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Survival Function Estimation in the Dependent Models
of Random Censorship

Abdurahim Abdushukurov

National University of Uzbekistan, Uzbekistan, a abdushukurov@rambler.ru

In survival analysis our interest focuses on a nonnegative random variables
(r.v.-s) denoting death times of biological organisms or failure times of me-
chanical systems. A difficulty in the analysis of survival data is the possibility
that the survival times can be subjected to random censoring by other nonneg-
ative r.v.-s and therefore we observe incomplete data. There are various types
of censoring mechanisms. In this article we consider only right censoring model
and problem of estimation of survival function (s.f.) when the survival times
and censoring times are dependent and propose new estimates of s.f. assuming
that the dependence structure is described by a known copula function.

Let’s consider{(Xk, Yk), k ≥ 1}− a sequence of independent and identically
distributed pairs of nonnegative r.v.-s with common joint s.f.H(x, y) = P (X1 >

x, Y1 > y) ,(x, y) ∈ R+2
, R

+2
= [0,∞]× [0,∞] . We suppose that the marginal

s.f-s SX(x) = P (X1 > x) and SY (y) = P (Y1 > y) are continuous and SX(0) =
SY (0) = 1 . Consider statistical model in which r.v.-s of interest (survival
times) {Xk, k ≥ 1} are censored on the right by r.v.-s {Yk, k ≥ 1} and at
n-th stage of the experiment the observation available the sample V(n) =
{(Zk, δk), 1 ≤ k ≤ n} , where Zk = min(Xk, Yk),δk = I(Zk = Xk) and I(A)
is the indicator of the event A . The problem is consist in estimating of the
s.f. SX by the sample V(n). Note that according to Sclar’s theorem jointly s.f.
H can be expressed through the appropriate survival copula function C as

H(x, y) = C(SX(x), SY (y)), (x, y) ∈ R+2
. In the sequel we assume that C is

Archimedean copula, i.e. C(u, v) = ϕ[−1][ϕ(u) + ϕ(v)] ,(u, v) ∈ [0, 1]2 , where

ϕ : [0, 1] → R
+

is some known generator function with the pseudo inverse
ϕ[−1]. In this article for the s.f. SX we consider a new estimator of the form

SXn = ϕ[−1][ϕ(SZn (x))
(−

∫ x
0 I(Jn(t)>0)ϕ′( Jn(t)

n
)dNn(t))

(−
∫ x
0 I(Jn(t)>0)ϕ′( Jn(t)

n
)dNZn (t))

],

where

SZn (x) = 1
n

∑n
k=1 I(Zk > x), Jn(x) = nSZn (x−),

ϕ(SZn (x)) = −
∫ x

0
I(Jn(t) > 0)[ϕ( Jn(t)

n
)− ϕ( Jn(t)

n
− 1

n
)]dNZn (t),

Nn(x) =
∑n
k=1 I(Zk ≤ x, δk = 1),NZn (x) = n(1− SZn (x)).

In some regularity conditions on s.f.-s SX , SZ and generator ϕ we prove the
consistency and asymptotically normality properties of estimator SXn . We note
that the estimator SXn is an extended variant of relative-risk power estimator
(RRPE) of Abdushukurov [1-4] in independent censoring model. Note that
RRPE have some good properties with respect to well known product-limit
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estimator of Kaplan-Meier (1958) and exponential-hazard estimator of Breslow
(1972).
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Unit root test with dependent errors

Lynda Atil 1, Hocine Fellag 2

1Mouloud Mammeri University, Algeria, atillynda@yahoo.fr
2Mouloud Mammeri University, Algeria, hfellag@yahoo.com

Introduction.
Following, Nelson and Plosser [4] the most popular classical unit root test

has been the Dickey-Fuller test. The Dickey-Fuller statistic is traditionally ob-
tained by estimating an autoregressive (AR) model by ordinary least squares
estimation OLS. However, it is argued that the OLS estimator is non robust
against additive outlier (AO). A test statistic based on this estimator might
therefore also be non robust (more of details see Fellag [1]).So, the outlier sen-
sitivity of the standard Dickey-Fuller statistic is caused by the non robustness
of the OLS estimator.
Franses and Haldrup [2] studied effects of additive outliers on unit root Dickey-
Fuller tests. They showed that there is over rejection of the unit root hypothesis
when additive outliers occur. Also, Shin and al. [5]investigated effects of out-
liers on unit root tests in an AR(1) and more. They proved that the limiting
distribution of the statistic of Dickey-Fuller is affected by an additive outlier.
Also, they proposed a method to detect outliers and to adjust the observa-
tions. Maddala and Rao [3] show that, when n goes to infinity the impacts of
finite additive outliers will go to zero.
In this work, the one sided unit root test of a first autoregressive model in
the presence of an additive outlier is considered. We study the behavior of the
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size and the power of the test when an additive outlier (AO) occurs at time k.
And then we consider an innovation outlier (IO). However, in the two cases,
we consider that the errors are not independent identically distributed (iid).

The model.

Consider a time series {xt} which follows the model

(1− ρB)xt = εt t = . . . ,−1, 0, 1, . . . , n

where {εt}t=1,...,n is an autoregressive process of order one satisfying

(1− φB)εt = ηt t = . . . ,−1, 0, 1, . . . , n

{ηt}t=1,...,n is a sequence of independent normally distributed random vari-
ables with mean zero and variance 1 and B denotes the backshift operator
such that Bxt = xt−1. We assume that x0 = 0.
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Change-point problems with Bayesian approach

Cherifa Belkacem 1, Hocine Fellag 2

1Faculty of Sciences, University Mouloud Mammeri of Tizi-Ouzou, Algeria,
belkacem-cherifa@mail.ummto.dz
2Faculty of Sciences, University Mouloud Mammeri of Tizi-Ouzou, Algeria,
hfellag@mail.ummto.dz

The problem of the Bayesian estimation of the change-point in independent
Gaussian samples is considered. The method of computation of the mode of the
posterior density is investigated. The impact of an outlier on the performance
of the Bayesian procedure is studied. Finally, two examples are given at the
end of this paper to illustrate the method proposed.

key words: Bayesian estimation, Change-point, Gaussian models, Outlier.
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On some problems related to the non-symmetric Laplace
distribution

Vladimir Bening 1, Victor Korolev 2

1Faculty of Computational Mathematics and Cybernetics, Moscow State University,
Russia
2Moscow State University; Institute for Informatics Problems, Russian Academy of
Sciences, Russia, vkorolev@cmc.msu.su

Here we give an example of a rather simple limit scheme which can be
used as a justification of the asymmetric Laplace distribution as an asymptotic
approximation.

Let a1 and a2 be two finite positive numbers. We say that a random variable
(r.v.) X has the asymmetric Laplace distribution, if its distribution function
has the form

GX(x) =


a1

a1 + a2
· ea2x, x ≤ 0

1− a2

a1 + a2
· e−a1x, x > 0.

(1)

It is easy to see that the density pX(x) corresponding to the distribution
function GX(x) has the form

pX(x) =


a1a2

a1 + a2
ea2x for x 6 0

a1a2

a1 + a2
e−a1x for x > 0.

The asymmetric Laplace distribution is a popular and widely used model, see,
e. g., [2], [1].

We show that this distribution appears as a limit in some limit theorems
for sums of a random number of independent identically distributed (i.i.d.)
random variables. Consider a double array {Xn,j , j = 1, 2, . . .}n>1 of row-wise
(i. e., for each n) i.i.d. r.v.’s. For an integer nonnegative k denote

Sn,k = Xn,1 + . . .+Xn,k (Sn,0 ≡ 0).

Let {Nn} be a sequence of integer-valued nonnegative r.v.’s. Assume that
for each n the r.v.’s Nn, Xn,1, Xn,2, . . . are independent. The symbol =⇒ will
denote weak convergence.

Theorem. Assume that there exist numbers µ ∈ R, σ2 ∈ (0,∞), λ ∈ (0,∞)
and a sequence of natural numbers {kn}n>1 such that

Sn,kn =⇒ X (n→∞), (2)

and
Nn
kn

=⇒ U (n→∞), (3)
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where the r.v. X has the normal distribution with expectation µ and variance
σ2 and the r.v. U has the exponential distribution with parameter λ. Then

Sn,Nn =⇒ Z (n→∞), (4)

where the r.v. Z has the asymmetric Laplace distribution (1) with parametrs

a1 =
1√

µ2 + 2λσ2 + µ
, a2 =

1√
µ2 + 2λσ2 − µ

.

We also consider some generalizations and statistical problems related to
the asymmetric Laplace distribution (1).

Acknowledgements. Supported by Russian Foundation for Basic Re-
search, projects 11-01-00515, 11-07-00112 and 11-01-12026-ofi-m and the Min-
istry for Science and Education of Russian Federation, state contracts P958,
P779 and 16.740.11.0133.
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Stability of Applied Stochastic Models

Ekaterina Bulinskaya 1

1Moscow State University, Russia, ebulinsk@mech.math.msu.su

In order to make decisions concerning the optimization of any system per-
formance under incomplete information, first of all, it is necessary to choose an
appropriate mathematical model (see, e.g., Bulinskaya [1]). The model must
be stable. Thus, one has to study the model sensitivity to small parameters
fluctuations and underlying processes perturbations. For this purpose it is
possible to use the local or global sensitivity analysis (see, e.g., Bulinskaya [2]
and references therein), as well as probability metrics technique (see, e.g.,
Zolotarev [3]). If the model is stable it can be employed to obtain the optimal
control, otherwise another model is validated.

We consider a class of input-output models arising in such applications as
insurance, finance, dams, inventory, biology and so on (see, e.g., Prabhu [4])
and establish their stability.

Then the following three-step algorithm is proposed for optimization under
incomplete information:

8
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1. Obtain the form of optimal control for any planning horizon under as-
sumption of known parameters and proceses distributions.

2. Find asymptotically optimal stationary policy in the same conditions.

3. Estimate unknown parameters and distributions on the base of previous
system observations and use them instead of exact ones.

This algorithm is implemented for several new dam models.

Acknowledgement. This research is partially supported by RFBR grant
10-01-00266.
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Local Particles Numbers in Branching Random Walk
on an Integer Lattice

Ekaterina Vl. Bulinskaya 1,

1Moscow State University, Russia, bulinskaya@yandex.ru

The model of branching random walk (BRW) on Zd with a single source of
branching has been investigated recently (see, e.g., Yarovaya [1], Vatutin and
Topchii [2]). BRW on Zd can be classified as supercritical, critical or subcrit-
ical in view of certain relation between producing offsprings at the source of
branching and walking outside of it.

For a supercritical BRW on Zd, a limit theorem for the total number of
particles, as well as that for the number of particles at a fixed point of the
lattice, are established in Yarovaya [1] and they have similar forms for all
d ∈ N.

A new effect arises for a critical BRW on Zd. In this case the limit distri-
bution of the total number of particles is found in Vatutin and Topchii [2] and
it turns out to be different for d ≤ 5, d = 6 and d ≥ 7. The limit theorems for
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the number of particles at the source of branching were also proved (see Bulin-
skaya [3] and Hu, Vatutin and Topchii [4]). However, the limit distribution of
the number of particles at any fixed point of the lattice (not only at the source
of branching), for a critical BRW on Zd, was unknown. In this talk we provide
the solution of this problem.

Moreover, we consider the mean number m(t;x, y) of the particles at a
point y 6= 0 (0 ∈ Zd) and the probability Q(t;x, y) of non-degeneracy at y
at time t, given the starting point x. We show that m(t;x, y) has the same
asymptotic behavior (t → ∞) as m(t;x,0) up to a specified constant factor
which is not equal to 1 in general. However, Q(t;x, y) is equivalent to Q(t;x,0),
as t→∞, for any d 6= 2. The case d = 2 is studied as well.

The work is partially supported by RFBR grant 10-01-00266.
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On Newman’s conjecture

Alexander Bulinski 1

1Moscow State University, Russia, bulinski@yandex.ru

Analysis of asymptotical behavior of the (normalized) sums of random vari-
ables is the vast research domain of Probability Theory having numerous appli-
cations. The limit theorems established for independent summands form here
the classical core. In this regard one can refer to the monographs Gnedenko
and Kolmogorov [1], Ibragimov and Linnik [2], Petrov [3] and Zolotarev [4];
see also references therein.

Stochastic models described by means of families of dependent random
variables arose at the beginning of the last century. Thus the Gaussian and
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Markov processes, martingales, solutions of the stochastic differential equa-
tions, mixing processes appeared as well as other important classes. Moreover,
much attention has been paid to studying of random fields.

Since the 1960s due to the problems of mathematical statistics, reliability
theory, percolation and statistical physics there arose the stochastic models
based on the families of variables possessing various forms of positive or neg-
ative dependence (see, e.g., Bulinski and Shashkin [5]). The key role in these
models belongs to the notion of association (in statistical physics the well-
known FKG-inequalities imply the association).

We consider a random field, defined on an integer-valued d-dimensional
lattice Zd, with covariance function satisfying a condition more general than
summability. Such condition appeared in the well-known Newman’s conjec-
ture (see Newman [6]) concerning the central limit theorem (CLT) for sta-
tionary associated random fields. As was demonstrated by Herrndorf [7] and
Shashkin [8], the conjecture fails already for d = 1. In the present talk, we show
the validity of modified conjecture leaving intact the mentioned condition on
covariance function. Thus we establish (see Bulinski [9]), for any integer d ≥ 1,
a criterion of the CLT validity for a wider class of positively associated sta-
tionary fields. The uniform integrability for the squares of normalized partial
sums, taken over growing parallelepipeds or cubes in Zd, is a crucial property
in deriving their asymptotic normality. So our result extends the Lewis theo-
rem (Lewis [10]) proved for sequences of random variables. A representation
of variances of partial sums of a field using the slowly varying functions in
several arguments is employed in essential way.

Acknowledgements. The research is partially supported by RFBR grant
10-01-00397.
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On comparison of UMVUE and MLE risks on high
order asymptotic expansions for one-parameter

exponential family

Vladimir Chichagov 1

1Perm State University, Russia, chvv50@mail.ru

Uniformly minimum variance unbiased estimators (UMVUE) and maxi-
mum likelihood estimators (MLE) play all-important role in current statisti-
cal research (see, for example, Voinov and Nikulin [1]). But how to choose the
best among them? The unbiassed choice of the approach for research estima-
tor can be made by computing the precision either of the possible estimators.
The author propose solution for some of such problems for high sample size
in the case of one-parameter exponential family. The precision of estimators is
defined by means of quadratic and absolute risk functions. Some of the such
problems were pioneered by Hwang and Hu [2].

The observation model description. Here is X1, . . . , Xn – repeated
sample, which elements have the same distribution as observation random
variable ξ. The distribution of the random variable ξ belong to exponential
family, which determined with the following expression:

fC [x; a] = exp {Φ1[a] · T [x] + Φ2[a] + d[x]} , x ∈ G ⊂ R. (1)

Here fC [x; a] is a distribution function of ξ with respect to a measure
µ[x] (either Lebesgue or counting measure); G is this distribution support;
d[x], T [x], Φ1[a] Φ2[a] be known Borel functions; a = E(T [ξ]), a ∈ A ⊂ R is
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a central parameter of given distribution. In addition aΦ′1[a] + Φ′2[a] = 0 and
Φ′1[a] > 0 for all a ∈ A.

Basic results. Let us denote Ǧ[a|Sn] and Ĝ[a|Sn], where Sn =∑n
i=1 T (Xi), corresponding the MLE and UMVUE of the given parametrical

function G[a]. Model (1) is used in [2] to comparison this estimators in as-

sumption, that estimator Ĝ[a|Sn] have series expansion, which coefficients be
a value of order O(1) almost everywhere with respect to the measure µ[x].
In this case to receipt of asymptotic expansionis used the same approach
as in paper [3]. Follow this approach under Sn = s = na + z

√
nVT (ξ),

z = O(
√

2α lnn), 1 < α < 1.5 and n→∞ was receive the asymptotic expan-
sion of 6th order of function

Ĝ[a|s] =G[a] +
zG′[a]√
nΦ′1[a]

+
(z2 − 1)G′′[a]

2nΦ′1[a]
+

6∑
i=3

ci
ni/2

+ o

(
1

n3

)
, (2)

c3 =
zG′′[a]Φ′′1 [a]

2(Φ′1[a])5/2
+

(z3 − 3z)G(3)[a]

6(Φ′1[a])3/2
, c4 = − (z2 − 1)G′′[a]Φ′′1 [a]2

2(Φ′1[a])4
+

+
(3z2 − 2)Φ′′1 [a]G(3)[a]

6Φ′1[a]3
+ +

(z2 − 1)G′′[a]Φ
(3)
1 [a]

4(Φ′1[a])3
+

(z4 − 6z2 + 3)G(4)[a]

24(Φ′1[a])2
.

