Our result is analog of the result
from [2]. First we describe the standard infinite source Poisson model following
paper [2]. Let (Γj , −∞ < j < ∞) be the point process generated by homo-
geneous Poisson process in R1 with parameter λ, labeled so that Γ0 < 0 < Γ1

and hence {Γ0,Γ1, (Γj+1−Γj , j 6= 0)} are i.i.d. exponentially distributed ran-
dom variables with parameter λ. We imagine that a communication system
has an infinite number of nodes or sources, and at the time Γj a connection is
made and some node begins a transmission at constant rate to server. In what
follows this constant rate is taken to be unity. The lengths of transmissions
are random variables (Xj , j ∈ Z) which are i.i.d. and independent of (Γj).
We assume that they have the common distribution function F (x) such that

F̄ (x) := Pr(Xj > x) = x−βL(x), x > 0, (1)

where L(x) is slowly varying function as x→∞, 1 < β < 2. In this case there
exists the finite expectation µ = E(Xj). Also define the quantile function

b(t) := inf(x : 1/F̄ (x) ≥ t).

Function b(t) is non-decreasing and regular varying with index 1/β.
N(t) denotes the number of active sources at time t:

N(t) =

∞∑
k=−∞

1{Γk≤t<Γk+Xk}.
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Then A(t) =
∫ t

0
N(s)ds is the total cumulative input in [0, t].

Next we consider infinite source Poisson model indexed by with scaling
parameter T > 0 such that the intensity λ = λ(T ) goes to infinity as T →∞.
λ = λ(T ) will be referred to as the connection rate. In what follows we are
interested in limit behavior of random process (BT (t) := A(T · t), t ≥ 0) as
T →∞. In paper [2] the following result was proved.

Theorem 1. Assume that the process BT (t) satisfies the Fast Growth Con-
dition (FGC):

b(λ(T ) · T )

T
−→
T→∞

∞ . (2)

Then the following convergence

BT (t)− T · λ(T ) · µ · t
(λ(T ) · T 3 · F̄ (T ) · σ2)1/2

=⇒
T→∞

BH(t)

holds, where (BH(t), t ≥ 0) is a standard fractional Brownian motion, H =
(3− β)/2 and

σ2 =
1

3− β

[
β

2− β +
2

µ

]
.

Now we replace the sequence {Γj} by the sequence of positive i.i.d.r.v.
{Yj} (renewal process!) whose tails have the form (1) with index α1 < 1 and
consider the analog B̃T (t) of process BT (t). Our main result is the following

Theorem 2. Assume that the process B̃T (t) satisfies the FGC. Then after
some normalization of the process B̃T (t) we have the process X(t) as the limit
one
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New techniques for magnetoencephalogram and
myogram signal processing

Semen Nikiforov 1, Miroslav Goncharenko 2

1Moscow State University, Russia, nikisimonmsu@gmail.com
2Moscow State University, Russia, goncharenko.mir@yandex.ru

As part of brain areas localization task set before mathematical statistics
department we developed a new technique for MEG-signal processing Among
other issues this includes detection of primary motor cortex and nonrenewable
brain regions. We investigated statistical and stochastic characteristics of our
signals and revealed noise non-normality and non-stationary.

By using this approach we developed sustained algorithms for fully auto-
mated signal processing and for identification of reference points within motor
cortex localization problem.

These reference points are engaged for averaging of the source signals and
creation of brain activity template, which is used further to solve the inverse
problem – functional brain mapping. To achieve adequate accuracy of local-
ization it is necessary to identify reference points with a detection error up to
several record units (sampling frequency is 1 kHz).

It should be noted that typically signal comprise few million units (ref-
erences). The algorithms are based on the stochastic signal characteristics,
some of them employed wavelet analysis (see [1]) Our method is able to deal
effectively with noise-contaminated signals (up to 5% of each MEG-record is
formed usually by useful signal) and non-stationary signals.

Some of the algorithms are implemented by Moscow MEG-center and al-
lowed them to improve accuracy of primary motor cortex localization for each
patient (see [2]).

Developed algorithms are important to establishment of clinical procedure
for neurosurgical practice. This method is of particular value for patients with
various brain pathologies and hence skewed brain topography.

Magnetoencephalography can be used as a diagnostic technique for focal
brain lesions as well as brain pathological functionality.

Constantly working on improving the localization accuracy for various
brain areas we enhance our method and develop new algorithms. This is a
challenge for many researches around the world since MEG-signal processing
give us an opportunity for non-invasive functional brain studying (see [2,3]).
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Asymptotically normal class of estimators of parameters
from incomplete survival data

N.S. Nurmuhamedova 1

1National University of Uzbekistan, rasulova nargiza@mail.ru

Let X - be the random variable (r.v.), lifetime of individual with sur-
vival function 1 − F (x; θ), depending on unknown parameter θ and density
f(x; θ), θ ∈ Θ ⊆ R1. Assume that the r.v. X subject to random censoring
from both sides by r.v.-s L and Y with distribution functions (d.f.-s) K and
G and densities k and g respectively, which are independent of θ.

Let {(Li, Xi, Yi), i > 1} - be a sequence of independent replicas of vec-
tor (L,X, Y ) with independent components. Observations is available the

sample {Z̃i = (Zi; ∆
(0)
i ,∆

(1)
i ,∆

(2)
i ), 1 6 i 6 n} = V(n), where Zi =

max(Li,min(Xi, Yi)), ∆
(0)
i = I(min(Xi, Yi) < Li), ∆

(1)
i = I(Li 6 Xi 6

Yi), ∆
(2)
i = I(Li 6 Yi < Xi) and I(A) is an indicator of event A. We denote

Z̃(n) = (Z̃1, Z̃2, ..., Z̃n) and let {Y(n),U (n), Q
(n)
θ } is a sequence of statistical

experiments generated by observations Z̃(n), where Y(n) = {X × {0, 1}(3)}(n),

U (n) = σ(Y(n)) and Q
(n)
θ is the distribution on (Y(n),U (n)) with one-

dimensional distribution Qθ(x, y
(0), y(1), y(2)) = P (Zi 6 x,∆

(0)
i = y(0),∆

(1)
i =

y(1),∆
(2)
i = y(2)), y(m) ∈ {0, 1}, m = 0, 1, 2. Let εy(m) is a counting mea-

sure concentrated at the point y(m) and dν(Z̃i) = ε
y
(m)
i

× dZi, i = 1, n. Then

the distribution of Q
(n)
θ is absolutely continuous with respect to ν(n)(Z̃(n)) =

ν(Z̃1)× ...× ν(Z̃n) and have the density for any θ ∈ Θ defined on Y(n) as

pn(Z̃(n); θ) =
dQ

(n)
θ (Z̃(n))

dν(n)(Z̃(n))
=

n∏
m=1

{k(Zm)[1−(1−G(Zm))(1−F (Zm; θ))]}∆
(0)
m ·

·{K(Zm)(1−G(Zm))f(Zm; θ)}∆
(1)
m · {K(Zm)g(Zm)(1− F (Zm; θ))}∆

(2)
m .