Coefficients c5, c6 at (2) have more bulky representation than c3, c4.

The similar expansions are receive as for unbiased estimator V̂
[
Ĝ[a|Sn]

]
of variance V

[
Ĝ[a|Sn]

]
as well for normalized error of unbiased estimator

Ĝ∗[a|Sn] = (Ĝ[a|Sn]−G[a])/

√
V̂
[
Ĝ[a|Sn]

]
.

These expansions are used for extract first two expansion terms of the
following functionals:

E
(
Ĝ[a|Sn]−G[a]

)2

, E
(
V̂
[
Ĝ[a|Sn]

]
−V

[
Ĝ[a|Sn]

])2

, E
(
Ĝ∗[a|Sn]− Zn

)2

,

E
∣∣∣Ĝ[a|Sn]−G[a]

∣∣∣ , E
∣∣Ǧ[a|Sn]−G[a]

∣∣ ,
as well some another.

Particularly, together with N.Fedoseeva the following result is determined:

E
∣∣∣Ĝ[a|Sn]−G[a]

∣∣∣ = 2ϕ[0]
∣∣G′[a]

∣∣ (nΦ′1[a]
)−1/2

(
1 +

c

2nΦ′1[a]

)
+ o

(
n−3/2

)
,

c =
G′′[a] Φ′′1 [a]

2G′[a](Φ′1[a])2
− G(3)[a]

3G′[a]
+

Φ
(3)
1 [a]

12Φ′1[a]
− 1

6

(
Φ′′1 [a]

Φ′1[a]

)2

+

(
G′′[a]

2G′[a]

)2

,

where ϕ[0] =
1√
2π
.

13
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Received asymptotic expansions of risk function further is used to deter-
mination of the asymptotic expected deficiency of the UMVUE to the MLE
of the model (1).

All results have a representation both on central parameter a, and on
canonical θ = Φ1[a] and natural parameters of the exponential distribution
family.
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On some analogue of the generalized allocation scheme

Alexey Chuprunov 1, István Fazekas 2

1Kazan State University, Russia, achuprunov@mail.ru
2University of Debrecen, Hungary, fazekasi@inf.unideb.hu

Let ξ1, ξ2, . . . , ξN be independent identically distributed nonnegative in-
teger valued nondegenerate random variables. In the generalized allocation
scheme introduced by V.F. Kolchin [1] random variables η′1, . . . , η

′
N are con-

sidered with joint distribution

P{η′1 = k1, . . . , η
′
N = kN} = P

{
ξ1 = k1, . . . , ξN = kN

∣∣ ∑N

i=1
ξi = n

}
.

This scheme contains several interesting particular cases such as the usual
allocation scheme and random forests.

In this paper we will study random variables η1, . . . , ηN with joint distri-
bution

P{η1 = k1, . . . , ηN = kN} = P
{
ξ1 = k1, . . . , ξN = kN

∣∣ ∑N

i=1
ξi 6 n

}
.

It can be considered as a general allocation scheme when we place at most
n balls into N boxes. In this general allocation scheme the random variable
µnN =

∑N
i=1 I{ηi=r} can be considered as the number of boxes containing r

balls.

14
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We study laws of large numbers, i.e. the convergence of the average 1
N
µnN ,

as n,N → ∞. We prove local limit theorems, i.e. we study the asymptotic
behaviour of P{µnN = k}. We obtain weak limit theorems for the maximum,
i.e. we shall consider the asymptotic behaviour of P{max16i6N ηi 6 r}.
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CLT for Associated Systems

Vadim Demichev 1

1Moscow State University, Russia, vadim.demichev@gmail.com

The purpose of this work is to establish a central limit theorem for sta-
tionary random fields which can be represented in terms of certain functions
of quasi-associated random fields. We employ the following

Definition ([1]). A family of square integrable random variables Y =
{Yt, t ∈ T} is called quasi-associated (Y ∈ QA) if for any disjoint finite
sets I, J ⊂ T and for any Lipschitz functions F : R|I| → R and G : R|J| → R
one has

|cov(F (Yi, i ∈ I), G(Yj , j ∈ J))| 6
∑
i∈I

∑
j∈J

Lipi(F )Lipj(G)|cov(Yi, Yj)|.

Here Lipi is the Lipschitz constant with respect to i-th coordinate. Namely,
for a Lipschitz function F : Rn → R we put

Lipi(F ) = sup
x∈Rn

sup
∆xi 6=0

1

|∆xi|
|F (x1, . . . , xi−1, xi + ∆xi, xi+1, . . . , xn)− F (x)|.

It is known ([2]) that every positively or negatively associated square in-
tegrable random field is also quasi-associated. Any Gaussian random field is
necessarily quasi-associated (see [3]).

We consider a strictly stationary random field Y = {Yk, k ∈ Zd}, d ∈ N .
Set Xk = H(Yk), k ∈ Zd, where H is some Borel function. Our aim is to derive
sufficient conditions for the random field X = {Xk, k ∈ Zd} to satisfy the
central limit theorem, i.e. for the following convergence in distribution to hold
for some σ2 <∞

1

nd/2

∑
k∈[1,n]d

(Xk − EXk)
d−−−−→

n→∞
N(0, σ2).

15
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Newman ([4]) obtained the central limit theorem for the case of H being a
locally absolutely continuous function and Y being either associated or nega-
tively associated. The method he employed requires some covariance estimates.
Namely, it’s assumed that the series∑

k∈Zd
cov(H̃(Y0), H̃(Yk)) (1)

does converge for a certain nondecreasing function H̃ (which depends on H).
In this work we investigate convergence of such series and establish the

central limit theorem for Y ∈ QA and H being a locally Lipschitz or L2

function. In order to estimate (1) we use the idea of Yu ([5]) and approximate
the target function H with Lipschitz functions. This allows us to verify the
convergence assuming that the distribution of Y0 has light enough tails and
the covariance function r(k) = cov(Y0, Yk), k ∈ Zd, decays rapidly enough as
|k| → ∞.

The work is partially supported by RFBR grant 10-01-00397-a.
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Classification of patients’ conditions in order to forecast
outcomes of the treatment

Margarita Dranitsyna 1, Tatiyana Zakharova 2

1Moscow State University, Russia, margarita13april@mail.ru
2Moscow State University, Russia, lsa@cs.msu.su

Background. The main aim of this research is the development of classifi-
cation technique for patients who undergo Hyperbaric oxygenation procedure
(HBO-procedure). This research has been performed in collaboration with the
Khrunichev State Research and Production Space Center.

Method. Typical problem-solving method is the discriminant analysis
which is classification technique for multivariate observations with training
samples. Let there is m-dimensional attribute space (m > 1). Certain observa-
tions x = {x1, x2, ..., xm} from X are points of this space. Discrimination task
is to split set of multidimensional value realizations into p possible groups,
denoted by R1, . . . , Rp, and to assign new observation to one of these groups.
It is required to obtain set of crucial decision rules that enable to determine
class Rk for arbitrary observation x from X. The analysis was performed with
the use of Statistica 6.0.

Results. We observed a group of 161 patients. Three subgroups were iden-
tified empirically: HBO is well-tolerated and highly effective for the patients
from the first subgroup; the patients with moderate effectiveness of the HBO-
treatment were allocated to the second subgroup, and the patients without any
effects or with deteriorating condition during procedure were allocated to the
third subgroup. Each observation was assigned to one of three groups according
to the expert estimations. For each patient cardiac physiological parameters
were registered during each HBO-session. Exploratory data analysis was per-
formed. We tested samples for normality employing Lillieforce modification of
Smirnov-Kolmogorov criterion. For each group the results varied (see Table 1).
Number of normally distributed variables declined with sample size increase. It
should be noted that sample normality is not crucial for correct discrimination
here. We identified training set consisting of most distinctive observations. In
accordance to monitored data linear classification functions were plotted using
stepwise discriminant analysis on basis of training set. It should be noted that
three of our variables have appeared to be non-informative and were excluded
from the final classification. The classification functions are:

F1 = −222.787x1 + 0.077x2 − 1.023x3 + 18.464x4 − 785.4x5 + 0.109x6 +
0.244x7 + 43.387x8 + 0.099x9 − 0.074x10 + 1.826x11 − 0.042x12 − 21.876,
F2 = 185.201x1 + 0.114x2 + 0.560x3 − 9.669x4 + 43.946x5 − 1.010x6 +
0.237x7 + 224.283x8 − 0.035x9 − 0.131x10 + 1.732x11 − 0.017x12 − 19.402,
F3 = −42.333x1 + 0.187x2 + 1.754x3 − 20.396x4 − 278.369x5 + 0.312x6 +
0.408x7 + 270.880x8− 0.023x9− 0.247x10 + 3.760x11− 0.098x12− 43.832,

where F1, F2, F3 are determined for good, satisfactory and ineffective
groups respectively, x1-x12 are discriminant variables. Classifications functions
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Good, n = 45

x1 N x4 N x7 – x10 – x13 N

x2 – x5 N x8 N x11 – x14 –

x3 N x6 N x9 – x12 – x15 N

Satisfactory, n = 82

x1 – x4 N x7 – x10 N x13 –

x2 – x5 – x8 – x11 – x14 –

x3 N x6 – x9 – x12 – x15 –

Ineffective, n = 13

x1 N x4 N x7 – x10 – x13 N

x2 – x5 N x8 – x11 N x14 N

x3 N x6 N x9 N x12 N x15 –

Table 1: Test for normality

provide correct classification for each case in training sample. For test sample
it was shown more the 75 % effectiveness (69.94, 80.43 and 76.92% for good,
satisfactory and ineffective groups respectively).

Conclusions. Classification technique was designed according to statisti-
cal findings and expert assessment. We have analysed statistical significance
of each discriminant variable and robustness of discriminant functions and
classification procedure.
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Portfolio separation with α-stable, α-symmetric and
pseudo-isotropic distributions

Nils Chr. Framstad 1,

1University of Oslo, Norway, ncf+research@ulrik.uio.no
Also affiliated with the Financial Supervisory Authority of Norway.

Consider the portfolio choice problem for an agent in a frictionless financial
market where the returns vector is Y plus some drift term – in addition
there may or may not be a “risk free” investment opportunity. The celebrated
portfolio separation theorem states conditions under which the market can be
replaced by a smaller number of indices (“funds”) without any welfare loss to
the investors in question. We call this k-fund separation if k funds (possibly
including the risk-free) suffice, and k-fund monetary separation if in addition
there is a risk-free opportunity and this can always be chosen to be one of the
funds.

The “Ross type” theorems (Ross [1]) concern the returns distributions for
which the same k funds will do for any agent (typically assumed risk averse, in
my contributions below assumed merely greedy but solvent). In a single period
setting, it is known since Chamberlain [2] and Owen and Rabinovitch [3] that
the elliptical distributions admit Y admit 2-fund separation (monetary if a
risk-free opportunity exists), and it is known since Fama [4] that symmetric
stable Y admit 2-fund monetary separation, provided there is a risk-free
opportunity. The multi-period case will follow as a recursive application of
the single-period model. In a continuous-time setting, the canonical model
is the geometric Brownian motion, which by dynamic programming is easily
seen to work as the Gaussian single period model. Khanna and Kulldorff [5]
give a simple proof which does not rely upon dynamic programming.

For the single period, I will show – using fairly simple mathematics – that
for all solvent agents:

1. Any pseudo-isotropic vector admits 2-fund monetary separation, pro-
vided that a risk-free investment exists. This also holds under “no short
sale” conditions on the risky investments, or any cone conditions on
these. (This case is near-trivial.)

2. The same holds for any skew α-stable vector, provided that there is a cone
condition which has to restrict the skewness parameter to a singleton.

3. For the 1-stable case – possibly skew – one can remove the risk-free
investment opportunity and have 1-fund separation (i.e., all investors
choose the same portfolio, modulo scale).
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4. For any even number k, any α-symmetric vector with α = k/(k− 1) will
admit k fund monetary separation, assuming no risk free opportunity. A
similar result will fail – modulo gross degeneracies – for odd k.

5. Any skew-elliptical Y formed from conditioning k of the variables of an
elliptical distribution, admits k+2 fund separation. This result is in press
[6].

Possible extensions and ramifications will be discussed.

Simplifying the Khanna and Kulldorff approach, I will show for the
continuous-time case that as long as the driving noise is a Lévy process Y(t),
the properties of the single-period model are inherited (with Y(1) (necessarily
infinitely divisible) for the above Y).
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Second Order Approximations for Slightly Trimmed
Sums

Nadezhda Gribkova 1

1St.Petersburg State University, Saint-Petersburg, Russia, nv.gribkova@gmail.com

LetX1, X2, . . . be a sequence of independent identically distributed real-valued
random variables with common distribution function (df) F , and for each

20



XXIX International Seminar on Stability Problems for Stochastic Models

integer n > 1 let X1:n 6 . . . 6 Xn:n denote the order statistics based on the
sample X1, . . . , Xn.

Let kn and mn be sequences of integers such that 0 6 kn < n−mn 6 n, and
kn ∧mn →∞, as n→∞.

Put α(n) = kn/n, β(n) = mn/n and suppose that α(n) ∨ β(n) → 0, as
n → ∞. Define the ν-th quantile of F by ξν = F−1(ν) = inf{x : F (x) > ν},
0 < ν < 1, and let Wi(n), denote Xi Winsorized outside of (ξα(n), ξ1−β(n)], i.e.
Wi(n) = ξα(n) ∨ (Xi ∧ ξ1−β(n)).

Consider a slightly trimmed sum given by

Tn =
1

n

n−mn∑
i=kn+1

Xi:n.

Define

FTn(x) = P
(
σ−1
W(n)

n1/2
(
Tn − µn

)
6 x

)
– the df of the normalized Tn, where

µn =

∫ 1−β(n)

α(n)

F−1(s) d s, and σ2
W(n)

= V ar(Wi(n)).

Suppose that F−1 is differentiable in U =
(
(0, ε) ∪ (1 − ε, 1)

)
for some ε > 0.

Let

γ3,W(n)
= E(Wi(n)− µW(n)

)3,

δ2,W(n)
= −α2(n)

(
µW(n)

− ξα(n)

)2
f(ξα(n))

+ β2(n)

(
µW(n)

− ξ1−β(n)

)2
f(ξ1−β(n))

,

where µW(n)
= EWi(n) and f denotes the density of F . Also introduce

λ1(n)
=
γ3,W(n)

σ3
W(n)

, λ2(n)
=
δ2,W(n)

σ3
W(n)

,

and for any real x define

Gn(x) = Φ(x)− ϕ(x)

6
√
n

((
λ1(n)

+ 3λ2(n)

)
(x2 − 1) + 6

√
n

bn
σW(n)

)
,

where Φ is standard normal df , ϕ = Φ′,

bn =
1

2
√
n

(
−α(n)(1− α(n))

f(ξα(n))
+
β(n)(1− β(n))

f(ξ1−β(n))

)
,

bn is a bias term (cf. [1]-[2]).
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Let RV∞ρ be a class of regularly varying in the infinity functions: g ∈ RV∞ρ
⇔ g(x) = |x|ρ L(|x|), for |x| > x0, with some x0 > 0, ρ ∈ R, and L(x) is a
positive slowly varying function at infinity.

Suppose that lim supn→∞
ns

kn ∧mn < ∞ for some 0 < s < 1.

Here is our main result on asymptotic approximation of the Edgeworth type
to a slightly trimmed sum for ’heavy’ tailed F .

Theorem. Suppose that f ∈ RV∞ρ , where ρ = −(1 + γ), 0 < γ < 2, and
assume that

|f(x+4x)− f(x)| = O
(
f(x)

∣∣∣ 4x
x

∣∣∣),
whenever 4x = o(|x|), as |x| → ∞.

Then |Gn(x)− Φ(x)| � (kn ∧mn)−1/2, n→∞, x ∈ R. Furthermore,

sup
x∈R
|FTn(x)−Gn(x)| = O

(
(log kn)5/4

k
3/4
n

+
(logmn)5/4

m
3/4
n

)
, n→∞ .

The proof is based on a U−statistic type approximation and also uses a version
of Bahadur’s type representation for intermediate sample quantiles [3].

The talk based on the joint work with Roelof Helmers (CWI, Amsterdam, The
Netherlands).
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An Improvement of the Remainder Term Estimates in
the Lyapunov Theorem under Diverse Moment

Conditions

Maria Grigorieva 1, Irina Shevtsova 2

1Moscow State University, Russia, maria-grigoryeva@yandex.ru
2Moscow State University; Institute for Informatics Problems of the Russian
Academy of Sciences, Russia, ishevtsova@cs.msu.su

For δ ∈ [0, 1] denote F2+δ a class of all distribution functions (d.f.’s) F (x)
satisfying conditions∫ +∞

−∞
x dF (x) = 0,

∫ +∞

−∞
|x|2+δ dF (x) <∞.

Let X1, X2, . . . be a sequence of independent random variables with d.f.’s
F1, F2 . . . ∈ F2+δ. Denote

σ2
j = EX2

j , β2+δ,j = E|Xj |2+δ, j = 1, 2, . . . , n.

s2
n =

n∑
j=1

σ2
j , `n =

1

s2+δ
n

n∑
j=1

β2+δ,j , τn =
1

s2+δ
n

n∑
j=1

σ2+δ
j ,

Fn(x) = P(X1 + . . .+Xn < xsn) = F1 ∗ . . . ∗ Fn(xsn),

∆n = ∆n(F1, . . . , Fn) = sup
x
|Fn(x)− Φ(x)|, n = 1, 2, . . . ,

Φ(x) being the d.f. of the standard normal law.
As is known (see, e.g., (Petrov, 1972), (Petrov, 1987)), under above as-

sumptions for all n > 1 and F1, . . . , Fn ∈ F2+δ

∆n 6 C0(δ) · `n, (1)

where C0(δ) depends only on δ. The upper bounds for C0(δ), 0 < δ < 1
were obtained in (Tysiak, 1983). Here we present sharpened bounds for the
constants C0(δ) as well as in the spirit of the works (Korolev and Shevtsova,
2010a), (Korolev and Shevtsova, 2010b) we prove a moment inequality with
an improved structure

∆n 6 C1(δ) · (`n + τn), (2)

the values of C1(δ) being considerably less than that of C0(δ). By virtue of
the Lyapunov inequality, τn 6 `n, thus, for large values of `n/τn estimate (2)
is better than (1). Also, sharpened estimates for the constants C0(δ), C1(δ) in
the i.i.d. case are presented.
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The Markov processes connected with weak generalized
convolutions

Barbara H. Jasiulis-Go ldyn 1

1University of Wroc law, Poland, jasiulis@math.uni.wroc.pl

A probability measure µ ∈ P is weakly stable if for all a, b ∈ R there exists
a probability measure λ ∈ P such that

Taµ ∗ Tbµ = µ ◦ λ

where Taµ(A) = µ(A/a) for every Borel set A when a 6= 0, T0µ = δ0 and
by ◦ we denote multiplicative convolution. The measure µ generates a binary
operation called a weak generalized convolution.

We give a construction of discrete time Markov processes based on the
weak generalized convolution, i.e. such random walks that their increments
are independent and instead of summation of unit steps we take their cumula-
tion in the weak stability sense. Theorem about asymptotical properties such
objects will be showed. As an example of constructed processes we present
random walk under the Kendall convolution having the following probability
kernel :

δx ⊗µα δ1 = |x|απ2α + (1− |x|α)δ1,

for x ∈ [−1, 1] and α ∈ (0, 1] where π2α is the Pareto distribution with the
density 2αy−2α+1I[1,∞)(y). Considering the random walks under the Kendall
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convolution we obtain a new class of heavy tailed distributions containing the
Pareto distribution π2α. We present basic properties of constructed random
walks. This describes a wide class of stochastic processes, for which the Bessel
process discussed by Kingman was till now the only known example.
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Uniform interval estimates of survival function based on
the result of random censored sample data observations
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The registers of pathology studies are obtained as a result of sample mon-
itoring researches.These registers serve as a basis for further patients’ survival
analysis and often one have to deal with censored data. Under random cen-
soring each person is examined for a random time period τi, i = 1, N , i.e. as a
tests’ results we get values for random variables ζi = min

i=1,N
{ξi, τi}, as well as

additionally we get an information on whether the death occurred during time
of examination or not. The random variables which describe this information
could be presented as indicators of occurrence of random events:

δi = 1ξi6τi =

{
1, ξi 6 τi;

0, ξi > τi.

25



XXIX International Seminar on Stability Problems for Stochastic Models

As an empirical estimate of distribution of unknown survival function Fξ(·)
one could consider PL-estimate, i.e. the Kaplan-Meyer estimate (see [1]). For
this pointwise PL-estimate of empirical distribution function which is the con-
sistent statistics from censored observations we build uniform interval estimate
for accepted significance level using the martingale technique and generalize
nonparametric Renyi’s criterion, which is well known for complete samples’
studies.

Denote the counting process [2] built for censored data {ζi, δi}, i = 1, N
by KN (t), i.e. KN (t) =

∑N
i=1 1ξi6t6τi =

∑N
i=1 1ζi6t,δi=1. Left continuous mo-

dification of given process can be represented as: RN (t−) =
∑N
i=1 1t6ξi∧τi =∑N

i=1 1ζi>t.
Kaplan-Meyer estimate of the distribution function Fξ can be represented

by the counting process KN (t) and its continuous modification RN (t−) as

F̂N (t) = 1−
∏

06s6t

(
1− ∆KN (s)

RN (s−)

)
where ∆KN (s) is the jump of process KN (·)

at time s. The process
√
N(F̂N (t) − Fξ(t)) considered on the interval [0, t+)

converges weakly to Gaussian process with mean 0 and covariance function
of form V (s, t) = Φ(s)F ξ(s)F ξ(t), s 6 t, where F ξ(t) = 1 − Fξ(t). Consistent
estimate for Φ(t), t ∈ [0, t+) is given by equation

Φ̂N (t) =

∫ t

0

(
1

N
RN (s)

)−1

µ(s)ds =

=

l∑
i=1

N

N − i ln
F̂N (ζi−1)

F̂N (ζi)
+

N

N − l
F̂N (ζl−1)

F̂N (t)
. (1)

As criterial statistics for constructing uniform confidence intervals of
the distribution function Fξ we consider the stochastic process ηN (t) =
√
N

∣∣∣∣ F̂N (t)−Fξ(t)

Fξ(t)

∣∣∣∣ for which

lim
N→∞

P

{
sup

06t6α
ηN (t) < u

}
= P

{
sup

06t6α
|W (Φ(t))| < u

}
holds and

Φ̂N (t) =

∫ t

0

(
1

N
RN (s)

)−1

µ(s)ds =

max{i:ζi−16t<ζi}∑
i=1

N

N − i ln
F̂N (ζi−1)

F̂N (ζi)
+

N

N − l
F̂N (ζl−1)

F̂N (t)

is the consistent estimate of Φ(t), t ∈ [0, t+).
Asymptotic confidence interval for Fξ with significance level α = 1 − p is

uniform over the interval [0, r] (where r = max{ζi, i: δi = 1}) is given by the
next equation:
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FLower/Upper = 1− F̂N (t)/max

0;

1± up

√
Φ̂N (r)

N

 , (2)

where FLower and FUpper are the lower (left) and upper (right) borders of
confidence interval respectively and up is quantile of L-distribution defined as

L(u) = 4
π

∑∞
k=0

(−1)k

2k+1
e
− (2k+1)2π2

8u2 .
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Fractional α-stable process with dependent increments
and its application to network traffic modeling
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Since the beginning of the ’90s, accurate traffic measurements carried out
in different network scenarios highlighted that Internet traffic exhibits strong
irregularities (burstiness) both in terms of extreme variability as well as long-
term correlations. These features, which cannot be captured in a parsimonious
way by traditional Markovian models, have a deep impact on network perfor-
mance and led to the introduction in network traffic modeling of α-stable
distribution and self-similar processes [4].

In this work, we consider a generalization of fractional Brownian motion,
which is able to capture both the above-mentioned features of real traffic.

Let (BH(t), t ≥ 0) be fractional Brownian motion with Hurst parameter
H, (L1

α(t), t ≥ 0), (L2
α(t), t ≥ 0) be α-stable subordinators, 0 < α ≤ 1, and

BH , L1
α and L2

α are independent. Consider the new process

X(t) :=

{
BH(L1

α(t)) , t ≥ 0,
−BH(L2

α(t)) , t < 0,

Using straightforward calculation it can be proved the following result.
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Theorem 1. The above process X is self-similar process with Hurst para-
meter H1 = H/α.

Using the multiplication theorem for stable distribution (see Zolotarev [3],
theorem 3.3.1) we can get the following result.

Theorem 2. The above process X has β-stable distributions, where β =
α/H, whose increments are stationary, but dependent.

Define the cumulative traffic (or arrival) process A(t), i.e. the amount of
total load produced by a source in the time interval [0, t], t > 0, by

A(t) := mt+ (σm)1/βX(t) ,

where m > 0 is the mean input rate, σ is the scale factor, X is the process
defined above.

Consider a single server queue with constant service rate r > 0 and infinite
buffer space, where input is the stable self-similar process defined above (r > m
for stability). The buffer occupancy Q(t, r) at time t ∈ R1 (queue size or queue
length) can be written as

Q(t, r) = sup
s≤t

(A(t)−A(s)− r · (t− s)) .

The process Q(t, r), t ∈ R1, is stationary. So the most interesting for us is
the following probability of overflow:

ε = P (Q(0, r) > b) = P

(
sup
τ≥0

(A(τ)− r · τ)

)
.

Using the technique elaborated in papers [1],[2] we can get the lower bound
for the probability of buffer overflow.

Theorem 3. An asymptotic lower bound for the overflow probability is
given by

ε = P (Q(0, r) > b) ≥ C(H1) · σ · r

r −m · b
− 1−H1

H1 , b→∞ .
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Multivariate generalized Cox processes

Yury Khokhlov 1, Olga Rumyantseva 2
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Let N(t) = (N1(t), . . . , Nm(t)) be a multivariate Poisson process (with
dependent components in general), {Xj = (Xj1, . . . , Xjm)} be a sequence of
i.i.d. random vectors woth finite second moments, Λ(t) = (Λ1(t), . . . ,Λm(t)) be
a multivariate random process such that: Λk(0) = 0, Λk(t) has nondecreasing
paths, E(Λk(t)) = bk · t, V ar(Λk(t)) = s2

k · t, bk > 0, s2
k > 0 for all k = 1,m.

The processes (N(t), t ≥ 0) and (Λ(t), t ≥ 0) are independent.
We consider the following variant of multivariate generalized Cox process:

C(t) = (C1(t), . . . , Cm(t)):

Ck(t) :=

Nk(Λk(t))∑
j=1

Xjk .

In our report we will propose a necessary and sufficient condition for conver-
gence of the distribution of C(t) with nonrandom centering and normalization
to shift mixture of multivariate normal distribution as t→∞.

Our result is the analog of the result from [1].
Some applications to actuarial and financial mathematics are considered.

References

1. Bening V.E., Korolev V.Yu. Generalized Poissin Models and Their Ap-
plications in Insurance and Finance, 2002, Utrecht, VSP.

Portfolio of options with dependent underlying assets
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One of the main problem in financial mathematics is the problem of price
evalution of financial asset. Many papers are devoted to evalution of deriva-
tives. The most interesting derivative is option. The classical result in this
field is famous Black-Scholes formula. To prove it we need to use complicated
methods from stochastic analysis. In paper [1] Cox, Ross and Rubinstein have
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proposed more simple binomial model (CRR-model). In framework of this
model they have calculated the value of option. This model is very simple
and suitable for simulation. The Black-Scholes formula can be derived from its
analog in CRR-model (see [1],[3]). In these two models one dimensional case
is considered where we have one option for one asset.

In our report we represent the analogous results in the case of options for
several assets whose prices are generated by the process:

(S1, . . . , Sm) =

n∑
k=0

εk , n = 1, 2, . . . ,

where εk are i.i.d.r.v. which takes values i = (i1, . . . , ik), il = 0 or 1 with
probabilities pi. For the first time this model was proposed in paper [2]. Each
component of this process has binomial distribution and these components are
dependent.
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On the absolute constants in the Katz–Petrov–Osipov
inequalities
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For an n ∈ N let X1, ..., Xn be independent random variables with EXi = 0
and 0 < EX2

i ≡ σ2
i < ∞, i = 1, ..., n. Denote Sn = X1 + ... + Xn, B2

n =
σ2

1 + ...+ σ2
n. Let Φ(x) be the standard normal distribution function. Denote

∆n(x) = |P(Sn < xBn) − Φ(x)|, ∆n = supx ∆n(x). Let G be the class of
real-valued functions g(x) of x ∈ R such that
• g(x) is even;
• g(x) is non-negative for all x and g(x) > 0 for x > 0;
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• g(x) does not decrease for x > 0;
• the function x/g(x) does not decrease for x > 0.
In 1965 V. V. Petrov [9], generalizing a result of M. Katz (1963) [2] to the

non-i.i.d. case, proved that if EX2
i g(Xi) < ∞, i = 1, ..., n, for a g ∈ G, then

there exists a finite positive absolute constant C1 such that

∆n 6
C1

B2
ng(Bn)

n∑
i=1

EX2
i g(Xi). (1)

In 1979 V. V. Petrov [10] proved a non-uniform analog of (1): under the same
conditions there exists a finite positive absolute constant C2 such that for any
x ∈ R

∆n(x) 6
C2

B2
n(1 + |x|)2g

(
Bn(1 + |x|)

) n∑
i=1

EX2
i g(Xi). (2)

In particular, the function g(x) = min{|x|, Bn}, x ∈ R, is obviously in G. In
this case inequality (1) turns into

∆n 6 C1

(
1

B2
n

n∑
i=1

EX2
i I(|Xi| > Bn) +

1

B3
n

n∑
i=1

E|Xi|3I(|Xi| < Bn)

)
(3)

provided EX2
j <∞, j = 1, . . . , n. This inequality was proved in 1966 by L. V.

Osipov [6]. L. Paditz (1980, 1984) [7], [8] showed that in (3) C1 < 4.77. In 1986
he lowered this estimate to C1 < 3.51. In 2001 Chen and Shao [1] re-proved
inequality (3) with C1 = 4.1.

In 1979 V. V. Petrov [10] proved a non-uniform analog of (3): provided
EX2

j < ∞, j = 1, . . . , n, there exists a finite positive absolute constant C4

such that for any x ∈ R

∆n(x) 6 C4

(
1

B2
n(1 + |x|)2

n∑
i=1

EX2
i I(|Xi| > Bn)+

+
1

B3
n(1 + |x|)3

n∑
i=1

E|Xi|3I(|Xi| < Bn)

)
. (4)

In 2001 Chen and Shao [1] re-proved (4) by another techniques. The best
known upper estimate C4 6 76.17 is due to Neammanee and Thongtha (2007)
[5].

In this communication we improve the results of our work [4] as well as
those of [5] and show that in (1) and (3)

0.5409 < C1 6 2.0110

(also see [3]) and in (2) and (4)

Cj 6 47.657, j = 2, 4,
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in the general case and

Cj 6 39.317, j = 2, 4,

in the i.i.d. case. Thus, in (1) and (2) the constants C1 and C2 are universal,
that is, they do not depend on the specific form of the function g ∈ G.
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Central limit theorem for risk estimate of
vaguelette-wavelet signal decomposition

Alexey Kudryavtsev 1, Oleg Shestakov 2
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Many problems of telecommunications, plasma physics, computer graphics
and other applied areas involve indirect noisy measurements where one faces
a linear inverse problem in the presence of noise. So we consider the following
model:

Xi = (Kf)i + εi, (1)

where Xi are the observed data, K is some linear operator, f is the unknown
signal we wish to estimate, and εi are independent normal variables with zero
mean and variance equal to σ2. We suppose that K is homogeneous with index
α. That is K[f(a(x−x0))] = a−α(Kf)[a(x−x0)] for each x0 and every a > 0.