For u ∈ R1 define θn = θ0 + u√
n
∈ Θ, where θ0 is the true value of pa-

rameter θ and consider the logarithm of the likelihood ratio statistics (LRS)
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Ln(u) = log
{
dQ

(n)
θn

(Z̃(n))/dQ
(n)
θ0

(Z̃(n))
}

. In the works of authors [1-3] under

certain regularity conditions, is established for any u ∈ R1 the following locally
asymptotically normality type result for LRS:

Ln(u) = uJ1/2(θ0)ζ − u2

2
J(θ0) +Rn(u), (1)

where ζ
D
= N(0, 1), Rn(u)

Q
(n)
θ0→ 0 for n→∞ and J(θ) - is a Fisher information

corresponding to the observation Z̃i. We use (1) for investigation of estimators
of θ.

Let {π(u), u ∈ Θ} is a non-negative measurable function and l(d; θ) =
(d − θ)2 is a loss function on the set D × Θ, where D - the set of possible
estimates for θ. Consider the Bayesian - type estimator θ̃n ∈ D, defined as

θ̃n = argmin
d∈D

∫
Θ

l(d; θ)pn(Z̃(n); θ)π(θ)d(θ)∫
Θ

pn(Z(n); θ)π(θ)d(θ)
. (2)

Note that if θ is r.v. with the a priori density π, then θ̃n is Bayesian estimator
for θ.

Theorem. Let the following regularity conditions are hold:
(I) The support Nf = {x : f(x; θ) > 0} is independent on θ;
(II) f(x;α) 6= f(x;β) for α 6= β, α, β ∈ Θ;

(III) There are derivatives ∂if(x; θ)/∂θi and
∞∫
−∞
|∂if(x; θ)/∂θi|dx <

∞, i = 1, 2;
(IV) The function ∂ log f(x; θ0)/∂θ is of bounded variation;
(V) J(θ0) 6= 0;
(VI) π(θ) is continuous at the neighborhood of θ0 and π(θ0) 6= 0.
Then for n→∞,

√
n(θ̃n − θ0)⇒ N(0, (J(θ0))−1).

Note that the limit distribution of θn is independent of π.
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Stochastic analysis of traffic at non-regulated
intersections
Igor Rudenko 1

1Lomonosov Moscow State University, Russia, irudenkomr@gmail.com

We consider queueing systems with infinite number of servers and identical
service times during a busy period. Service times on different busy periods are
independent identically distributed random variables. For the process that
defines the number of customers in the system the stationary distribution and
the ergodicity condition are obtained. The distribution function of the system’s
busy period is found.

These results are applied to the analysis of traffic at non-regulated inter-
sections. Assume that cars on a secondary road S2 that intersects a major
one-lane road S1 can merge into the major road if there are no cars on S1

on the certain distance I from the intersection. Similar models were analyzed
in Tanner [1], Gideon and Pyke [2]. Such non-regulated intersections can be
described by an M |G|1 queue with the unreliable server. M |G|1 systems with
service interruptions were investigated in Gaver [3]. The results obtained there
cannot be applied to our system directly because of the following assumptions
we make which are specific to traffic models:

1. If a car on the secondary road reaches the intersection when the interval I
on the main road is free and the queue is empty then the time required to
merge into the main road for such a car is supposed to be zero (“skipping
effect“).

2. If a car appears in the interval I while another car on S2 is passing
the intersection then the car on S2 stops and right after the interval
I becomes free immediately crosses the main road (the residual time
required for crossing is zero).

Using the results given in Afanasyeva [4] we obtain the necessary and
sufficient ergodicity condition, limiting distribution of the number of customers
in the system and investigate functioning of the system under heavy traffic
assumptions.

Acknowledgements. The author is grateful to professor L.G.Afanasyeva
for the statement of the problem and valuable discussions. This work was
partially supported by RFBR grant N 10-01-00266a.
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A probability transformation with application to
characteristic functions

Irina Shevtsova 1

1Moscow State University, Russia, ishevtsova@cs.msu.su

Definition 1. Let X be a random variable with the distribution function
F (x) and σ2 ≡ EX2 ∈ (0,∞). The random variable X∗ is said to have the X-
shape biased distribution, if its distribution function F ∗(x) obeys the relation

dF ∗(x) =
x2

σ2
dF (x), x ∈ R,

or, which is the same, F ∗(x) = σ−2EX21(X < x).
Definition 1 is a particular case of a more general definition given by Gold-

stein and Reinert [1], where, however, only the existence of this transformation
was proved. Here we establish some properties of X∗ and prove an exact esti-
mate of the proximity of X∗ to X in L1-metric. It can be easily seen that:

1) (X∗)2 has the same distribution as X2-size biased distribution intro-

duced by Goldstein and Rinott [2]: (X∗)2 d
= (X2)(s);

2) the symmetric binomial distribution is the fixed point of the shape biased

transformation: X∗
d
= X, if P(X = ±σ) = 1/2, σ > 0;

3) the characteristic functions of X∗ and X are linked by the following
relation:

f∗(t) ≡ EeitX
∗

= −σ−2f ′′(t) =
f ′′(t)

f ′′(0)
, f(t) = EeitX , t ∈ R.

Theorem 1. For any random variable X with EX = 0, EX2 = 1, and
E|X|3 <∞ the following inequality holds:

L1(X,X∗) ≡ inf{E|X̃ − X̃∗| : X̃ d
= X, X̃∗

d
= X∗} 6 E|X|3

with the equality attained at any three-point distribution with an atom at zero.
The proof is based on the results of the works [3, 5].
Using theorem 1 and a result of [4] we obtain

Theorem 2. Let X be an arbitrary random variable with EX = 0,
EX2 = 1, E|X|3 < ∞, and the characteristic function f(t). Let X∗ have an
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X-shape biased distribution with the characteristic function f∗(t). Then for all
t ∈ R

|f(t)− f∗(t)| ≡ |f(t) + f ′′(t)| 6

6 2 sin

(
min

{
L1(X,X∗)

t

2
,
π

2

})
6 2 sin

(
min

{
tE|X|3

2
,
π

2

})
.
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On the accuracy of the approximation of a characteristic
function by the first terms

of its Taylor expansion
Irina Shevtsova 1

1Moscow State University, Russia, ishevtsova@cs.msu.su

Let n be an integer, n > 1. For a random variable X with E|X|n < ∞
denote αk = EXk, βk = E|X|k, k = 1, 2, . . . , n. As is known,∣∣∣∣EeitX − n−1∑

k=0

αk(it)k

k!

∣∣∣∣ 6 βn|t|n

n!
, t ∈ R. (1)
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Moreover, it is known, that the factor 1/n! on the right-hand side of (1) cannot
be made less. However, it does not mean that (1) cannot be sharpened. Indeed,
H. Prawitz [1] showed that∣∣∣∣EeitX − n−1∑

k=0

αk(it)k

k!

∣∣∣∣ 6 n|αn|+ (n+ 2)βn
2(n+ 1)

· |t|
n

n!
6
βn|t|n

n!
.

Here we present an even sharper result.
Theorem 1. For any random variable X such that E|X|n <∞ with some

integer n > 1, for all t ∈ R and 0 6 λ < 1/2 we have∣∣∣∣EeitX − n−1∑
k=0

αk(it)k

k!
− λ

n!
αn(it)n

∣∣∣∣ 6 qn(λ)

n!
βn|t|n, where

qn(λ) = n! sup
x>0

x−n
∣∣∣∣eix − n−1∑

k=0

(ix)k

k!
− λ (ix)n

n!

∣∣∣∣, 0 6 λ <
1

2
.

Corollary 1. For any random variable X such that E|X|n <∞ with some
integer n > 1 for all t ∈ R we have∣∣∣∣EeitX − n−1∑

k=0

αk(it)k

k!