Nonlinear wavelet methods of signal processing are becoming more and
more popular because of their ability to deal with non-stationarity and cap-
ture local singularities of the signal. One possibility is to use the following
approximate signal decomposition (see [1]):

f = 〈Kf,ϕ0,0〉K−1ϕ0,0 +

J−1∑
j=0

2j−1∑
k=0

βj,k〈Kf,ψj,k〉uj,k, (2)

where ϕ0,0 is a scaling function, {ψj,k} is a wavelet basis generated by a certain
mother wavelet ψ, and {uj,k} is a corresponding “vaguelette” basis, which is
stable if K is homogeneous (see [2]). This kind of decomposition is called
vaguelette-wavelet decomposition (see [1]).

To filter out the noise we use thresholding method with soft-thresholding
function ρTj (x) = sgn(x) (|x| − Tj)+, and obtain an estimate of the signal:

f̂ = Y A0,0K
−1ϕ0,0 +

J−1∑
j=0

2j−1∑
k=0

βj,kρTj (Y
W
j,k )uj,k, (3)

where Y A0,0 is a noisy approximation coefficient and YWj,k are noisy wavelet

coefficients of the signal. Here we use individual threshold Tj =
√

2 ln 2jσ for
each decomposition level j. This threshold is called “universal” (see [3]).
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Risk (average mean squared error) of soft thresholding method is defined
as

rJ =

J−1∑
j=0

2j−1∑
k=0

β2
j,kE(2J/2〈Kf,ψj,k〉 − ρTj (Y

W
j,k ))2. (4)

This expression contains unknown values 〈Kf,ψj,k〉, so it cannot be calculated
and has to be estimated. In [3] D. Donoho and I. Johnstone proposed to use
SURE estimate

r̂J =

J−1∑
j=0

2j−1∑
k=0

β2
j,kRTj (Y

W
j,k ), (5)

where RTj (x) = (x2 − σ2)I(|x| ≤ Tj) + (σ2 + T 2
j )I(|x| > Tj). This estimate

is unbiased, i.e. Er̂J = rJ . We prove that under certain conditions it is also
asymptotically normal. The following theorem holds.

Theorem. Let K be a homogeneous linear operator with index α > 0. Let
mother wavelet ψ have sufficient number of vanishing moments and satisfy
certain conditions, which ensure that basis {uj,k} is stable (see [2]). Let Kf
have support in [0, 1] and be Lipschitz continuous of order γ > (8α + 2)−1.
Then

r̂J − rJ√
2σ4β4

0,0(24α+1 − 1)−1 2(2α+1/2)J
=⇒ N(0, 1) as J →∞. (6)

In (6) we do not use traditional normalization which involves variance of
r̂J , because this variance depends on the unknown values 〈Kf,ψj,k〉. Proposed
normalization allows to construct asymptotic confidence intervals for rJ .

Acknowledgements: this work is supported by RFBR (grants 11–07–
00112a, 11–01–00515a and 11-01-12-26-ofi-m)

References

1. Abramovich F., Silverman B. W. Wavelet Decomposition Approaches to
Statistical Inverse Problems. Biometrika, 1998. Vol. 85. No. 1. P. 115–
129.

2. Kudryavtsev A.A., Shestakov O.V. The Average Risk Assessment of the
Wavelet Decomposition of the Signal. T-Comm – Telecommunications
and Transport, 2011. No. 2. P. 54–57. (in Russian)

3. Donoho D., Johnstone I. Adapting to Unknown Smoothness via Wavelet
Shrinkage J. Amer. Stat. Assoc., 1995. Vol. 90. P. 1200–1224.

34



XXIX International Seminar on Stability Problems for Stochastic Models

Optimal arrangements of queueing systems on the line

Svetlana Matveeva 1, Tatiyana Zakharova 2
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BACKGROUND. The main idea of this research is to provide the infor-
mation about asymptotically (second-order) optimal arrangement of service
centers in accordance with the average distance between call-point and service
center for systems with FIFO service discipline. Such models of queuing sys-
tems are used studying real systems in which the service is made by object
placed over a territory.

METHOD. We based our research on the property of the optimal arrange-
ment of service centers. A specific feature of the class of systems under con-
sideration is the necessity of using the information about location of serving
devices and positions of the entering calls and their density distribution. We
also assume that the density carrier of incoming call is the segment.

RESULTS. In the research process we’ve found optimal arrangement min-
imize the criterion the average distance between call-point and service center.
The properties of optimal arrangements are described and algorithms for con-
structing asymptotically optimal arrangements are presented.
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On the stochastic processes under generalized
convolution

Jolanta Misiewicz 1

1Department of Mathematics and Information Science, Warsaw Technical University,
j.misiewicz@mini.pw.edu.pl

A random vector X is weakly stable if

∀ a, b ∈ R ∃θ aX + bX ′
d
= xθ,

where X ′ is an independent copy of X, X and θ are independent and
d
= denotes

equality of distributions. If µ is the distribution of X and λ is the distribution
of θ this condition can be written in the following way:

∀ a, b ∈ R ∃λa,b Taµ ∗ Tbµ = µ ◦ λa,b,
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where Ta is the rescaling operator and µ ◦ λa,b is the operation on measures
corresponding to the product of independent variables.

Each weakly stable distribution defines a generalized convolution ⊗µ in the
following:

δa ⊗µ δb = λa,b, λ1 ⊗µ λ2 =

∫
R
λa,b λ1(da)λ2(db).

We consider stochastic process {Xt : t > 0} for which there exists a family of
probability measures λ[s,t), 0 6 s 6 t such that
1) λ[s,t) ⊕µ λ[t,u) = λ[s,u) for each s 6 t 6 u;
2) Xt has distribution λ[0,t).
Basic properties and main examples of such processes will be given.

On the Bound of the Constant in the Berry-Esseen
Inequality for Two-Point Distributions

Sergey Nagaev 1, Vladimir Chebotarev 2, Konstantin Mikhailov 3

1Sobolev Institute of Mathematics, Russia, nagaev@math.nsc.ru
2Computing Centre FEB RAS, Russia, chebotarev@as.khb.ru
3Computing Centre FEB RAS, Russia, mikv.regs@gmail.com

Let X, X1, ... , Xn be a sequence of independent random variables having
the same two-point distribution: P(X=a) = q, P(X=d) =p, where p + q=
1, a < 0 < d, EX = 0, EX2 = 1. Without loss of generality we assume

0 < p 6 0.5. Denote Φ(x) = 1√
2π

∫ x
−∞ e

−t2/2dt,

∆n(p) = sup
x

∣∣∣P( 1√
n

n∑
j=1

Xj < x
)
− Φ(x)

∣∣∣, β(p) = E|X|3 ≡ p2 + q2

√
pq

.

We have proved (see [1], [2]) the following

Theorem 1.

C0 ≡ sup
n, p

( √n
β(p)

∆n(p)
)
< 0.4215. (1)

Note that today the best upper bound of the absolute constant in the
Berry–Esseen inequality in general case is 0.4784 [3], [4].

Remark that by the well known Esseen result [5], the following lower bound

holds, C0 > CE ≡
√

10+3

6
√

2π
= 0.409732 . . . . Thus, the constant in the right–hand

side of the inequality (1) differs from CE approximately by 3%: 0.4215−CE
CE

=
0.0287 . . . .
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Now some words about the proof of Theorem 1. We start with the following
smoothing inequality,

∆n(p) 6
1

2π
sup
x

∣∣∣∣ ∫ ∞
−∞

fn(t)− e−nt
2/2

−it
sin(tκ)

tκ
e−itx dt

∣∣∣∣+
κ√
2πn

, (2)

where f(t) is the characteristic function of X, κ = 1
2
√
pq

.

In order to obtain an appropriate estimate of C0, we first consider n > 200.
Dividing the integral in (2) into three ones by the special way, and deriving fine
estimates of these integrals, we get the following statement. Define the function
E(p) by the equality E(p) = 2−p

3
√

2π [p2+(1−p)2]
. Note that max

06p60.5
E(p) = CE ,

min
06p60.5

E(p) = E(0) = 2

3
√

2π
, E(0.5) = 1√

2π
(see fig. 1).

Figure 1: The function E(p).

Theorem 2. Let 4
n
6 p 6 0.5, n > 200. Then

∆n(p) 6
β3(p)√
n

(
E(p) +R(p, n)

)
,

where R(p, n) > 0 satisfies the following properties: 1) for each 0 < p 6 0.5,
R(p, n) decreasing tends to 0 as n→∞, 2) R(p, n) < 0.4215− CE.

Further, using the inequality ∆n(p) 6 0.33477√
n

(
β(p) + 0.429

)
, proved in [4]

for arbitrary i.i.d. random variables, we obtain in the case 0 < p 6 0.02 that√
n

β(p)
∆n(p) < 0.3582.

As to the case 1 6 n 6 200, we show by using a computer that
max

16n<200
max

p∈(0,0.5]

√
n

β(p)
∆n(p) < 0.4096 < CE .
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Note that our method allows to obtain arbitrarily precise upper bounds of
the type (1).

Acknowledgements. This work was fulfilled under the partial support by
grants: SB RAS No 30, FEB RAS 09-II-SO-01-003, FEB RAS 09-I-OMN-02.
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A structural improvement of the non-uniform
convergence rate estimates in the central limit theorem

with applications to Poisson random sums

Yulia Nefedova 1

1Moscow State University, Russia, y.nefedova@gmail.com

For n = 1, 2, . . . let X1, . . . , Xn be independent random variables with the
common distribution function F (x) and satisfying the conditions EX1 = 0,
EX2

1 = 1 and β2+δ ≡ E|X1|2+δ <∞ for some 0 < δ 6 1. Denote the class of
all distribution functions F (x) of the random variable X1 satisfying the above
conditions by F2+δ. Let Φ(x) be the standard normal distribution function.
Denote ∆n(x) = |P(X1 + . . . + Xn < x

√
n) − Φ(x)|, x ∈ R, n > 1. Then

there exist positive finite numbers A(δ) such that

sup
x∈R

(1 + |x|2+δ)∆n(x) 6 A(δ)β2+δ/n
δ/2. (1)
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Inequality (1) was proved by S. V. Nagaev (1965) for δ = 1 and A. Bikelis
(1966) for 0 < δ 6 1 and not necessarily identically distributed random sum-
mands. The best known upper bounds for A(δ) are obtained by Y. Nefedova
and I. Shevtsova (2011), in particular, A(1) 6 18.2.

Generalizing the similar result of S. Gavrilenko to the case 0 < δ 6 1, here
we construct non-uniform estimates with the sharpened structure

sup
x∈R

(1 + |x|2+δ)∆n(x) 6 C(δ)(β2+δ + 1)/nδ/2, n > 1, F ∈ F2+δ, (2)

and describe an algorithm which allows to construct the upper bounds for the
constants C(δ) for each 0 < δ 6 1. For δ = 1 this algorithm leads to the
estimate C(1) 6 15.8, which is substantially less than A(1) in (1). Moreover,
we construct a non-increasing function C(δ, x) of the argument x > 0 such
that

sup
|t|>x

|t|2+δ∆n(t) 6 C(δ, x)(β2+δ + 1)/nδ/2, n > 1, F ∈ F2+δ. (3)

and demonstrate that limx→∞ C(δ, x) = 1 for all 0 < δ 6 1.
Inequalities (2) and (3) are then applied to sharpening the constants in

non-uniform estimates of the accuracy of the normal approximation to the
distributions of Poisson random sums.

Acknowledgements. The work is supported by the Russian Foundation
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and by the Ministry for Education and Science of the Russian Federation
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Small Deviation Probabilities for Brownian Functionals

Yakov Nikitin 1, Ruslan Pusev 2

1Saint-Petersburg State University, Russia, yanikit47@mail.ru
2Saint-Petersburg State University, Russia, Ruslan.Pusev@math.spbu.ru

We find exact small deviation asymptotics for some Brownian functionals
beginning by the Brownian bridge B on [0, 1] in the weighted L2-norm ‖ · ‖ψ
for a large class of weights ψ.

Theorem 1. Let the weight ψ, defined on [0, 1], be positive and twice contin-
uously differentiable. Put ϑ =

∫ 1

0

√
ψ(t)dt. Then as ε→ 0

P{‖B‖ψ ≤ ε} ∼
2
√

2ψ1/8(0)ψ1/8(1)√
πϑ

exp

(
−ϑ

2

8
ε−2

)
.

Similar theorems are proved for Wiener process, Ornstein-Uhlenbeck pro-
cess and some similar Gaussian processes. From this we deduce many exact
small deviation results for integral functionals of weighted Bessel processes and
bridges, Brownian local times, and related processes. Next theorem gives the
exact small deviation asymptotics for the Brownian meander m in the weighted
quadratic norm.

Theorem 2. Under conditions of Theorem 1, one has as ε→ 0

P{‖m‖ψ 6 ε} ∼ 4

√
2

3π

ψ3/8(0)

ϑ1/2ψ1/8(1)
exp

(
−9ϑ2

8
ε−2

)
.

This result is new even for the unit weight ψ ≡ 1.

Let Lxt (B) be the jointly continuous local time of a Brownian bridge B at
the point x ∈ R up to time t ∈ [0, 1].

Theorem 3. The following relation holds as ε→ 0 :

P
{∫ ∞
−∞

(Lx1(B))3dx 6 ε

}
∼ 8
√

6√
π
ε−1 exp

(
−9

2
ε−1

)
.

This proposition refines on the result from [1], where the asymptotic relation
was proved at the logarithmic level only. Many analogous results for other
Brownian functionals can be found in [2].

This research was supported by the Federal Grant-in-Aid Program No.
2010-1.1-111-128-033, by RFBR grant No. 10-01-00154a, and by the Program
for Supporting Leading Scientific Schools, grant No. NSh-4472.2010.1.
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1. M. Csörgő, Z. Shi, M. Yor. Some asymptotic properties of the local time
of the uniform empirical process. Bernoulli, 1999, vol. 5, p. 1035–1058.

40



XXIX International Seminar on Stability Problems for Stochastic Models

2. Ya. Yu. Nikitin, R. S. Pusev. Exact L2-small deviation asymp-
totics for some Brownian functionals. Preprint, 2011. Available at
http://arxiv.org/abs/1104.2891

Local limit theorems for shock models

Edward Omey 1

1HUB - Brussels, Belgium, edward.omey@hubrussel.be, www.edwardomey.com

In this paper we study the local behaviour of a characteristic of several
types of shock models. In many physical systems, a failure occurs when the
stress or the fatigue at time t, represented by N(t), reaches a critical level E.
We are interested in the time τ(E) for which this happens for the first time.
In the cumulative shock model we assume that N(n) =

∑n
i=1 Xi is an acum-

mulation of independent shocks Xi. In the extreme shock model, we assume
that N(n) = Xn:n or N(n, k) = Xn−k+1:n where the damage to the system is
measured in terms of the largest shock up to now or by the k largest shocks.
For these models we.obtain a local limit theorem for the corresponding time
τ(.). We also discuss related models and present some multivariate extensions.

Keywords and phrases: Renewal theory, shock models, regular varia-
tion, extreme value theory, local limit theory.

AMS Subject Classification: 60F99; 60G40; 60K10; 26A12.
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On asymptotic tests of hypotheses for the shift/scale
parameter ratio
Vera I. Pagurova 1

1Moscow State University, Russia, pagurova@yandex.ru

We consider an analogy of J.Neyman’s asymptotic optimal C(α) -test of
hypotheses concerning the shift/scale parameter ratio based on randomly in-
dexed central order statistics.

Let independent random values Y1, ..., Yn, Nn be given, Y1, ..., Yn iden-
tically distributed with the common absolutely continuous distribution func-
tion F ((x − a)/b) depending on unknown shift and scale parameters a and
b > 0 respectively, Nn takes integer non-negative values. Denote c = a/b.
To test the null hypothesis H0 : c = c0 against the alternatives H1 : c =
c0 + ∆/

√
n, ∆ > 0, in [1] we constructed J.Neyman’s asymptotic optimal

C(α) -test and its modification. On the multivariate case we generalize results
of [3] where the Student’s distribution acts as the limit distribution for some
classes of statistics.The analogy of C(α) -test we can use in situations where
regularity conditions are not fulfilled and C(α) -test does not exist.