∣∣∣∣ 6 inf
06λ<1/2

(
λ
|αn|
βn

+ qn(λ)

)
βn|t|n

n!
,

for n = 3 the equality is attained for any t ∈ R at some symmetric tree-point
distribution with an atom at zero.

In particular, qn(0) = 1, and, as it follows from [1],

qn(λ) =
n+ 2

2(n+ 1)
for λ =

n

2(n+ 1)
.

Moreover, it can be made sure that q1(b) > q1(0.311 . . .) = 0.7246 . . . , q2(b) >
q2(4/π2) = 2/π = 0.6366 . . . , q3(b) > q3(0.446 . . .) = 6 ·0.0991 . . . = 0.5949 . . . ,
and that the supremums in qn(λ) for n = 1, 2, 3 are attained at the points
x = xn(λ) such that x1(λ) = 0, if λ 6 1/4; x2(λ) = 0, if λ 6 1/3; x3(λ) = 0,
if λ 6 3/8; and, otherwise, xn(λ) are the unique roots of the equations

(2− λx2) cosx+ (1 + λ)x sinx− 2 = 0, n = 1,

x(8− λx2) sinx+ 4(λx2 + x2 − 4) sin2 x

2
− 4x2 = 0, n = 2,

2(λx4−18x2 +36) cosx−6x(x2(λ+1)−12) sinx− (3−4λ)x4−72 = 0, n = 3,

in the interval x ∈ (0, 2π).
As it follows from the Jensen inequality, |αn|/βn 6 1, but in some particular

cases, even sharper estimates can be obtained. For example, for n = 3 the
following statement holds.
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Theorem 2. For any b > 1 and any random variable X with EX = 0,
EX2 = 1, and E|X|3 = b we have

EX3 6 A (b)E|X|3, where A(b) =

√
1

2

√
1 + 8b−2 +

1

2
− 2b−2,

with an inequality attained at the two-point distribution

P

(
X =

1

2

(
b±

√
b2 + 4

))
=

2 + b
2

(
b∓
√
b2 + 4

)
b2 + 4

.

Note that the function A(b), b > 1, increases monotonically varying within
the limits 0 = A(1) 6 A(b) < lim

b→∞
A(b) = 1.

Theorem 3. For any random variable X with EX = 0, EX2 = 1,
b ≡ E|X|3 <∞, and the characteristic function f(t) = EeitX , for all t ∈ R
we have

|E sin tX| 6 (1 +A(b))b|t|3/12,∣∣f(t)− 1 + t2/2
∣∣ 6 bγ3(b)t3,∣∣f ′(t) + t

∣∣ 6 bγ2(b)t2,∣∣f ′′(t) + 1
∣∣ 6 bγ1(b)t,

|f ′′(t) + f(t)| 6 2 sin (min {bt, π} /2) ,

where

γk(b) =
1

k!
inf

06λ<1/2
(λA(b) + qk(λ)), k = 1, 2, 3,

the function A(b) being defined in Theorem 2. If EX3 = 0, then one can assign
A(b) ≡ 0.
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On the absolute constants
in the Berry–Esseen-type inequalities

Irina Shevtsova 1

1Moscow State University, Russia, ishevtsova@cs.msu.su

Let X1, . . . , Xn be independent random variables such that

EXj = 0, EX2
j = σ2

j , E|Xj |3 = β3, j <∞, j = 1, 2, . . . , n,

n∑
j=1

σ2
j = 1.

Denote

`n =

n∑
j=1

β3, j , τn =

n∑
j=1

σ3
j ,

∆n = sup
x

∣∣P(X1 + . . .+Xn < x)− Φ(x)
∣∣, n = 1, 2, . . . ,

Φ(x) being the standard normal distribution function. It is easy to verify that
under the above assumptions for any n > 1 we have `n > τn > n−1/2. Using
new estimates for characteristic functions presented in [7, 8], as well as the
asymptotic estimates from [4, 5, 6] we prove that under the above conditions
for all n > 1 the following inequalities hold.
In the general case:

∆n 6 0.39885(`n + 0.4τn) 6 0.5584`n,

∆n 6 0.36266(`n + 0.54τn) 6 0.5585`n,

∆n 6 0.3129(`n + 0.922τn);

in the i.i.d. case:

∆n 6 0.4693`n,

∆n 6 0.3322(`n + 0.429τn) 6 0.3355(`n + 0.415τn) 6 0.4748`n,

∆n 6 0.3031(`n + 0.646τn) 6 0.3351(`n + 0.489τn);

in the non-i.i.d. case for symmetrically distributed summands:

∆n 6 0.5582`n,

∆n 6 0.3425(`n + 0.63τn) 6 0.5583`n,

∆n 6 0.2895(`n + τn) 6 0.5584`n;

in the i.i.d. case for symmetrically distributed summands:

∆n 6 0.29489(`n + 0.587τn) 6 0.4680`n,

∆n 6 0.2730(`n + 0.732τn).
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These inequalities improve those obtained in [1, 2, 3, 9].
This research was supported by the Russian Foundation for Basic Re-
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Structural improvements of non-uniform convergence
rate estimates in the central limit theorem for sums of

independent random variables
Irina Shevtsova 1

1Moscow State University, Russia, ishevtsova@cs.msu.su

Let X1, . . . , Xn be independent random variables such that

EXj = 0, EX2
j = σ2

j , E|Xj |3 = β3, j <∞, j = 1, 2, . . . , n,

n∑
j=1

σ2
j = 1.

Denote

`n =

n∑
j=1

β3, j , τn =

n∑
j=1

σ3
j ,

∆n(x) =
∣∣P(X1 + . . .+Xn < x)− Φ(x)

∣∣, n = 1, 2, . . . ,

Φ(x) being the standard normal distribution function. It is easy to verify that
under the above assumptions for any n > 1 we have `n > τn > n−1/2. Us-
ing new uniform estimates presented in [5], we prove that under the above
conditions the following inequalities hold for all n > 1:

sup
x∈R
|x|3∆n(x) 6


21.31`n,
19.46(`n + 0.4τn),
17.95(`n + 0.922τn),

(1)

sup
x∈R

(
1 + |x|3

)
∆n(x) 6


21.87`n,
19.85(`n + 0.4τn),
18.27(`n + 0.922τn)

(2)

in the general case, and

sup
x∈R
|x|3∆n(x) 6


16.90`n,
15.62(`n + 0.429τn),
15.36(`n + 0.646τn),

(3)

sup
x∈R

(
1 + |x|3

)
∆n(x) 6


17.37`n,
15.96(`n + 0.429τn),
15.66(`n + 0.646τn)

(4)

in the i.i.d. case. Moreover, the most exact estimate among the three estimates
for each of the four quantities under consideration is given by the first inequal-
ity, if b ≡ `n/τn 6 b1, by the second inequality — if b1 6 b 6 b2, and by the
third one — if b > b2, where approximately

b1 = 4.2, b2 = 5.8, in (1),
b1 = 3.9, b2 = 5.6, in (2),
b1 = 5.2, b2 = 12.2, in (3),
b1 = 4.8, b2 = 11.2, in (4).
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The presented results improve those obtained in [2, 3, 4].
Furthermore, it is shown that the absolute constant C in the estimates like

sup
x∈R
|x|3∆n(x) 6 C`n,

can be replaced by a non-increasing function C(x), given in the explicit form,
such that for all n > 1 and x > 0

sup
|t|>x

|t|3∆n(t) 6 C(x)`n.

Moreover, the function C(x) is optimal in the asymptotical sense, i.e. it’s limit
value

lim
x→∞

C(x) = 1

can not be made less (see [1]). Some particular values of C(x) are presented
below:

non-i.i.d.case: C(4) 6 17.05, C(7) 6 7.53, C(10) 6 4.65, C(30) 6 1.79,

i.i.d.case: C(4) 6 14.50, C(7) 6 7.47, C(10) 6 4.64, C(30) 6 1.79.
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Investigation of harmonics of Fourier spectra of
non-Gaussian processes of structural plasma turbulence

N. N. Skvortsova 1, V. Yu. Korolev 2, A. K. Gorshenin 3,
D. V. Malakhov 1

1A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Russia
2Faculty of Computational Mathematics and Cybernetics, Moscow State University;
Institute of Informatics Problems, Russian Academy of Sciences, Russia
3Institute of Informatics Problems, Russian Academy of Sciences, Russia,
agorshenin@ipiran.ru

Spectral analysis is one of the most powerful tools for experimental data
processing in different fields including investigation of plasma turbulence. To
separate the parameters of the spectrum obtained by spectrometers, spec-
trograph or by the estimating of ADC’s (Analog-to-digital converter) sample,
spectrum should be decomposed into the components. The problem is ill-posed
because of incomplete data. Moreover, it has the unique solution only under ad-
ditional assumptions about the fine structure of the modelled object [1, 2]. Also
it is impossible to obtain important spectral information about the functioning
of plasma turbulence by the traditional approach implying spectrum’s approx-
imation by Kolmogorov-Obukhov model or shot (fluctuation) noise model.

Figure 1: Spectrum decomposition.

In the last decade strong structural state of the low-frequency turbulence
were found during studies of low-frequency (100 MHz) plasma fluctuations [3].
This state appears in a stationary plasma in an open thermodynamic system

75



XXX International Seminar on Stability Problems for Stochastic Models

with a constant inflow and outflow of energy as a result of transient processes:
the growth and saturation of instabilities and appearance of stochastic plasma
structures. The turbulence is successfully described by a mathematical model
based on compound Cox process [4].

By analyzing of the increments of plasma fluctuations, the number of pro-
cesses, which form the initial ion-acoustic turbulence, has been revealed [5].
The next step of investigation should be based on analysis of the spectra, since
it allows to identify the type of instability, mechanism of the functioning of
turbulence, the proportion of ion-acoustic solitons and drift vortices.

The idea and methodology of such analysis are suggested in [6]. Example
of spectrum’s decomposition into the components is shown in fig. 1.
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Recurrent sequence of parallel-parallel-serial connections

Gurami Tsitsiashvili 1, Marina Osipova 2, Natalya Markova 3

1Institute of Applied Mathematics, FEB RAS, Vladivostok, Russia,
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In the reliability theory parallel-serial connections play important role.
These connections are widely used in electrotechnics, in computer networks
etc. A specific of these connections is a possibility to calculate their reliability
by algorithms with linear complexity by a number of arcs.

Characteristics of networks sparseness arouse large interest last years. Net-
work sparseness means that powers of nodes (a number of incident arcs) is
bounded by some positive number (see Raigorodsky [1] and large bibliogra-
phy in this article). Simultaneously a distribution of numbers of connectivity
components in different random networks are analyzed intensively now Tima-
shev [2].

Stochastic modeling and statistical processing of internet type networks
data showed that nodes powers have distribution with heavy tails. This cir-
cumstance makes actual to consider parallel-serial connections which are free
of this lack. In this paper numbers of connectivity components in recurrent
sequence of connections obtained by parallel or serial linking of new arc are
considered. For this sequence central limit theorem is proved and parameters
of limit normal distribution are calculated.

A problem to calculate a mean and mainly a variance of limit normal
distribution in this model is technically sufficiently complicated. Convenient
algorithm of such symbolic calculations based on a combination of central
limit theorem for discrete Markov chains Romanovskiy [3] and some relations
for conditional means of numbers of connectivity components in parallel-serial
connections is constructed.

Consider the sequence An, n ≥ 1, of ports defined recursively by serial or
parallel connection of new arc bn to the port An. Denote a type of connection
by || or→, accordingly. Suppose that random variable ωn characterizes a type
of the arc bn connection to the port An and put

π→ = P (ωn =→), π|| = P (ωn = ||) = 1− π→, 0 < π→ < 1.

Here random variable βn characterizes a state of the arc bn :

P (βn = 1) = P (bn in working state) = p, P (βn = 0) = 1− p = q, 0 < p < 1.

The sequences of random variables {ωn, n > 1}, {βn, n > 1} are independent
and each of them consists of independent and identically distributed random
variables.
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The portAn with randomly working arcs is characterized by random vector
(αn, ηn), there αn is an indicator of a connectivity between initial and final
nodes of parallel-sequential connection An and ηn is a number of connectivity
components in An. Then for any real t

P

(
ηn − nA√

Bn
> t

)
→ P (N(0, 1) > t), n→∞

where N(0, 1) is standard normal random variable and

A = Qπ→q, B = π→qQ(1− π→qQ+ 2PQ).

The parameters A,B calculation is based on the following equalities. Denote

An = M (ηn|an = 1) , Bn = M (ηn|an = 0) , P =
π‖p

π‖p+ π→q
, Q = 1− P

A′n = M
(
η2
n|an = 1

)
, B′n = M

(
η2
n|an = 0

)
then

An+1 =
1

P

(
AnPπ→p+AnPπ‖p+ (Bn − 1)Qπ‖p+AnPπ‖q

)
,

Bn+1 =
1

Q

(
BnQπ→p+ (An + 1)Pπ→q + (Bn + 1)Qπ→q +BnQπ‖q

)
,

A′n+1 =
1

P

(
A′nPπ→p+A′nPπ‖p+ (B′n − 2Bn + 1)Qπ‖p+A′nPπ‖q

)
,

B′n+1 =
1

Q

(
B′nQπ→p+ (A′n + 2An + 1)Pπ→q + (B′n + 2Bn + 1)Qπ→q+

+B′nQπ‖q
)
.
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Some characterizations of symmetry

Nikolai Ushakov, Anastasia Ushakova 1

1Norwegian University of Science and Technology, Norway, ushakov@math.ntnu.no

Braverman [1] obtained the following characterization of symmetry about
the origin. Let X and Y be independent and identically distributed random
variables, and let 0 < p < 2. Then X is symmetric about 0 if and only if

E|X − Y |p = E|X + Y |p.

Some extentions of this result were obtained in Ushakov [2] and Ushakov [3].
In this work, we present some characterizations (of similar form) of general
symmetry (symmetry about an arbitrary point).

Denote a median of the random variable X by m(X). If X and Y have the

same distribution, we denote this by X
d
= Y . The random variable X is called

to be symmetric if there exists a real number c such that

X − c d
= −(X − c).

Let X and Y be independent and identically distributed random variables.
Theorem 1. Let 0 < p < 2, and E|X|p <∞. Then X is symmetric if and

only if

E|X − Y |p = E|X + Y − 2m(X)|p. (1)

If the expectation of X exists, then we can formulate the characterization
in terms of the expectation rather than in terms of the median.

Theorem 2. Let 0 < p < 2, and E|X|max{1,p} <∞. Then X is symmetric
if and only if

E|X − Y |p = E|X + Y − 2EX|p. (2)

Consider now moments of order 2 < p < 4. It turns out that a character-
ization analogous to Theorem 2 still holds in this case but a characterization
analogous to Theorem 1 does not.