Let f(x) = F ′(x), 0 < λ1 < λ2 < λ3 < 1, F (ζλi) = λi, 0 < f(ζλi) <∞,
i = 1, 2, 3, Nn has a negative binomial distribution with parameters
(r, r/n) , r > 0. We use Y

(Nn)

[λNn]+1 to denote an order statistic of the rank

[λNn] + 1 in the variational series Y
(Nn)
1 ≤ ... ≤ Y (Nn)

Nn
constructed using the

sample of the random size Nn,

T (Y ) = Y
(Nn)

[λ2Nn]+1/(Y
(Nn)

[λ1Nn]+1 − Y
(Nn)

[λ3Nn]+1).

The test has the critical region

W =

{
[T (Y )(ζλ1 − ζλ3)− (ζλ2 + c0)]

√
n

σ(c0)
≥ t1−α,2r

}
,

tp,k denotes p− quantile of Student’s distribution with k degrees of freedom,
σ(c) is some function of c, λi, ζλi , i = 1, 2, 3. The asymptotic power of this
test is given by

P{W |H1} = L2r(tα,2r + ∆/σ(c0)),

where L2r(.) is the Student’s distribution function with 2r degrees of freedom.
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The stability of the statistical model of the storm wind
forecast over the territory of the West part of Russia

and of the Baltic countries

Elvira Perekhodtseva 1

1Hydrometeorological Research Center of the Russian Federation, Moscow, Russia,
perekhod@mecom.ru

Advance forecast (from 12-36h) of strong summer winds that destroy build-
ings and electric wires makes possible to take proper measures and to reduce
the losses and to protect the people. The existing graphic and calculation
methods depend on subjective decisions of operators. Nowadays there is no
hydrodynamic model for forecast of the maximal wind velocity, hence the
main tools of objective forecast of these phenomena are statistical methods.

The meteorological situation involved the dangerous phenomena - the
squalls and tornadoes and the wind with the velocity V > 20m/s is sub-
mitted as the vector X(A) = (x1(A), x2(A), , xn(A)), where n - the quantity
of the empiric potential atmospheric parameters (predictors). Their values for
the dates and towns, where are these phenomena, were accumulated in the
set {X(A)} - the teaching sample of the phenomena A presence. The teaching
sample of the phenomena A absence or the phenomena B presence ({X(B)})
was obtained for such towns, where the atmosphere was instability and often
the thunderstorms and the rainfalls were (V < 8 − 10m/s). The recognition
model of the sets {X(A)} and {X(B)} was constructed with the help of the
Byes approach.

Before the construction of the decisive rules of recognition we have solved
the problem of choosing of the most informative and independent parame-
ters. Thus for these phenomena the most informative predictors were selected
without loosing information, those predictors being either representatives of
blocks or independent informative predictors according certain criterion (the
Mahalanobis distance and the Vapnik-Chervonenkis criterion of the minimum
entropy Hmin). For this purpose the sample matrix R was corresponded to
connected graph G; 26 predictors are corresponded to the graph vertices, and
the binary coefficients are corresponded to ribs of the graph G. We have given
the different thresholds of the connection r. Then well to keep only the ribs in
the graph G, corresponding to the binary coefficient rij ≥ r. The connected
graph G breaks up to several connected subgraphs Gi in this case. Each sub-
graph Gi is corresponded to matrix R diagonal block of depend predictors.
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Given optimal threshold r = 0.5 we obtained three blocks of dependent pre-
dictors and several isolated vertices, corresponding almost independent pre-
dictors. This way we have obtained the informative vector-predictor with the
dimension n = 6. The assessments of this statistical model forecast were more
better than synoptic method forecast.

The new forecast (to 12-24-36h ahead) of strong winds was developed by
the using of the new hydrodynamic-statistical model based on the prognostic
output fields of the operative hemispheric model of Russia. Statistical deci-
sive rules for the calculation of the discriminant functions were obtained by
same Byes approach for the samples of wind phenomena with the velocities
V > 20m/s and V > 25m/s (including squalls and tornadoes). For this pur-
pose the teaching samples were included the values of forty physically sub-
stantiated potential predictors. Before the construction of the decisive rules
of recognition we also have solved the problem to select the most informative
and independent parameters by same mentioned method of choosing of the
independent and informative predictors (with the help of the criterion of the
Mahalanobis distance and of the Vapnik-Chervonenkis criterion of the min-
imum entropy). We obtained the dimension n of the vector-predictor equal
8. This forecast method was tested during three years and recommended for
the using in the operative synoptic practice in the Departments on the Me-
teorology at the European part of Russia. The results of storm wind forecast
of two classes (V > 20m/s, V > 25m/s) were obtained very high (the Pirsy
assessments are T = 0, 52− 0, 76).

During last five years we developed and tested the new hydrodynamic-
statistical storm wind forecast using same statistical model but on the base of
the output prognostic fields of the new hydrodynamic regional model of Hy-
drometcenter of Russia (for 12-24-36-48h ahead). The forecast results are very
high too. Now we noted that the stability of the assessments of the storm wind
forecast also observed in this case and so we can satisfy that the developed
statistical model of the storm wind forecast is stabile. We submitted a lot of
examples of the operative forecast of strong squalls and tornadoes at the West
part of Russia: in Petersburg on 5.07.2002y., in Kaliningrad on 8.08.2005y., at
the Petersburg area in 2010-11 years and other, at the territory of the Baltic
countries during 2009-2011 years. This method is successful for Europe too.
We hope to continue the work with this statistical model of storm wind fore-
cast with the earliness 60-72h on the base of the new Russian semilagrangian
hydrodynamic middle-forecast model.
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On a Slow Server Problem: Solution and Applications
Vladimir Rykov 1, Dmitry Efrosinin 2

1Gubkin Russian State University of Oil and Gas, vladimir rykov@mail.ru
2Institute of Stochastics, Johannes Kepler University, dmitry.efrosinin@jku.at

For queueing system with heterogeneous servers (QSHS) there exists a
problem of the service rule optimization in order to minimize the sojourn
time of customers in the system. Theoretically the problem uses the theory of
controllable queueing systems (see for example Rykov (1975), Kitaev, Rykov
(1995) and Sennott (1999), and develops a new direction of this theory con-
nected with study of qualitative properties of optimal policies, Rykov (1999)
that is based on the study of optimizing function of a model and uses their sup-
or supper-modularity properties, Topkis (1978). For applications knowledge of
qualitative properties of optimal policies allows to really construct their. This
allows to really use appropriate models in different applications, including
up-to-date telecommunication systems, Pedro (2005), Vishnevsky, Semenova
(2007).

Firstly the problem has been stated and considered by B.Krishnamoorthy
(1963) for the system with two servers. It was shown that the optimal policy
has some monotonicity properties in the sense that it demand to use a quick
server constantly and switch on the slow server only after the queue length
reach an some threshold level. Then also for two servers the problem has been
considered more detailed by B.Hajek (1984) and W.Lin& P.R.Kumar (1984),
where the monotonicity of optimal policy has been proved. G.Kool (1995) pro-
pose a simplified proof the same result also for two servers. R.Weber (1993)
formulate a conjecture that the result is true in general case. Appropriate so-
lution has been done by V.Rykov (2001), where the suggested condition of the
optimal service rule stability has been omitted that leads to incomplete of the
formal proof of the result. It was remarked in F.Verycourt & Y.P.Zhou (2006).
Improvement proof for generalized case of the QSHS with respect to mean
lost minimization has been done in V.Rykov&D.Efrosinin (2009). V.Rykov &
D.Efrosinin (2003) numerically showed that the monotonicity property of op-
timal rule also holds for the QSHS with additional structure of penalties for
the servers using and customers waiting. In D.Efrosinin&L.Bruer (2006) and
D.Efrosinin (2008) also numerically it was shown that the monotonicity prop-
erty of optimal service rule preserves also for retrial service systems and for
the systems with PH-distributed inter-arrival times.

In the talk these results will be summarized and some new applications
for telecommunication systems will be proposed.
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Increase of image recognition reliability based on
statistical approach

Andrey Savchenko 1

1National Research University Higher School of Economics, Nizhny Novgorod, Rus-
sia, avsavchenko@hse.ru

In this paper, half-tone image recognition problem is examined. Let a set
of R half-tone images Xr = ‖xruv‖ , (u = 1, U, v = 1, V , r = 1, R) be specified.
Here U and V are the image height and width, R is the number of images in
the database. It is required to assign a new input image X = ‖xuv‖ to one
of the R classes. Traditional approach in image recognition [1, 2] is based on
optimization of some measure of similarity (distance) between images ρ and
nearest-neighbour method

ν = argmin
r=1,R

ρ (X/Xr) . (1)

The situation becomes more complicated when we want to guarantee suffi-
cient reliability of decision [1]. Even if the declared average error rate of applied
criterion (1) is low, there is no guarantee that recognition result for concrete
image X is correct. This sort of questions are especially accute many factors
(distance to object, foreshortening, illumination, etc.) are varied. More often
in practice reliability is raised at the expense of decision delivery refusal if

ρ (X/Xν) > ρ1 = const. (2)

In this paper the possibility to increase image classification reliability us-
ing statistical approach and decision choice based on comparison maximum of
a-posterior probability of an accessory of input object to a class with certain
threshold is investigated. It was proven that if Kullback-Leibler information
discrimination [3] is used as a measure of images similarity (1), then the fol-
lowing criterion will be optimal in Bayesian terms

exp{−U · V · ρ (X/Xν)}∑R
r=1 exp{−U · V · ρ (X/Xr)}

< p0 = const. (3)

In our experimental study we consider an application of criterion (3) and
image model which is based on calculation of gradient orientation histograms,
for a face recognition problem. In our experiments the most popular faces
databases (FERET, ORL, Yale and Essex) were used. As preliminary image
processing the OpenCV library was used to detect faces. Each face was pro-
cessed with median filter with 3x3 pixels window sizes. The range of gradient
orientation values change is broken on 8 equal parts (i.e. each part’s range
is π/4 radians). To overcome a problem of non-uniform illumination, images
were divided into 144 (12x12) fragments. Experimental results summary is
presented in Table 1.

47



XXIX International Seminar on Stability Problems for Stochastic Models

FERET ORL Yale Essex

Exhaustive search probability error (1) 11.1% 3.5% 7.88% 0.89%

False-Reject Rate (FRR) of (2) 10.61% 3.0% 7.88% 0.81%

False-Accept Rate (FAR) of (2) 0.42% 0.25% 0.0% 0.0%

Sum of FAR and FRR (2) 11.03% 3.25% 7.88% 0.81%

Threshold ρ1 optimal value for (2) 0.364 0.444 0.56 0.502

False-Reject Rate (FRR) of (3) 3.49% 1.0% 3.64% 0.65%

False-Accept Rate (FAR) of (3) 2.02% 0.75% 2.42% 0.08%

Sum of FAR and FRR (3) 5.51% 1.75% 6.06% 0.73%

Threshold p0 optimal value for (3) 0.504 0.505 0.506 0.502

Table 1: Comparative analysis of criteria (1), (2) and (3)

Apparently from this table, it is impossible to pick up a threshold ρ1 ap-
propriate simultaneously for all used databasesfor traditional criterion (2).
However criterion (3) could be used with the fixed threshold. In Table 2 we
resulted error rates where p0 = 0.5038.

FERET ORL Yale Essex

FRR 3.35% 1.5% 5.46% 0.65%

FAR 2.51% 0.5% 1.21% 0.41%

Sum of FAR and FRR 5.86% 2.0% 6.67% 1.06%

Table 2: Error rates for criterion (3) and p0 = 0.5038

Based on these tables it is possible to draw the following conclusion. First,
accuracy of criterion (1) in which there is no recognition refusal alternative is
lower than the accuracy of criterion (2). Secondly, not less traditional criterion
(2) doesn’t provide the best accuracy. And, thirdly, for the offered criterion (3)
it is possible to pick up threshold not dependent on a particular database. Thus
the offered approach has shown the best results for popular faces databases.
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Central limit theorem for the Euler characteristics of
Gaussian excursion sets

Alexey Shashkin 1

1Moscow State University, Russia, ashashkin@hotmail.com

Excursion sets of Gaussian random fields have attracted much attention
in recent years due to their applications to modeling spatial structures. In
particular they appear in mathematical tomography and astrophysics. It is
natural to consider the probabilistic behavior of the Minkowski functionals
(volumes, surface areas, Euler characteristics) of such excursion sets. Starting
from the classical Kac formula for the expectation of upcrossings number, a
well-elaborated theory of first and higher order moments of these functionals
has been developed. One can refer to the book by Adler and Taylor [1] for a
detailed account. Establishing the asymptotic normality of the corresponding
properly normalized functionals is a more difficult problem, since they usually
depend non-smoothly on the realizations of a random field. First central limit
theorems were proved in 1970s for the level crossing number of a smooth Gaus-
sian process. A powerful method of proving central limit theorems is based on
Hermite polynomials and Itô-Wiener expansions, see the review by Kratz [2].
This abstract is devoted to the central limit theorem for Euler characteristics
of an excursion set of a Gaussian random field, which is observed in observation
windows growing to infinity in a regular way.

Given a C2 function f : Rd → R, denote by ∇f(x) and ∇2f(x) its gra-
dient and Hessian matrix at point x ∈ Rd respectively. Recall that the index
ind(A) of a symmetric nondegenerate matrix A is the number of its negative
eigenvalues.

Let X = {Xt, t ∈ Rd} be a stationary Gaussian random field with realiza-
tions which are C2 with probability one. For a bounded measurable set B ⊂ Rd
denote its Lebesgue measure by |B|. For u ∈ R and any measurable B ⊂ Rd
define the excursion set

Au(X,B) := {s ∈ B : Xs ≥ u}.

Consider a closed block U = [a1, b1] × . . . × [ad, bd] ⊂ Rd . A sequence of
blocks {Un}n∈N, Un =

∏d
i=1[ai,n, bi,n], is said to grow to infinity in a regular

way if mini=1,...,d(bi,n − ai,n)→∞, n→∞.
It is known ([1, p. 208]) that conditions on X imply that the Euler

characteristics EC(Ay(X,U)), where U is a closed block, is well-defined. Let
R(t) = cov(X0, Xt), t ∈ Rd. Finally, let {Hk, k ∈ Zd+} be the d-parametric
Hermite polynomials orthogonal family.

Set Yu(t) = I{Xt ≥ u}(−1)ind∇
2(−Xt), t ∈ Rd.

Theorem 1. Suppose that X is a C2, stationary and isotropic centered
Gaussian field such that

∫
Rd |R(t)|dt <∞. Assume that {Un}n∈N is a sequence
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of blocks growing to infinity in a regular way. Then for any u ∈ R

EC(Au(X,Un))− EEC(Au(X,Un))√
|Un|

→ N(0, σ2(X,u)) (1)

as n→∞, here the asymptotic variance σ2(X,u) equals∑
k,l∈Zd+

Hk(0)Hl(0)

2πk!l!

∫
Rd
cov(Hk(X0)Yu(0), Hl(Xs)Yu(s))ds (2)

and m! := m1! . . .md! for m ∈ Zd+.
Many possible extensions of Theorem 1 arise from generalizing possible

index sets. We give two examples when these sets are not blocks.
Theorem 2. Suppose that X is as in Theorem 1. Let M ⊂ Rd be a

stratified C2 manifold of dimension d and Un = nM := {x ∈ Rd : n−1x ∈
M}, n ∈ N. Then (1)–(2) hold for any u ∈ R.

Recall that a sequence of bounded measurable sets {Un}n∈N grows to in-
finity in the Van Hove sense if for any ε > 0 one has

|(∂Un)(ε)|
|Un|

→ 0, n→∞,

here (∂B)(τ) stands for the τ -neighborhood of the boundary of B in Euclidean
metrics (in fact one usually uses an equivalent definition, see [3, Section 3.1.1]).
Note that if a sequence of blocks grows to infinity in a regular way then the
Van Hove sense growth holds also.

Theorem 3. Suppose that X is as in Theorem 1. Let {Un}n∈N be a se-
quence of closed convex sets having C2 boundaries and growing to infinity in
the Van Hove sense. Then (1)–(2) hold for any u ∈ R.

The work is partially supported by the RFBR grant, project 10-01-00397.
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On the Asymptotic Behavior of the Remainder Term in
the Lyapunov Theorem

Irina Shevtsova 1

1Moscow State University; Institute for Informatics Problems of the Russian
Academy of Sciences, Russia, ishevtsova@cs.msu.su

Denote by F3 a class of all distribution functions (d.f.’s) F (x) satisfying
conditions ∫ +∞

−∞
x dF (x) = 0,

∫ +∞

−∞
|x|3 dF (x) <∞.