Theorem 3. Let 2 < p < 4, and E|X|p <∞. Then X is symmetric if and
only if

E|X − Y |p = E|X + Y − 2EX|p.

In contrast to the case 0 < p < 2, where characterizations both in terms
of the median and in terms of the expectation hold, in the case 2 < p < 4 the
characterization in terms of the median does not hold. This follows from the
following

Proposition 1. For any 2 < p < 4 there exist independent and identically
distributed random variables X and Y which are nonsymmetric but

E|X − Y |p = E|X + Y − 2m(X)|p.
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In the case p > 4 neither characterization (1) nor characterization (2) holds.
This follows from

Proposition 2. For any p > 4, there exist
(a) nonsymmetric independent and identically distributed random variables

X and Y such that m(X) = 0, and E|X − Y |p = E|X + Y |p,
(b) nonsymmetric independent and identically distributed random variables

X and Y such that EX = 0, and E|X − Y |p = E|X + Y |p.
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Multivariate geometric random sums and their
asymptotic distributions
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In this report, we use multivariate geometric distribution to generalize the
notion of geometric random sum to the multidimensional case. To date have
been studied limit distributions, which approximate the geometric sum in the
form

M∑
j=1

X(j),

where X(j) =
(
X

(j)
1 , . . . , X

(j)
k

)
are independent k-dimensional random vec-

tors, M is a random variable with geometric distribution; M and X(j) (j =
1, 2, . . . ) are independent. Note that the number of terms will be the same for
each component.

In this paper we consider the more general case. The number of random
variables Mj (j = 1, . . . , k) will be different for each component, while values
of Mj will be independent.

Let E = {ε} is a set of k−dimensional indices; ε = (ε1, . . . , εk) and each
component of εi is 0 or 1; Eν is a set of k−dimensional indices for which εν = 1.
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Nε are independent geometrically distributed random variables:

P (Nε = k) = pεq
k−1
ε , k = 1, 2, . . . qε = 1− pε.

Let Nε =∞ with pε = 0.
Let

Mν = min
ε∈Eν

{Nε} , ν = 1, . . . , k

The distribution of the vector M = (M1, . . . , Mk) is introduced and stud-
ied by the authors (currently in print) and is called multivariate geometric
distribution (MVG). Multivariate geometric distribution has properties simi-
lar to those of one-dimensional geometrical laws.

Multivariate geometric random sum is called a random vector sum of the
form

Z = (Z1, . . . , Zk) =

(
M1∑
j=1

X
(j)
1 , . . . ,

Mk∑
j=1

X
(j)
k

)
,

where Mν are defined above, X
(j)
ν (ν = 1, . . . , k) are independent random vari-

ables identically distributed for each ν with the known characteristic function

E ei tν Xν = φν(tν),

and values Mν and X
(j)
ν are independent.

Multivariate geometric random sums include the two extreme cases.
With Mν = N1 (ν = 1, . . . , k), Nε = 0, ε 6= 1, we obtain the standard

geometric sums.
With Mν = Nεν , where εν = (0, . . . , 0, 1

ν
, 0, . . . , 0), Nε = 0, ε 6=

Eν , (ν = 1, . . . , k), each component will be a univariate geometric random sum
while components themselves are independent.

The characteristic functions of multivariate random sums are found as
well as their projections on an arbitrary coordinate hyperplane. The sufficient
conditions for weak convergence of these sums to the multivariate exponential
distribution and to the generalized multivariate Laplace distribution are given.

It is shown that the limit distributions of Z by the corresponding normal-
ization can be:
— multivariate exponential distribution introduced by Marshall and Olkin
(A multivariate exponential distribution. Y. Amer. Statist. Assoc., 1967, 62,
30-34);
— multivariate generalized Laplace distribution introduced earlier by the au-
thors (Zolotukhin I.V., Zolotukhina L.A. New Class of Multivariate generalized
Laplace Distributions. XXIV International Seminar on Stability Problems for
Stochastic Models).
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Minimax estimation in regression under sum polygon
generated constraint

Andrey Borisov, Alexey Bosov 1
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Minimax approach gives one of the prospective tools to solve the estimation
problems in the regression under the observation model uncertainty. Usually,
the uncertainty set is determined by available prior information, and described
by the geometric constraints to the uncertain factors [4] and/or statistical
constraints to their distribution [1,2]. In [3] there was an attempt to measure
a relevance between the uncertainty and realized observations, and construct
an additional uncertainty constraint. The considered relevance index was based
on the likelihood function.

The aim of this paper is to solve the minimax estimation problem under the
relevance constraint based on the sum polygon of the available observations.

Let us consider the following observation model:

Yn = A(γ) +B(γ)Vn, n = 1, N. (1)

Here γ ∈ C ⊆ B(Rm) is an unobservable estimated vector (C is a compact
set), Y , {Yn}n=1,N is a vector of observations and V , {Vn}n=1,N is a
random vector of i.i.d. centered normalized observation errors with the known
pdf ϕV (v). The vector γ is supposed to be random with unknown distribution
F , belonging to the set FK of admissible distributions described below.

The model (1) is defined on the family of the canonical spaces
{(Ω,F ,PF )}F∈F, where Ω , C × RN , F , B(C × RN ), PF {γ ∈ dq, V1 ∈
dv1, . . . , VN ∈ dvN} , F (dq)

∏N
n=1 ϕV (vn)dvn.

Given the value γ the observations Y can be considered as i.i.d. random
values, which pdf is equal to ϕV (v) after some shifting and scaling. The sum
polygon of this sample has the form PN (y, Y ) , 1

N

∑N
t=1 I(y − Yn). On the

other hand, the cdf of any observation Yn for a fixed distribution F can be
calculated as P (y, F ) ,

∫ y
−∞ ϕV (u−A(q)

B(q)
)F (du).
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The relevance index based on the sum polygon is the following value

K(Y, F ) , ‖PN − P‖∞ = sup
y∈R
|PN (y, Y )− P (y, F )|. (2)

The index presents the well-known Kolmogorov statistic (distance) used in the
goodness-of-fit test.

Let F be a set of all probability distributions with the support lying in C.
We suppose the set FK of admissible distributions is some nonempty convex
∗-weakly compact subset of F with an additional constraint generated by the
sum polygon of the level K:

K(Y, F ) 6 K (3)

for all F ∈ FK and some fixed level K > 0.
The estimated signal is a known continuous function h(γ) : C×Rm → R` of

γ, such that maxq∈C ‖h(q)‖ <∞, and the set H of admissible estimates consists
of all functions h(Y ) : RN → Rl, such that supF∈F EF

{
‖h(Y )‖2

}
<∞.

The loss function is a conditional mean square estimation error

J(h, F |y) , EF

{
‖h(γ,X)− h(Y )‖2|Y = y

}
, (4)

and the guaranteeing estimation criterion

J∗(h|y) , sup
F∈FK

J(h, F |y) (5)

characterizes the maximal loss for a fixed estimator h and observations Y = y.
The minimax estimation problem for the vector h is to find an estimator

ĥ(·), such that

ĥ(y) ∈ Argmin
h∈H

J∗(h|y). (6)

Using the notation ĝF (y) , EF {g(γ)|Y = y} for the conditional expecta-
tion, we introduce the dual criterion

J∗(F |y) , ‖̂h‖2
F

(y)− ‖ĥF (y)‖2 (7)

and the dual optimization problem

F̂ (y) ∈ Argmax
F∈FK

J∗(F |y). (8)

Theorem 1. The loss function J(h, F |y) has a saddle point (F̂ (y), ĥ(y))

on the set FK ×H: the least favorable distribution (LFD) F̂ (y) is a solution to

a dual problem (8), and ĥ(y) = ĥ(γ)
F̂

(y) is a conditional expectation of h(γ)

given the observation Y = y calculated under the LFD F̂ (y).

The ĥ(y) provides a solution to (6); it is invariant w.r.t. the LFD’s choice:

if F̂ ′(y) and F̂ ′′(y) are two different LFD, then ĥ(γ)
F̂ ′

(y) = ĥ(γ)
F̂ ′′

(y).

There exists a variant of the LFD F̂ (y) concentrated at most at `+2 points
of the set C.
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Effective bandwidth estimation in fluid system with
regenerative input

Alexandra Borodina 1, Evsey Morozov 2
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The Effective Bandwidth (EB) estimation attracts an increasing attention
nowadays. The EB is a powerful metric which is used in admission control to
satisfy QoS requirements in communication networks, in particular concerning
the loss probability and packet delay [1].

We consider a buffered fluid queue with a positive recurrent regenerative
input and an unknown constant service rate C. The EB problem is to find a
minimal rate C which ensures a given value Γ of the overflow/loss probability.
Based on large deviation theory [1, 2] we then use an exponential approxima-
tion

P (W > b) � e−θ
∗b, b→∞,

where W is stationary workload, to find unknown exponent θ∗ of the approxi-
mation as θ∗ = − ln Γ/b. (Notation � stands for the logarithmic asymptotics.)
Finally, the scaled limiting cumulant generating function Λ(θ∗) of the input
process is calculated to obtain required rate C as

C =
Λ(θ∗)

θ∗
.

With the exception of the simplest cases (for instance, Poisson input), an
analytical form of function Λ is not available, and simulation is used in order
to determine C.

In this work we establish the strong consistency of a new regenerative
EB estimator Λ̂n(θ∗) based on n observations of the input (and under some
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moment assumptions excluding heavy-tailed distributions). Namely, we show
that with probability 1,

Λ̂n(θ∗)→ lnEeθ
∗X

Eα
, n→∞,

where X is the amount of the workload arrived during regeneration cycle and
α is the regeneration period. (Earlier this result as a lower bound has been
established in [4].) Note that Eα <∞ by positive recurrence. The key element
of the analysis is the strong invariance principle for renewal process formed by
regenerations of the input [3]. Simulations illustrate properties of the estimator
for various regenerative inputs.

The work is done in the framework of the Strategic development program
of Petrozavodsk State University, and also supported by RFBR, project 10-
07-00017.
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Performance analysis of a holographic Walsh-Hadamard
Transformation based binary files encoding

Shlomi Dolev 1, Sergey Frenkel 2
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Walsh-Hadamard tramsformation (WHT) (and WHT-based codes) of digi-
tal random sequences is used widely in many computer science and data trans-
mission areas, for example, for image data transmission. Recently we proposed
(S.Dolev and S.Frenkel (2010)) a method which combines the Walsh-Hadamard
transformation (WHT) with randomizing of the original data (files, images)
by xoring with randomly chosen bits from random data that have been stored
during a preprocessing stage. As it was shown, this model can be interpreted
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as a holographic one. It is ’holographic’ because any portion of holographic
coded information (which is any subset of corresponding codewords)represents
a blurred image of the entire data. We consider the Hamming distance between
original and reconstructed binary files as a ‘blurreness’ measure.

In this presentation we suggest a performance model for reconstruction
a binary sequence from a truncated WH series. In order to estimate the
performance of the method we consider the theoretic Shannon bound R =
−Dlog2(D)−(1−0.D)log2(1−D), where D is the fraction (probability) of the
correctly reconstructed bits and R is the number of bits per symbol transmit-
ted. For example, if the symbol is one bit, and D = 1/2, then R = 1, implying
that each transmitted bit has to be known (considered) explicitly.

The Walsh-Hadamard transformation is based on a complete set of or-
thogonal functions. That is, if b = (b1, b2, . . . , bm) is a binary file (a binary
sequence, or a binary vector), then n-character encoding of the file b can
be represented as cT = WT b, where c = (c1, . . . , cn), c = 2k, k is an in-
teger, are the Walsh-Hadamard coefficients. These orthogonal functions use
only the values 1 or −1. More detailed, the spectral coefficients of WHT are
ch = (1/n)

∑n−1
i=0 biW (h, i), and the inverse transform is bi =

∑n−1
h=0 ciW (h, i).

Let b = b0, b2 . . . , bn−1 be an uncorrelated (”‘white-noise’-like”) sequence
of n bits (generating by xoring mentioned above), where n is a power of two
integer, and, due to the uncorrelation, Prob(bi = 1)=Prob(bi = 0)=1/2.

Let us we use for the original sequence reconstruction only l � n WHT
coefficients c1, . . . , cl. In this case, we can estimate each bit bi of the ran-
domized sequence b by WHT mentioned above as b̂i = b̃i + ei(l), where
b̃i =

∑l
j=0 cjW (j, i), and ei(l) =

∑n−1
q=l+1 cqW (q, i).

Our goal is to compute a metric that captures the difference of the bits bi
and b̃i. The result may depend on the coefficients we choose for reconstruction,
in dependency on the application requirements. Each coefficient ci is transmit-
ted/stored with its index i in the WHT matrix, namely the pairs (ci; i) are
stored as the representation of the data. We may consider various ways of the
l choice, for example, either random choice of l coefficients (which can be rea-
sonable, say, for distributed communication channels), or using first greatest l
coefficients. We grouned why the latter way is more reasonabile. Inverse WHT
with partial sums may result in non-binary values, that differ from binary
domain of original sequence. Therefore, the reconstruction metric should be
considered along with a decision rule mapping each value to a corresponding
binary value. We suggest to round the values to the closest value in the field
during the decoding process.

The reconstructed estimation of a bit bi = round(b̂i), where b̂i is the esti-
mation of the i-th value before rounding, computed by a partial sum of inverse
WHT, is determined by the following random events:

e0 : (bi = 0), e1 : (bi = 1), that is the bit bi of randomized file F is 0 (event
e0) or 1 (event e1), vi0 : b̃i ≤ 1/2, vi1 : b̃i ≥ 1/2, (defined on the space of the
rational values b̃i).
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Let Prerr=0(i) be the probability that the actually zero bit bi was erro-
neously reconstructed as bi = 1, and Prerr=1(i) be the probability that the
bit bi = 1 was erroneously reconstructed as bi = 0.

Both the probabilities Prob(vi0), Prob(vi1) are the probabilities of the
partial sums mentioned above that have a value that can be estimated to be
close to 1/2. Formally, in order to estimate error of the sequence reconstruction
by truncated number of coefficients we should know both joint and marginal
distributions both the sum of l terms of the WHT Sl =

∑l
j=0 cjW (j, i)) and

sum of residue SR =
∑N
j=n−l+1 cjW (j, i). Then, taking into account that the

sum Sl + SR is an exact value bi = 0 or 1, we could characterize the error
probability by the Prob(Sl ≥ Tr/Sl + SR = 0), Prob(Sl ≤ Tr/Sl + SR = 1).
In accordance with Theorem 6.4 in P. A. Morettin (1981), WHT coefficients are
distributed (asymptotically) as some independent normal random values with
zero mean and dispersion of n×f(i), where i is the WHT coefficient index and
f(i) is the (dyadic) spectral density of b. Note, that there is an ambiguity in
the definition of choice of l largest coefficients if there exist pair of coefficients
ci, cj , such that abs(ci) = abs(cj). It is possible to use an identification of all
WHT coefficients indexes that contribute significantly to the binary sequences
energy, that is the sum of the sequence of Boolean ones.
Acknowledgment. The second author has partially been supported by the
Russian Foundation for Basic Research under grant RFBR No. 12-07-00109.