Let X1, X2, . . . be a sequence of independent random variables with d.f.’s
F1, F2, . . . ∈ F3. Denote

σ2
j = EX2

j , β3
j = E|Xj |3, j = 1, 2, . . . , n.

s2
n =

n∑
j=1

σ2
j , `n =

1

s3
n

n∑
j=1

β3
j , τn =

1

s3
n

n∑
j=1

σ3
j ,

Fn(x) = P(X1 + . . .+Xn < xsn) = F1 ∗ . . . ∗ Fn(xsn),

∆n = ∆n(F1, . . . , Fn) = sup
x
|Fn(x)− Φ(x)|, n = 1, 2, . . . ,

Φ(x) being the d.f. of the standard normal law.
Here we prove that for all n > 1 and F1, . . . , Fn ∈ F3

∆n 6 inf
C>2/(3

√
2π)

(C`n +K(C)τn) + C′`7/6n , (1)

and in the i.i.d. case

∆n 6 inf
C>2/(3

√
2π)

(
C

β3
1

σ3
1

√
n

+
K(C)√

n

)
+ C′′`3/2n , (2)

with an optimal function K(C) given in the explicit form, and we also pro-
vide some concrete values of the constants C′ and C′′ which decrease as `n
decreases. As it was shown in (Shevtsova, 2010), the value 2/(3

√
2π) of the

constant C in the first terms of (1) and (2) cannot be lowered. This result
improves the known estimates due to Prawitz (1975), Bentkus (1991) and
Chistyakov (2001).

We also present an analogous result for the case, when the absolute mo-
ments of the order only 2 + δ with 0 < δ < 1 are finite.

Acknowledgements. The work is supported by the Russian Foundation
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and by the Ministry for Education and Science of the Russian Federation
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Periodically Correlated Hilbertian Processes
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The Hilbertian autoregressive moving average (ARMA) processes gener-
alizes the classical ARMA model to random elements with values in Hilbert
spaces. These models were introduced by Bosq (1991), then studied by sev-
eral authors, as Mourid (1993), Besse and Cardot (1996), Pumo (1999), Mas
(2002, 2007), Horvath, Huskova and Kokoszka (2010). Periodically correlated
(PC) processes in general and PC autoregressive models in particular have
been widely used as underlying stochastic processes for certain phenomena
with cyclic autocorrelations.
PC Hilbertian processes, of weak type, were introduced and studied by Soltani
and Shishehbor (1998, 1999). These processes assume interesting time domain
and spectral structures.

In this work, we consider PC ARMA Hilbertian processes of orders
p, q ≥ 1. We defined periodically correlated ARMA(p,q) Hilbertian processes
(PCARMAH(p,q))) as follows:
A centered discrete time second order Hilbertian process X =
{Xn, n ∈ Z} is called PCARMAH(p,q) with period T, associated with
(ε,ρ1,ρ2, · · · ,ρp, β1,β2, · · · ,βq) if it is periodically correlated and satisfies

Xn = ρ1,n(Xn−1) + ρ2,n(Xn−2) + · · ·+ ρp,n(Xn−p) + εn

+β1,n(εn−1) + β2,n(εn−2) + · · ·+ βq,n(εn−q),

where εn = {(εnT , · · · , εnT+T−1)′, n ∈ Z} is a zero mean, strongly sec-
ond order orthogonal process in H, ρi = (ρi,0, · · · , ρi,T−1), i = 1, · · · , p
βj = (βj,0, · · · , βj,T−1), j = 1, · · · , q; and for i = 1, · · · , p j = 1, · · · , q,
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{ρi,n, n ∈ Z}, {βj,n, n ∈ Z} are T-periodic sequences in L(H), bounded linear
operators on H, with respect to n, with ρp,n, βq,n 6= 0 . Our studies on these
processes involve existence, strong law of large numbers, central limit theorem
and parameters estimation.

Analysis of M [X]|G|1|r queue with a resume level

Eduard Sopin 1

1People Friendship University of Russia, Russia, sopin-eduard@yandex.ru

Hysteretic overload control is the main mechanism for preventing signaling
overload in SIP (Session Initiation Protocol) servers. Those mechanisms are
discussed in IETF documents and drafts [1, 2].

We consider a variant of hysteretic overload control with a so called resume
level [3]. This mechanism works as follows: input of messages shut down once
the number of messages hits the maximum pool size until it decreases to a
certain value (resume level). Messages which arrive during shutdown are lost.
In addition we assume that messages arrive in batches for better fitness of our
model.

We consider a single-server queuing system with maximum pool size of r
customers. Batches of customers arrive as a Poisson process with rate λ. Each
batch contains k customers with probability lk, j batches contain k customers
with probability ljk. The distribution function and mean of a customer service
time are given by B(x) and b respectively. Whenever the queue size reaches r,
the arrival process is shut down and resumes after the queue size gets reduced
to the resume level m(0 ≤ m ≤ k − 2). Our aim is to find the equilibrium
queue length distribution observed in a arbitrary instant.

Let us denote by X(t) the number of customers in our system at time t. We
define tn, n = 1, 2, . . . as instants at which either (i) an idle period is ended, of
(ii) a service is completed not resulting in a shutdown mode. The discrete-time
process {X(tn+), n = 1, 2, . . .} will be embedded Markov chain. We first find
the equilibrium probability distribution {qj , j = 0, r} for {X(tn+)}.

Let us introduce βk probability that k batches arrive during a customer

service time: βk =
∞∫
0

e−λx (λx)k

k!
dB(x). Thus the equilibrium equation set for

probability distribution {qj} takes the form of

qj = q0

j+1∑
i=0

li

j−i+1∑
k=0

lkj−i+1βk +

min(j+1,r−1)∑
i=1

qi

j−i+1∑
k=0

lkj−i+1βk + δm+1,jqr,

j = 0, r − 1 (1)
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qr = q0

∞∑
i=0

li

∞∑
j=r−i+1

j∑
k=0

lkj βk +

r−1∑
i=1

qi

∞∑
j=r−i+1

j∑
k=0

lkj βk. (2)

where δi,j is the Kronecker’s delta. The system of equations (1,2) can be
solved numerically.

Having {qj} distribution we may find the equilibrium probability distribu-
tion {pj , j = 0, r + 1} for the original process {X(t)} as described in [4]. The
result is

p0 = C−1 1

λ
q0; (3)

pj = C−1

{
q0

j∑
i=0

li

∫ ∞
0

[1−B(x)]e−λx
(
j−i∑
k=0

lkj−i
(λx)k

k!

)
dx +

+

j∑
i=1

qi

∫ ∞
0

[1−B(x)]e−λx
(
j−i∑
k=0

lkj−i
(λx)k

k!

)
dx

}
, j = 1,m+ 1; (4)

pj = C−1

{
q0

j∑
i=0

li

∫ ∞
0

[1−B(x)]e−λx
(
j−i∑
k=0

lkj−i
(λx)k

k!

)
dx +

+

min(j,r−1)∑
i=1

qi

∫ ∞
0

[1−B(x)]e−λx
(
j−i∑
k=0

lkj−i
(λx)k

k!

)
dx+ qrb

 , j = m+ 2, r;

(5)

pr+1 = C−1

{
q0

∞∑
i=0

li

∫ ∞
0

[1−B(x)]e−λx
(

∞∑
j=r−i+1

j∑
k=0

lkj
(λx)k

k!

)
dx +

+

r−1∑
i=1

qi

∫ ∞
0

[1−B(x)]e−λx
(

∞∑
j=r−i+1

j∑
k=0

lkj
(λx)k

k!

)
dx

}
; (6)

and C = ( 1
λ

+ b)q0 + b(1− q0 − qr) + (r −m− 1)bqr.
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Asymptotic formula for disconnection probability of
graph on two dimensional manifold

Gurami Tsitsiashvili 1
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A problem of a calculation of a graph disconnection probability is consid-
ered in a lot of papers. For a graph with sufficiently small number of arcs in [1]
accelerated algorithms are constructed. These algorithms showed good results
in a comparison with Maple 11. In [2] this problem is solved using Monte-
Carlo method and some specific combinatory indexes and formulas. But when
a number of arcs increases this problem becomes much more complicated. So
it is necessary to construct convenient asymptotic formulas for connectivity or
disconnection probability of graph with high reliable arcs. In this paper such
problem is solved for planar graphs or graphs arranged on two dimensional
manifolds.

Consider unoriented and connected graph G with finite sets of nodes U and
of arcs W. Denote L(u, v) the set of all cross sections in G which divide nodes

u, v ∈ U, u 6= v, L =
⋃
u6=v

L(u, v). Put d(L) a number of arcs in cross section

L and define D(u, v) = min(d(L) : L ∈ L(u, v)), D = minu6=vD(u, v), L∗ =
{L ∈ L : d(L) = D}, C is a number of cross sections from the set L∗.
Theorem 1. Suppose that graph arcs w ∈ W fail independently with the
probability h then the probability P of the graph G disconnection satisfies the
formula P ∼ ChD, h→ 0.
So to calculate asymptotic of graph disconnection probability it is necessary to
find the constants C,D. These calculations are based on a concept of a graph
G arranged on connected and two dimensional smooth manifold without edge
T [3, chapter 1]. Suppose that between two nodes of the graph G there is not
more than two arcs and there are not arcs beginning and ending at the same
node (loops). Arcs do not intersect and may have only common nodes. Each
node and each arc belong to some cycle with more than two arcs and more
than two nodes.
Call faces (or cells) areas Si, i = 0, . . . ,m, of the manifold T limited by its
cycles minimal by the set theory inclusions. So faces may have common nodes,
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common arcs but have not common internal points. Put two faces adjacent if
there is their common arc. Each arc belongs to two faces (is adjacent to two
faces). Denote by δSi the face Si boundary.
Suppose that faces S1, . . . , Sm are bounded and call them internal. Then the

face S0 = T \
m⋃
i=1

Si may be called external. The face S0 may be unbounded if

for example the manifold T is a plane. It may be bounded also if for example
T is a sphere or a torus.
(A). Suppose that each two internal faces Si, Sj , 1 ≤ i < j ≤ m, may have
no more than single common arc.
Examples of graphs satisfied Condition (A) are connected aggregations of
quadrates from rectangular lattice or connected aggregations of hexagons from
hexagonal lattice.
Denote Ai,j the set of arcs adjacent to faces Si, Sj , 0 ≤ i 6= j ≤ m, and put
ni,j a number of arcs in the set Ai,j . Designate Mi,j = C2

ni,j , if ni,j > 1 and

Mi,j = 0 if ni,j ≤ 1. Define N =
∑

1≤i≤m

Mi,0, M =
∑

0≤i<j≤m

Mi,j ,

Theorem 2. Suppose that Condition (A) and the inequality N > 0 are true
then C = N, D = 2.
An example of a graph satisfied Theorem 2conditions is integer rectangle.
Theorem 3. If M > 0 then the equalities C = M, D = 2 are true.
Denote U3 the set of the graph G nodes which are connected with three arcs
and put K3 the number of elements in U3.
Theorem 4. If M = 0, K3 > 0 then C = K3, D = 3.
Examples of graphs which satisfy Theorem 4conditions are the dodecahedron
[3, hapter 4, Figure 4.2] and integer tube obtained by a gluing of a pair of
opposite sides in an integer rectangle with a size M ×N, M > 1, N > 1.
Theorem 5. If M = 0, K3 = 0, K4 > 0 then C = K4, D = 4. An example of
a graph satisfies Theorem 5conditions is a graph arranged on two dimensional
torus and obtained by a gluing of two pairs of opposite sides in an integer
rectangle with a size M ×N, M > 1, N > 1.
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Linear plans of Polya’s multidimensional random walks

Elena Tsylova 1, Evgenia Ekgauz 2, Lev Lvovskiy 3

1Perm State National Research Polytechnical University, Russia,
lenajasha@rambler.ru
2Ural Institute of Economics, Management and Law, Kamensk-Uralskiy, Russia,
ekgaus ku@rambler.ru
3Perm State National Research Polytechnical University, Russia,
lvovskiy1@yandex.ru

In this article results received for linear plans of Polya multidimensional
random walks (Janardan and Patil [1], Lumelskiy [2]) are reviewed. In partic-
ular, for polynomial and multidimensional hypergeometrical random walks.

Linear plans — plans of the first appearance with a stop border G :
N∑
m=0

amxm = n for polynomial random walks have been considered in work

of Kagan, Linnik and Rao [3] and are characterized as the elementary polyno-
mial plans, not reduced to the binomial: known for binomial plans geometrical
conditions of completeness become false.

Hyperplane G represents stop border of Polia’s random walks first appear-
ance plan ΠG on points with integer non-negative coordinates of space RN+1,
only if some restrictions are imposed on parameters n, a0, a1, . . . , aN . We will
formulate them.

A1. n ∈ N .

A2. am ∈ Z for all m = 0, 1, . . . , N , and at least one m exists (0 ≤ m ≤ N),
for which am > 0.

A3. GCD(a0, a1, . . . , aN ) = 1.

Conditions A1 — A3 are minimal requirements, If all of them are true
statements connected with properties of border G have sense.

In the mentioned work [3] the A. V. Malyshev’s theorem is resulted. This
theorem establishes within the limits of resulted restrictions a condition of
geometrical isolation of polynomial linear plans:

A4. am ≤ 1 for all m = 0, 1, . . . , N , and there exists at least one m (0 ≤
m ≤ N), for which am = 1.

Geometrical isolation here is understood as impossibility of multinomial
walks’ trajectories penetration through the border.

The first results for linear plans of Polia’s multidimensional random walks
have been received in work Lumelskiy and Lvovskiy [4] — obvious expres-
sion for probabilities of frontier points Γ ∈ G achievement and a condition of
asymptotic normalcy for these probabilities.
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Unfortunately, in this article it was not possible to receive a condition
of statistically distributed isolation of Polia’s multidimensional random walks
which could guarantee correctness of identity:

∑
Γ∈G

PG(O,Γ) = 1. In other

words this condition present crossing trajectories of stop border walks for
finite time with probability 1.

This condition managed to be received in work of Tsylova and Ekgauz [5]:

A5.
N∑
m=0

ampm > 0.

In those work also is shown that Poisson’s approximation conditions for
considered plans show very strong restrictions on a littleness of parameter α
value. At this restrictions Polia’s multidimensional random walks practically
degenerates in polynomial (α = 0). Therefore instead of Poison’s approxima-
tion conditions have been found convergence conditions to multidimensional
α-generalized Poison’s distribution (Tsylova [6]).

In work Lumelskiy and Lvovskiy [4] it was not possible to receive obvious
expression for a matrix of covariances (dispersions and correlation factors) in
the normal limiting theorem (as it is known, multidimensional normal distribu-
tion in an explicit form includes only a determinant of a matrix of covariances
and elements of a return matrix to it). This matrix of covariances (and, hence,
asymptotic expression for a matrix of covariances of distribution of the proba-
bilities generated by the linear plan of multidimensional Polia’s random walk)
in work made ready for the press of authors of this article.
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On stochastic interpretation of fractional powers of
operators

Uchaikin Vladimir 1, Sibatov Renat
1Ulyanovsk State University, Russia, vuchaikin@gmail.com

It is known that fractional powers of closed operators can be interpreted in
terms of one-sided α-stable densities [1-3]. On the base of this interpretation,
the Monte Carlo algorithm is proposed to calculate the action of fractional
powers of closed operators and to find numerical solutions of fractional equa-
tions. The corresponding theorem is formulated and proved. Applications of
the algorithm are demonstrated on some physical examples.

Theorem. Let the equi-continuous semigroup {Tt; t ≥ 0} of C0-class be de-
fined on a Banach space F . The infinitesimal generating operator A of the
semigroup {Tt} is defined as

Af = lim
h↓0

h−1(Th − I) f

with domain

D(A) = {f ∈ F ; lim
h↓0

h−1(Th − I) f exists in F}.

Then, the infinitesimal operators A and

Aα x ≡ −(−A)αx, ∀x ∈ D(A), 0 < α < 1,

generate the semigroups linked via relation

T̂tf =

∫ ∞
0

t−1/αg
(α)
+ (t−1/ατ) Tτf dτ ≡ E Tt1/αS+(α)f, (1)

where

S+(α) =
sin(παγ1) sin[π(1− α)γ1]1/ν−1

[sin(πγ1)]1/ν [ln γ2]1/ν−1
,

is the one-sided stable random variable [4], and g
(α)
+ (τ) is their probability

distribution function, the random variables γ1 and γ2 are uniformly distributed
in (0,1).

Example. In the theory of anomalous (non-Debye) relaxation, the fractional
operator in the relaxation equation

[1 +−∞ Dαt ]βf(t) = δ(t)

corresponds to the Havriliak-Negami frequency-domain response function [5]:

f̃(ω) = [1 + (iω)α]−β , 0 < α, β < 1.
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According to Eq. (1), the semigroup generated by the infinitesimal operator
[1 +−∞ Dαt ]β , can be found as

T̂τ f(t) = E exp
(
−τ1/βSβ

)
f

(
t−

[
τ1/βSβ

]1/α
Sα

)
.

The inverse operator can be calculated with the help of an averaging procedure

[1 +−∞ Dαt ]−βf(t) = E
[
βS−ββ Eβ−1f

(
t− SαE1/α

)]
,

where E is the exponentially distributed random variable with the unit mean
value. We use this formula to find a solution of fractional relaxation equation
for arbitrary prehistories of charging-discharging process.

We also consider applications of the algorithm to solutions of the spin-
less Salpeter equation, and the cosmic rays propagation equation containing
fractional material derivative.

Authors are grateful to RFBR (grant 10-01-00608) for financial support.
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Truncated fractional stable distributions and the
correspondence principle in thermodynamics of

nanosystems

Uchaikin Vladimir 1, Sibatov Renat

1Ulyanovsk State University, Russia, vuchaikin@gmail.com

According to the correspondence principle any new theory pretending to
more wide field of application than previous one must include the old theory
as a limit case. So, relativistic mechanics turns into the Newtonian one in
the limit of small speed. The Bohr correspondence principle is a postulate in
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quantum mechanics requiring coincidence of its results with results of classical
theory in the limit of large quantum numbers. In the case of nanostatistics, it
must describe macrosystems in the limit of large sizes. Thus, transition to the
classical statistical physics must be scale phenomena. Note that both classes
under concideration (fractional stable distributions (FSDs) q(x;α, ω, θ) and
Tsallis distributions pq,β(x)) include the Gaussian distribution as a limit case
at the particular values of α, ω and q. These parameters are determined by
features of the system and the process, but they do not depend on the system
size.

As we demonstrated in this report, FSDs play a role of intermediate asymp-
totics towards the Gaussian distribution for CTRW process with waiting time
and path length characterizing by distributions with truncated power law tails.
For example in the case of truncated Lévy flights, from physical point of view,
the number n can be interpreted as a size of a system, and transition from
large n’s to small n’s as transition from macroscale to mesoscale (nano) scale.
In some sense, this is demonstration of the correspondence principle: the the-
oretical results convert from classical form to special nanoscale form without
any special corrections ”by hand”.

Distributions with truncated power law tails are quite widespread in nan-
odynamics. For example, on-intervals distributed according to such law had
been observed in a signal of blinking quantum dot fluorescence by Shimizu
and coauthors [1]. They consider this behavior as a temperature-dependent
saturation effect that alters the long time tail of the distribution, the satura-
tion arises due to a secondary mechanism that limits the maximum on-time
duration of the QD. In the subrecoil laser cooling process, PDF of recycling
times may be truncated due to optical friction forces that limit large values
of momentum [2]. Authors [3] had demonstrated with the help of molecular
dynamics simulation that the fast stick-slip diffusion of a nanocluster bound
weakly to an atomically flat surface is a truncated Lévy walk.

FSD as asymptotic solution of the one-dimensional CTRW-model is a func-
tion of two variables, coordinate and time. Investigation of a crossover from
non-Gaussian Lévy statistics to the Gaussian one with the help of FSD allows
to follow this phenomena as the scale (time or size) effect. We demonstrated
that fractionally stable statistics reduces to normal one at large times in the
case of truncated power law tailed distribution of waiting times. The trajec-
tory of truncated Lévy flights transforms its form from the Lévy type to the
Brownian one with increasing of observable scale.

Thus, we obtained a statistical scheme with a natural crossover from normal
macrostatistics to FSD nanostatistics due to transition from macro- to nano-
scales. This is what we mean under the term correspondence principle.

Authors are grateful to RFBR (grant 10-01-00608) for financial support.
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Noncommutative Brownian motions associated with
positive cones

Janusz Wysoczański 1, Anna Kula 2

1Institute of Mathematics, Wroc law University, Poland, jwys@math.uni.wroc.pl
2Jagierllonian University, Kraków, Poland

We present a construction of noncommutative Brownian motions with bm-
independent increments, and with multi-dimensional time parameter positive
cones. The bm-independence is a generalization of Muraki’s monotonic inde-
pendence and Bożejko’s boolean independence, which appear in noncommuta-
tive probability. The bm-independence is defined for noncommutative random
variables indexed by partially ordered sets. The construction of bm-Brownian
motions follows the idea of Hudson-Parthasarathy, who defined noncommuta-
tive Brownian motion as position operator (i.e. sum of creation and annihila-
tion operators) on Fock space (bosonic, fermionic, free, et.c.) of the indicator
functions of intervals. In our case the intervals are taken in various partially
ordered set, in particular in a vector space with given positive cone. The ex-
amples of these are symmetric cones in Euclidian spaces, including the Lorentz
light-cone and the positive definite hermitian matrices.

The talk is based on joint work [1] with Anna Kula from the Jagiellonian
University (Kraków, Poland) and on description of noncommutative central
limit theorems for symmetric cones [2].
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On the stability of characterizations of the normal law
by an identical distribution property

Romanas Yanushkevichius 1, Olga Yanushkevichiene 2

1Vilnius Pedagogical University, Lithuania, romjan@vpu.lt
2Institute of Mathematics and Informatics

The present report is devoted to the estimation of the stability of charac-
terization of the normal law by the property of identically distributed linear
statistics

X = X1, S =

n∑
i=1

biXi,

where X1, X2, ..., Xn are i.i.d. random variables and b1, b2, ...bn are real coef-
ficients.

Such a characterization theorem is well known (see, for example, the mono-
graph by Kagan, Linnik, Rao [1], Theorem 13.7.2). If X and S are identically
distributed and

∑
b2j = 1, then X1, X2, ..., Xn is a normal sample. It is im-

portant to emphasize that in the formulation of this characterization theorem
any moment restrictions are absent.

Our purpose is to prove that F is close to the normal distribution in the
Lévy metric whenever the distribution of the linear statistic

∑
bjXj is close

to F.
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Necessary conditions in the law of large numbers for
martingales
Pavel Yaskov 1

1Steklov Mathematical Institute, Russia, pavel.yaskov@mi.ras.ru

Typically, necessary and sufficient conditions in classical limit theorems for
independent summands have its natural counterparts for martingales. How-
ever, in the martingale case, the latter usually give only sufficient part of these
theorems and no longer necessary ones. In the talk, we investigate the simplest
possible case – the convergence in probability of martingales to zero.
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A new method for data processing and its application
Tatiana Zakharova, Maxim Khaziakhmetov,

Lomonosov Moscow State University, Faculty of Computational Mathematics and
Cybernetics, Department of mathematical statistics, Russia, ttzaharova@yandex.ru

In our work we investigated how water vapor distribution in the atmosphere
changed over the past 11 years. Nowadays global climate changes are in area
of many scientific researches. Energy of the atmosphere is contained mostly
in water vapor. Study of water vapor field can help us to explain and predict
cyclones and hurricanes formation.

Processes in atmosphere are complex, they are difficult to predict, so the
use of modern methods of applied mathematics is especially important. The
authors had conducted the research of 64800 time series of density of water
vapor in points with given geographical coordinates. In our work we used
wavelet analysis. It’s quite new method, but most effective for non-stationary
signal processing (see [1,2]).

Wavelet transform of function f(x) defined as

Wψf(a, b) =

∞∫
−∞

f(x)
1√
a
ψ

(
x− b
a

)
dx, b ∈ R, a > 0.

In this work a wavelet transform calculated with wavelet ψ

ψ(t) = e2πite−t
2/2.

Wavelet transform had been chosen for the decomposition of the original sig-
nal due to its nonstationary nature. The most informative results had been
received in the case of using wavelet Morlet. For every scale value in wavelet
decomposition 2-D array the main frequency had been calculated for the appro-
priate number of factors. Having this values in every given geographic point
”frequency maps” had been created for the Earth’s surface. Some periodic
phenomena and high daily activity in the global field of water vapor had been
found out during given researches. Using ”frequency maps” zones with differ-
ent variability of water vapor density had been localized. These frequencies
show us how large are fluctuations of waver vapor density in different points of
the Earth. There is strong relation between frequency maps and atmospheric
phenomena.

In our research we developed a mathematical part of work. But this work
is related to various fields of earth sciences: geophysics, meteorology, and in
this areas there are still many open questions.
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On the rate of convergence for nonstationary
continuous-time Markov chains

Alexander Zeifman 1, Yakov Satin 2,
Anna Korotysheva 3, Galina Shilova 4

1Vologda State Pedagogical University, Institute of Informatics Problems RAS, and
ISEDT RAS, Russia, a zeifman@mail.ru
2Vologda State Pedagogical University, Russia, yacovi@mail.ru
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Let X(t) be a nonstationary continuous-time Markov chain on finite state
space 0, 1, . . . , r. The sharp explicit bounds on the rate of convergence for
nonstationary birth and death processes have been obtained in our previous
papers, see Zeifman [1], Zeifman, Bening, Sokolov [2]. Here we consider essen-
tially more general class of processes.

Let pij(s, t) = Pr {X(t) = j |X(s) = i} be transition probabilities, and
pi(t) = Pr {X(t) = i} be state probabilities for X = X(t).

We suppose that all transition rates have the following form:

• Pr {X(t+ h) = i+ k |X(t) = i} = λk(t)h+ o(h),

• Pr {X(t+ h) = i− k |X(t) = i} = µk(t)h+ o(h),

for any i, any k > 0 and any t > 0.

We suppose also that nonnegative intensity functions λk(t) and µk(t) are
locally integrable on [0,∞), and moreover λk+1(t) 6 λk(t), µk+1(t) 6 µk(t)
for all k and any t > 0.

Then the probabilistic dynamics of the process is represented by the for-
ward Kolmogorov differential system:

dp

dt
= A(t)p(t),

where

A(t) =


a00(t) µ1(t) µ2(t) µ3(t) µ4(t) · · · µr(t)
λ1(t) a11(t) µ1(t) µ2(t) µ3(t) · · · µr−1(t)
λ2(t) λ1(t) a22(t) µ1(t) µ2(t) · · · µr−2(t)
· · ·
λr(t) λr−1(t) λr−2(t) · · · λ2(t) λ1(t) arr(t)

 ,

and the following equalities hold: aii(t) = −
∑i
k=1 µk(t) −

∑r−i
k=1 λr−k(t) for

any t, i.
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We denote by ‖ • ‖ the l1-norm, i.e. ‖x‖ =
∑
|xi|, for x = (x0, x1...)

T and
‖B‖ = supj

∑
i |bij | for B = (bij)

r
i,j=0.

Let Ek(t) = E {X(t) |X(0) = k } be the mean of the process at the moment
t under initial condition X(0) = k.

Let {di}, i = 1, . . . , r, be a sequence of positive numbers.

Put d = min16i6r di, G =
∑r
i=1 di, W = mink

dk
k
.

Consider the expressions

αi(t) = −aii(t)+λr−i+1(t)−
i−1∑
k=1

(µi−k(t)−µi(t))
dk
di
−
r−i∑
k=1

(λk(t)−λi+r−1(t))
dk+i

di
,

and
α(t) = min

16i6r
αi(t).

Theorem. Let there exist a sequence {dj} of positive numbers such that∫ ∞
0

α(t) dt = +∞.

Then X(t) is weakly ergodic and the following bound holds

‖p∗(t)− p∗∗(t)‖ 6 8G

d
e−

∫ t
s α(u)du,

for any initial conditions p∗(s),p∗∗(s) and any s, t, 0 6 s 6 t.
Moreover, X(t) has the limiting mean ϕ(t), and

|E(t, k)− ϕ(t)| 6 4G

W
e−

∫ t
0 α(u)du,

for any k and t > 0.
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The threshold-based load management [1, 3] is an essential tool in the
prevention of various types of congestion in telecommunication networks [1-4].
One mechanism is the hysteretic control, which uses two types of thresholds
to control congestion – congestion onset threshold and congestion abatement
threshold. Criteria for the determination of SIP server congestion status are
the number of messages in the queue for CPU service, i.e. buffer occupancy.
When the buffer occupancy is increasing and it exceeds the threshold H, called
onset congestion threshold, the congestion is determined. The incoming load
should be reduced to avoid overloading. However, in order to avoid oscillations,
the load does not return to normal load value immediately, but after a while,
when the buffer occupancy is decreasing and it becomes below the threshold
L, called a congestion abatement threshold. That technique is called hysteresis
overload control.

The paper deals also with the study of SIP-server congestion control mech-
anisms. We detail the typical examples of detecting congestions, the problem
of developing overload control mechanisms and requirements for them in ac-
cordance with the currently known IETF documents [4, 5]. We note that the
mechanism, studied in papers [2, 3], uses hysteretic technique, however the
term hysteresis congestion control is not mentioned. And no mathematical
model is proposed in these papers to analyze the parameters and indicators of
overload control.

Using the concept of hysteresis load control introduced for SS7 in [1], we
construct a generic model of SIP-server with hysteresis load control technique
in terms of queuing theory as in paper [6]. We consider a mathematical model,
which takes into account two types of incoming flows of messages – INVITE
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Figure 1: The M2|M2|1| 〈L,H〉 |B queuing model

and non-INVITE. This separation between two flows exists because all the
mechanisms would rather drop INVITE messages than non-INVITE messages
whenever overload occur. Two Poisson customer flows arrive at the system
M2|M2|1| 〈L,H〉 |B, shown in fig. 1, with the intensity λ1 (s, i, n) and λ2 (s, i, n)
correspondingly as shown in fig. 2.
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Figure 2: Hysteretic load control

System with different types of service resetting

Ivan Atencia 1, Alexander Pechinkin 2

1Málaga University, Spain, iatencia@ctima.uma.es
2Institute of Informatics Problems RAS, Russia, apechinkin@ipiran.ru

Introduction
In many queueing situations, a notable and inevitable phenomenon in the

service facility is its breakdown and consequent repair. Nevertheless, in most
of the queueing literature the server is always available, although this assump-
tion is evidently unrealistic. Indeed, queueing systems with server breakdowns
are very common in communication systems but an important distinguishing
feature is to reset the service after a service interruption, that is, one speaks of
preemptive resume (PR) if the interrupted customer can continue his service,
of preemptive repeat identical (PRI) if his service is restarted or of preemptive
repeat different (PRD) if his service is restarted with a new service time.

Developing analytical models to be used for analyzing their performance
is a very important issue which has been dealt by several researchers. Most of
the existing models focus on continuous-time models; however, works related
to discrete-time systems with server interruptions can be found in Fiems and
Bruneel [1]; Fiems, Steyaert, and Bruneel, [2]; Gaver [3]; Demoor and Fiems [4].
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The main purpose of this work is to spread the queueing theory about
unreliable servers with different types of service resetting after a service inter-
ruption to the discrete-time retrial queues. Hence, this paper deals with the
study of a discrete-time retrial queue subject to active breakdowns, i.e., the
server can fail only during the service period.

The mathematical model
In this paper we study a one line discrete-time queueing system with un-

reliable service. The customers arrive to the system according to a geometric
distribution of parameter a. Every arrival to the system consists of a random
number of packets. The number of packets of a customer is distributed by the
law {bi, i > 1}, moreover every packet has the same length of T slots.

The server can only fail in a working period, moreover the failure can only
be of one of the following different types:

The first type of failure, in a slot, occurs with probability θ1. With this
type of interruption, the server repairs itself in a random number of slots,
distributed by the law {c1,i, i > 1}, and after the service is repaired the
server continues servicing.

The probability of failure in the second type is θ2, the server repairs itself
in a random number of slots, distributed by the law {c2,i, i > 1}. However,
the difference with the first type, is that after the completion of repairs, the
server starts servicing from the beginning of the package that was in the server
while the rejection occurred.