References

1.

2. S. Dolev, S. Frenkel. A way of coding and decoding of digital data
based on digital holograpphy principles. Patent of Russian Federation
2010145892/08(066164) of 11.11.2010.

3. P. A. Morettin. Walsh Spectral Analysis. SIAM Review, vol. 23, pp. 277-
291, 1981.

Analysis of M/G/1 queue with hysteretic load control
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Overload control is critical in preventing congestion in modern switching
networks. A simple and intuitively appealing technique to detect congestion
is a queue-length threshold. Such a mechanism is hysteretic control which
is proposed to use by IETF (Internet Engeneering Task Force) to prevent
overload in SIP (Session Initiation Protocol) signalling networks [1-4].
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We consider a variant of hysteretic load control mechanism with three
thresholds – congestion onset threshold H, congestion abatement threshold
L and load discard threshold R (fig. 1). The mechanism functions as follows:
when the buffer occupancy exceeds threshold H, congestion is detected and
load is reduced to avoid overloading. To avoid oscillations between functioning
modes load is not recovered immediately after buffer occupancy is decreased
to H, but only when it falls to threshold L. Similarly, if buffer occupancy
in congested mode reaches threshold R the load is discarded and recovers to
congested mode value only when it falls below H.

Figure 1: Hysteretic load control.

To obtain more general results we describe the system behavior in terms
of M2|G|1|〈L,H〉|〈H,R〉 queue. Similar model with just two thresholds and
infinite queue size (R = ∞) is analysed by Roughan and Pearce [5] using
a martingale technique. For our model we provide a system of equations for
steady-state probability distribution using Markov renewal processes technique
as described in [6]. In addition, we derive formulas and get numerical results
for several system characterestics that are of interest considering hysteretic
load control mechanism:

• the probability that the system is in congestion mode;

• the probability that the system is in discard mode;

• the average control cycle time;

• the average time spent in congestion and discard modes.

Acknowledgements. This work was supported in part by the Russian
Foundation for Basic Research (grants 10-07-00487 and 12-07-00108).
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Some conditions of adaptive strategies existence

Mikhail Konovalov 1

1Institute of Informatics Problems RAS, Russia, mkonovalov@ipiran.ru

Adaptive strategy is considered as a controlling algorithm which achieves
the goal while interacting with arbitrary object from the given class. There
are many constructions of such algorithms as well as many mathematical re-
sults that state their optimality. Similar results are nothing else than sufficient
conditions of adaptive strategy existence. This report is aimed to make some
remarks about necessary conditions of adaptive controllability in the indicated
area.

The mathematical model exploits the discrete time “subject-object inter-
action“ scheme. Here the “object“ is given as the sequence of controllable
conditional distributions which define state transitions and the ”subject” is
associated with the strategy – that is a sequence of conditional probabilities,
which sets the rules of control choice at each point of time. As the strategy
is adapted to the object with a priori unknown characteristics so it should
“learn“ itself in-control basing on the observable part of object prehistory.
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Naturally no “irreparable destroying faults“ may be done in process of train-
ing. The requirement of “learning without destruction“ ability is a base for the
first type of necessary existence conditions. Another idea is not so obvious and
consists in the presence of not more as countable set of “variants“ from which
the optimal one can be selected for arbitrary object from the given class.

The report contains several examples illustrating necessary conditions and
the theorem presenting the criteria of adaptive strategy existence for special
class of random controllable sequences. The proof of the theorem uses so called
“adaptive enumeration strategy“ [1]. The full text of the report is about to be
published in the scientific journal “Systems and Means of Informatics“.
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Stationary waiting time distribution in Markov queueing
system with ordinary and negative customers, bunker
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Consideration is given to single-line queueing system with Poisson incoming
flow of customers. Henceforth these customers are called ordinary. For ordinary
customers, there is buffer with infinite capacity. Besides ordinary customers,
Poisson stream of negative customers enters the system. A negative customer
entering the system takes one ordinary customer from the end of the queue
in the buffer and transfers in into another queue (bunker) which also has
infinite capacity (negative customer itself leaves the system after making a
transfer). If there are no ordinary customers in the buffer at the moment when
a negative customer arrives at the system, then it leaves the system and does
not influence it in any way. The system chooses customers for servicing as
follows. After a customer has been serviced, server chooses for service the last
customer in the queue in the buffer. If the buffer is empty at the moment
of service completion, the customer, which is last standing in the queue in
the buffer, goes to server. The servicing process is not interrupted by either
ordinary or negative customers. Service times of customers from buffer and
bunker have exponential distribution but with different service rates.

This research continues the work begun in [1], which is devoted to analysis
of the same queueing system but with equal service rates for ordinary and
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negative customers. Introduction of unequal service rates results in serious
complication of the situation which, in turn, leads to the fact that the method
used in [1] cannot be applied. Therefore, new method was proposed that allows
one to find in terms of Laplace-Stieltjes transform stationary waiting time
distribution of an arriving ordinary customer and distribution of the busy
period of the considered system. Noteworthy, that LST of the busy period is
expressed as a functional equation which is impossible to invert as well as in
case of M |G|1 queueing system.

This work was partially supported by Russian Foundation for Basic Re-
search, project No 11-07-00112 and No 12-07-00108.
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Software tools for nonlinear Euclidian and multichannel circular stochastic
systems (CStS) analysis and filtering are described in [1-4]. The paper is
devoted to the corresponding software tools for spherical StS (SphStS) based
on equvalent statistical linearization.

Let us consider SphStS described by the following nonlinear Ito stochastic
differential Eqs:

Θ̇1 = ϕΘ
1 (Θ1,Θ2, X, t), Θ̇2 = ϕΘ

2 (Θ1,Θ2, X, t), (1)

Ẋ = ϕX(Θ1,Θ2, X, t) + ψX(Θ1,Θ2, X, t)V. (2)

Here Θ1, Θ2 being spherical scalar variables (SphV); X being linear vector
instrumental variable (LV); ϕΘ

i (Θ1,Θ2, X, t)(i = 1, 2) being scalar nonlinear
functions; ϕX(Θ1,Θ2, X, t) being vector nonlinear function; ψX(Θ1,Θ2, X, t)
being matrix nonlinear function; V being vector white noise (the derivative
of vector process with independent increments) with known matrix intensity
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ν(t). Using the (by mean square criteria) equivalent statistical linearization
(ESL) of nonlinear functions in Eqs (1), (2):

ϕ(Θ1,Θ2, X, t) = ϕ0 + kΘ1Θ0
1 + kΘ2Θ0

2 + kXX0, (3)

where ϕ0, k
Θ1 , kΘ2 , kX being coefficients of equivalent statistical linearization

depending on parametres equivalent probability LV and SphV density, we get
deterministic Eqs for mathematical expectations and quasilinear Eqs for cen-
tred SphV Θ0

i and LV X0. Then on the basis of linear StS theory [1,5] we get
variances and covariances deterministic Eqs for times t and t′ for off-line data
analysis. Using [5] for Eqs (1), (2) together with Eqs for observed SphV we
get corresponding Eqs for on-line quazilinear filtering.

Analogously discrete SphStS are considered. ”Wrapped” normal densities
for statistical linearization in state and filtering Eqs [1,5] are implemented.

The original software tools ”SphStS-filter” is instrumented in MATLAB
for nonlinear discrete and continuous SphStS. Its current experimental version
uses functions of MATLAB Symbolic Math toolbox and presents the set of
open program functions with numerical and graphic output.

Applications: statistical dynamics of inertial sensors based on spherical
pendulum and gyros [1,6-8].

The work is supported by Russian Foundation for Basic Research (Project
#10-07-00021).
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The heavy traffic limiting distribution of the waiting
time in a priority queue with hyperexponential input

stream

Andrey Ushakov 1

1Institute of Informatics Problems, Russia, ushakov@akado.ru

The sequence of the single server queues with hyperexponential input
stream and head-of-the-line priority discipline is considered. Entering cus-
tomers in n-th system are separated into r priority classes with probability
p

(n)
1 , . . . , p

(n)
r . Customers of i-th class have priority to customers of j-th class

if i < j. Service times are jointly independent random variables with distribu-
tion function B

(n)
i (x) for customers of i−th class,

β
(n)
i (s) =

∞∫
0

e−sxdB
(n)
i (x), β

(n)
ij =

∞∫
0

xjdB
(n)
i (x).

Let a(n)(x) =
N∑
j=1

c
(n)
j a

(n)
j exp

(
−a(n)

j x
)
, x > 0, a

(n)
i 6= a

(n)
j , i 6= j, c

(n)
j >

0,
N∑
i=1

c
(n)
i = 1, be the density of interarrival time, w(n)(t) – the virtual waiting

time for lowest priority class at time t in n-th system,

a(n) =

(
N∑
j=1

c
(n)
j

(
a

(n)
j

)−1
)−1

, ρ
(n)
k1 = a(n)·

k∑
i=1

p
(n)
i β

(n)
i1 , ρ

(n)
k2 = a(n)·

k∑
i=1

p
(n)
i β

(n)
i2 ,

ρ
(n)
k = 1−ρ(n)

k1 , ρ
(n) = ρ(n)

r , u(n) =
ρ

(n)
r2

2
+a(n)·

N∑
j=1

c
(n)
j

(
a

(n)
j

)−2

−
N∑
j=1

c
(n)
j

(
a

(n)
j

)−1

.

Assume that:

93



XXX International Seminar on Stability Problems for Stochastic Models

1)

β
(n)
i (s) = 1− β(n)

i1 s+
1

2
β

(n)
i2 s2 + on(s2),

where
on(s2)

s2
→ 0 as s→ 0;

2) for all n > 1 ρ
(n)
r1 < 1;

3) lim
n→∞

c
(n)
j = cj , lim

n→∞
a

(n)
j = aj , j = 1, . . . , N, lim

n→∞
β

(n)
ik = βik, k =

1, 2, i = 1, . . . , r, lim
n→∞

p
(n)
i = pi, i = 1, . . . , r, lim

n→∞
ρ

(n)
r−11 < 1, lim

n→∞
ρ

(n)
r1 =

1, lim
n→∞

u(n) = u.

Theorem.

lim
n→∞

P

((
ρ(n)

)δ
w(n)

(
t
(
ρ(n)

)−α)
< x

)
=

=



√
2π

√
2ut−1 k∫

0

e−
y2

2 dy, α < 2,

1− π−
1
2

e−2k

+∞∫
−
√

t
4u

+k·
√
u
t

e−y
2

dy +

+∞∫
√

t
4u

+k·
√
u
t

e−y
2

dy

 , α = 2,

1− e−2k, α > 2,

where

k =
ρr−1

2u
x, δ =

{ α

2
, α 6 2,

1, α > 2.
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Null ergodicity bounds for a class of queueing models
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Markov chain X = X(t), t ≥ 0 is called null ergodic, if Pr {X(t) = i} → 0
as t→∞ for any initial conditions and any i.
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Null ergodicity and related bounds for birth-death queueing models have
been studied from 1990-s, see for instance [1-4].

Here we consider null ergodicity for more general class of nonstationary
queueing systems with batch arrivals and group services.

Let X = X(t), t ≥ 0, be a number of customers in the queueing system
(0 6 X(t) <∞).

Denote by pij(s, t) = Pr {X(t) = j |X(s) = i}, i, j > 0, 0 ≤ s ≤ t and
by pi(t) = Pr {X(t) = i} the transition and state probabilities of X = X(t)
respectively.

We suppose that

Pr (X (t+ h) = j/X (t) = i) =

{
qij (t)h+ αij (t, h) if j 6= i

1−
∑
k 6=i

qik (t)h+ αi (t, h) if j = i,

where all αi(t, h) are o(h) uniformly in i, i. e. supi |αi(t, h)| = o(h).

We also suppose qi,i+k (t) = λk(t), qi+k,i (t) = µk(t) for any k > 0.

In other words, we will suppose that arrival rates λk(t) and service rates
µk(t) do not depend on the the length of queue. In addition, we assume that
λk+1(t) 6 λk(t) and µk+1(t) 6 µk(t) for any k and almost all t > 0.

Then under standard assumptions (see [4]) the probabilistic dynamics of
the process is represented by the forward Kolmogorov differential system:

dp

dt
= A(t)p(t),

where

A(t) =


a00(t) µ1(t) µ2(t) µ3(t) µ4(t) · · · µr(t) · · ·
λ1(t) a11(t) µ1(t) µ2(t) µ3(t) · · · µr−1(t) · · ·
λ2(t) λ1(t) a22(t) µ1(t) µ2(t) · · · µr−2(t) · · ·
· · ·
λr(t) λr−1(t) λr−2(t) · · · λ2(t) λ1(t) arr(t) · · ·
· · ·

 ,

where aii(t) = −
∑i
k=1 µk(t)−

∑∞
k=1 λk(t) and supi |aii(t)| <∞ for almost all

t > 0.

We denote throughout the paper by ‖ • ‖ the l1-norm, i. e. ‖x‖ =
∑
|xi|,

and ‖B‖ = supj
∑
i |bij | for B = (bij)

∞
i,j=0.

Let Ω be a set all stochastic vectors, i. e. l1 vectors with nonnegative
coordinates and unit norm.

Then we have ‖A(t)‖ 6 2
∑∞
k=1(λk(t) + µk(t)) for almost all t > 0. Hence

operator function A(t) from l1 into itself is bounded for almost all t > 0 and
locally integrable on [0;∞). Therefore we can consider (1) as a differential
equation in the space l1 with bounded operator.
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Consider a sequence of positive numbers {di}, i = 1, 2, . . . and put

ν(t) = inf
i>0

(
|aii(t)| −

i∑
k=1

di−k
di

µk(t)−
∞∑
k=1

di+k
di

λk(t)

)
.

Theorem 1. Let us assume that there exists a sequence of positive numbers
{dj} such that d−1 = d0 = 1, supi>1 di = d <∞, and

∞∫
0

ν(t) dt = +∞.

Then X (t) is null ergodic, and the following bound holds:

∞∑
i=0

dipi(t) 6 de−
∫ t
s ν(τ) dτ ,

for any 0 6 s 6 t and any n.

We also consider a class of such queueing systems and study their null
ergodicity.
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