The third type of failure is characterized by the probability of rejection θ3

and the server repairs itself in a random number of slots, distributed by the
law {c3,i, i > 1}, moreover after the end of repairs the customer begin its
service anew with the same number of packets that had before arriving to the
server. In this case, if at any moment there is a failure of the third type then
this moment will be considered as the moment of the arrival of the customer
to the server until the next failure of fourth type occurs.

Finally, the fourth type of failure can occur with probability θ4 where the
distribution of the repair number of slots is {c4,i, i > 1}, after the completion
of repairs the number of slots of the customer in service is developed anew
with the initial distribution {bi, i > 1}.

It is obvious that θ = 1−
∑4
i=1 θi represents the probability that the server

does not fail.
For the rest of the paper we will assume that the length of the slot on

which it occurred the failure, of any type, it is joined with an appropriate
repair time, i.e. the actual number of slots for the repair time will be no less
than two.

The generating function ψ(z) of the distribution of the service time of a
customer with an initial random length is

ψ(z) =
A0(z)

1−A1(z)
. (1)
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and

A0(z) =

∞∑
N=1

bNϕ
N
1 (z)

[
1− ϕ3(z)

1− ϕN1 (z)

1− ϕ1(z)

]−1

,

A1(z) =

∞∑
N=1

bNϕ4(z)
1− ϕN1 (z)

1− ϕ1(z)

[
1− ϕ3(z)

1− ϕN1 (z)

1− ϕ1(z)

]−1

,

where

ϕi(z) =
fi(z)

1− f2(z)
, i = 1, 3, 4,

f1(z) = (θz + θ1c1(z))T ,

fi(z) =
θici(z)

1− θz − θ1c1(z)

[
1− (θz + θ1c1(z))T

]
, i = 2, 4.

Equation (1) allows, with detail, to calculate the moments that a customers
spends in the server.

Acknowledgements. The work has been accomplished with financial sup-
port from the project MTM2008-01121 of the Ministry of Science and Innova-
tion of the Spanish Government and with the project No. 11-07-00112 of the
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In this talk we consider a problem of correct computations by an arith-
metical logical unit (ALU), designed to compute an unknown function f(x)
of input values from the domain X, assuming that the device produces incor-
rect results fe(x) 6= f(x) for a small fraction of X. Probabilistic self-correction
refers to the case where at least one random action is used in the operations,
e.g., randomly chosen inputs and non-deterministic numbers of steps. In pre-
vious work we consider ways to increase (“amplify”) the probability of correct
computation [1]. That is, to decrease the fraction of incorrect results, using
random-reducibility properties of the functions finite fields [2]. We use a fi-
nite field as an input domain assuming that this is a result of discretization
of real input signals. We demonstrate that the random reducibility-based self-
correction approach, originally suggested to amplify the reliability of programs
[2], can be used in the scope of non-finite fields for self-correcting hardware.
For this end, it is necessary to provide a specific number of batches that yield
sufficient probability for the majority of the batches to be correct; thereby
enabling using majority vote procedures for self correction. We use error cor-
rection encoding (Reed-Solomon code [3]) for each input data batch leading
to a reduction of the necessary number of batches to the Chernoff-bound:

Pr(k > dn/2e+ 1) = 1−
L∑
k=1

Cknp
kq(n−k) ≥ 1, (1)

where n is the number of batches, k is the number of correct outputs,
L = dn/2 + 1e, and p = 1 − q is the probability of correct computation for
each batch.

The reliability dependends on the number of batches and on the choice of
the reliability-parameter (or confidence) r which is the probability to obtain a
majority of wrong results. According to the Chernoff inequality, the required
number of batches can be expressed as:

n >
1

(p− 1)2
ln(

1√
(1− r)

) ≥ 2, (2)

For example, if the function computed is a quadratic polynomial then
p = (1− r)3 (as each batch must include at least three input points (vectors)).
Equations (1) and (2) show that the use of majority-based choice among the
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results obtained from uniformly chosen batches can amplify the correction abil-
ity of a device. However, our previous results show that in spite of essential
reduction in the number of batches needed for suitable computation accuracy,
this number might be rather essential. The complexity (e.g., resource cost)
of this approach depends on the number of queries, as well as on the decod-
ing complexity of codes used for increasing correct computation probability for
each of batches. In this talk we consider recent results in self-correcting compu-
tations. Possible ways to improve the amplification can minimize the number
of queries (corresponding to the batch size) of the computation function per-
formed to correct the computed value and accelerate the decrease in the error
probability with the number of the batches used. Since we can interpret the er-
ror correcting as a “decoding of code-words” we can borrow ideas from Locally
Decodable Codes (LDC). LDCs are error correcting codes where in order to re-
trieve the correct value of just one position of the input with high probability
it is sufficient to read a small number of positions of the corresponding possi-
bly corrupted codeword. The locally decodable code can recover from a much
higher error-rate [4]. An example of LDC is the Hadamard code, which has
the property that any input bit can be recovered with probability at least 1-2δ
from δm code-words possibly corrupted in up to m positions, by a random-
ized algorithm that reads no more than 2 bits of the code in every invocation.
One of the reasons for using LDC is that the previously used Reed-Solomon
code consists of complete evaluations of polynomials of total degree up to d.
In particular, there are LDCs which provide reduction of the error rate of the
code with the number of queries which can be essentially higher d. That is the
polynomial degree is not limited factor for the fraction of erroneous results
reduction.

We will explore both the theory of Random self-reducibility and new results
in Locally Decodable Codes for the problem of reconstruction of real numeri-
cal functions for correcting faults remaining in hardware after manufacturing
testing.

References

1. S. Dolev, S. Frenkel. Extending the Scope of Self-Correcting. XIII In-
ternational Conference on Applied Stochastic Models and Data Analysis,
Vilnius, Lithuania 2009.

2. R. Rubinfeld. Batch checking with applications to linear functions. In-
formation Processing Letters, p. 77-80, 1992.

3. D. Spielman. Highly Fault-Tolerant Parallel Computation. 1996, Pro-
ceeding of the 37th IEEE Annual Symposium on Foundations of Com-
puter Science, p. 154–163.

4. S. Yekhanin. Locally decodable codes: Foundations and trends in theoret-
ical computer science, 2010.

73



XXIX International Seminar on Stability Problems for Stochastic Models
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For each positive integer n we consider the statistical problem of testing a
simple hypothesis H0, n against a complex alternative H1, n. Each criterion is
defined by a critical set Sn. Sn consists of all elementary events that lead to
the acceptance of H1, n.

In finite spaces it is important to consider complexity of an algorithm for
calculation that data belongs to Sn. In previous studies [2], [3] we introduced
a definition of a ban for a probability measure on a finite space. A ban means
a sequence which has probability zero in a finite space. We have shown that
the notion of bans is convenient because it allows to determine the critical set
in the simplest way for calculation [2].

Let X be a finite set, Xn be a Cartesian product of X, X∞ be a set of all
sequences where i-th element belongs to X. Define A be a σ-algebra on X∞,
generated by cylindrical sets. A is also Borel σ-algebra in Tichonof product
X∞, where X has a discrete topology [1].

Then on (X∞, A) a probability measure P0 is defined. Assume P0, n be a
project of P0 on the first n coordinates of sequences from X∞. It is clear that
for every Bn ⊆ Xn

P0, n(Bn) = P0(Bn ×X∞).

Let D0, n be a support of measure P0, n:

D0, n = {~xn ∈ Xn, P0, n(~xn) > 0} .

Denote ∆0, n = D0, n ×X∞. The sequence ∆0, n, n = 1, 2, ..., is nonincreasing
and

∆0 = lim
n→∞

∆0, n =

∞⋂
n=1

∆0, n.

The set ∆0 is closed and it is a support of P0.
We also have a set of probability measures {Pθ, θ ∈ Θ} on (X∞, A). Then

as before we define Pθ, n, Dθ, n, ∆θ, n, ∆θ.
If ω(k) ∈ Xk, then ω̃(k−1) is obtained from ω(k) by dropping the last coor-

dinate.
Definition 1. Ban in measure P0, n is a vector ω(k) ∈ Xk, k ≤ n, such

that P0, n

(
ω(k) ×Xn−k

)
= 0. If P0, k−1(ω̃(k−1)) > 0 then ω(k) is the smallest

ban.
If ω(k) is a ban in P0, n then for every k ≤ s ≤ n and for every sequence

ω(s) starting with ω(k) we have P0, s(ω
(s)) = 0.
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If there exists ω(n) ∈ Xn such that P0, n(ω(n)) = 0 then there exists the
smallest ban.

By definition a critical set Sn of criterion is defined by bans if it includes
all the extensions of the length n of some set of smallest bans. For the set
Sn there exists a simple algorithm for computing the membership function for
Sn. This algorithm calculates for each smallest ban its presence in the initial
section of the vector, resulting in a statistical experiment.

Definition 2. Sequence of tests with critical sets Sn is called consistent
(CST) [4] if P0, n(Sn) −→ 0, n → ∞, and Pθ, n(Sn) −→ 1, n → ∞, for every
θ ∈ Θ.

Theorem 1[3]. There exists CST for which all critical sets are defined by
bans iff Pθ(∆0) = 0 for every θ ∈ Θ.

Let all measures be finite homogeneous Markov chains which are defined
by initial positive distributions ~P0, ~Pθ and matrixes P0 =

∥∥P 0
ij

∥∥, Pθ =
∥∥P θij∥∥,

We say that P θij contradicts P 0
ij if P 0

ij = 0 but P θij > 0.
Theorem 2. There exists CST for which all critical sets are defined by

bans iff for every θ ∈ Θ and every ergodic class P0 there exists (ij) in it for
whichP θij contradicts P 0

ij .
Acknowledgements. This work was supported by Russian Foundation

for Basic Research, project 10-01-00480.

References

1. N. Bourbaki. Topologie Générale. Russian translation, 1968, Moscow,
Science.

2. A. Grusho, N. Grusho, E. Timonina. Problems of Modeling in the Anal-
ysis of Covert Channels. Proceedings of 5th International Conference on
Mathematical Methods, Models, and Architectures for Computer Network
Security (MMM-ACNS 2010), 2010, St. Petersburg, Russia, pp. 118-124.

3. A. Grusho, E. Timonina. Prohibitions in discrete probabilistic statistical
problems. Discrete Mathematics and Applications, 2011, Vol. 21, Is. 3,
p. 275-281.

4. E. L. Lehmann. Testing Statistical Hypotheses (Springer Texts in Statis-
tics), 1997, 2nd ed., Springer.

75



XXIX International Seminar on Stability Problems for Stochastic Models

Calculating the Probability Distribution for
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Modern multi-service networks are inseparably linked with the commercial
concept “triple play” [1] that implies simultaneous provisioning of telephony
(VoIP, Skype, SIP-telephony), television (IPTV, VoD, streaming video via
P2P) and data transmission (file transfer, e-mail, instant messaging) over a
single broadband connection. Evidently, such various services generate traffics
discriminating one from others not only in users’ popularity and traffic vol-
ume but also in sensitivity to packet losses, bit-rate, duration, and etc. Three
major traffic types are generally defined: unicast streaming, multicast stream-
ing and elastic traffics. Streaming traffic is considered to be real-time and is
characterized by a fixed duration, whereas elastic traffic is not real time and
is assumed to have a variable duration and fixed volume. Unlike unicast traf-
fic, multicast traffic has a network resources’ saving nature achieved through
employing multicast technology.

In terms of analysis of mathematical models with these three traffics, the
teletraffic theory is developing step-by-step. Primarily, researchers proposed
models allowing only for one of the traffics [2]. Then, they aimed to its pairwise
combinations, i. e. unicast and multicast, unicast and elastic. For the models
without joining heterogeneous streaming and elastic traffics, the analytical
solutions and recursive algorithms were derived, while the mixture of unicast
and elastic traffics requires approximate methods. For the first time, the model
with three traffic types was proposed in [3], nevertheless, no exact algorithm
was suggested there.

We consider a single link of C capacity units shared by unicast (u), mul-
ticast (m) and elastic (e) traffics. We assume all arrival rates λi to be Pois-
son and the resource occupancy durations to be exponential distributed with
means µ−1

i . The offered load is denoted by ρi = λiµ
−1
i . Each type of traffic has

a rate guarantee of bi capacity units, i ∈ {u, m, e}. The main distinction be-
tween three traffics is in service discipline: first come – first served (FCFS), the
so-called “transparent” service [2], and egalitarian processor sharing (EPS) dis-
ciplines, respectively. It could be simply proofed that the process representing
the system states is not a reversible Markov process and solution p (nu, nm, ne),∑
i∈{u, m, e} bini 6 C of the equilibrium equations is not of product form.

Due to the limited space in the abstract, we result in the exact al-
gorithm for calculating the stationary probability distribution for a model
with two traffics – multicast and elastic. Its state space is given by X1 ={

(nm, ne) : 0 6
∑
i∈{m, e} bini 6 C

}
. So, the corresponding unnormalized
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probabilities can be computed as

q (0, 0) = 1,

q (1, 0) =

ρe
C
α0

0,
⌊
C
be

⌋
−1
− α0

0,
⌊
C
be

⌋
α1

0,
⌊
C
be

⌋ − ρe
C
α1

0,
⌊
C
be

⌋
−1

,

q (nm, ne) = α0
nm,ne

+ α1
nm,ne

· q (1, 0) , (nm, ne) ∈ X1\ {(0, 0) , (1, 0)} ,

where coefficients αjnm,ne
, j ∈ {0, 1} are calculated by recursive formulas:

α0
10 = 0, α1

10 = 1, α0
00 = 1, α1

00 = 0,

α0
11 = − λm

(C − bm)µe
, α1

11 =
λm (eρm − 1)−1 + λe

(C − bm)µe
,

α0
01 =

λm + λe

Cµe
, α1

01 = −λm (eρm − 1)−1

Cµe
,

αj1,ne
=
(
1 + α1

11

)
αj1,ne−1+α0

11α
j
0,ne−1−

ρe
C−bmα

j
1,ne−2, ne = 2, . . . ,

⌊
C−bm
be

⌋
,

αj0,ne
=
(
1 + α0

01

)
αj0,ne−1 +α1

01α
j
1,ne−1−

ρe
C
αj0,ne−2, ne = 2, . . . ,

⌊
C−bm
be

⌋
+1,

αj0,ne
= αj0,ne−1 + ρe

C

(
αj0,ne−1 − α

j
0,ne−2

)
, ne =

⌊
C−bm
be

⌋
+ 2, . . . ,

⌊
C
be

⌋
.

It can be shown that the complexity of computation on the proposed algo-
rithm is O (|X1|) that the two times smaller than the complexity of equilibrium
equations solution by the Gaussian elimination. For a system with three traf-
fics a similar algorithm could not be obtained, but we derived an algorithm

reducing the dimension of equilibrium equations to value
⌊
C
bu

⌋
+
⌊
C−bm
bu

⌋
+ 1.

For example, for initial data very close to reality, the dimension of the original
system of equations is about 107, whereas the number of equations after the
algorithm’ application is only about 102.

References

1. F. J. Hens and J. M. Caballero. Triple play: building the converged net-
work for IP, VoIP and IPTV, 2008, Johns Wiley & Sons Ltd.

2. G. P. Basharin, K. E. Samouylov, N. Y. Yarkina, I. A. Gudkova. A new
stage in mathematical teletraffic theory. Automation and Remote Con-
trol, 2009, Pleiades Publishing, Moscow, vol. 70, No. 12, p. 1954–1964.

3. I. A. Gudkova and K. E. Samouylov. Approximating performance mea-
sures of a triple play loss network model. Lecture Notes in Computer
Science, NEW2AN/ruSMART 2011, S. Balandin et al. (eds.), 2011,
Springer-Verlag, Heidelberg, vol. 6869, p. 360–369.

77



XXIX International Seminar on Stability Problems for Stochastic Models

Markov Deision Process In The Model Of Distributed
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The substance of the report may be characterized as attempt to attract
Markov Decision Process theory (MDP) to computing resource management.
Thus, two different fundamental problems underlie the matter. One of them
can be formulated as the necessity of further development of an adaptive vari-
ant of partially observed MDP. Another relates to the intensive computing
systems development and consists in need of their effective management.

MDP is one of the most popular means commonly used for theoretical
description in various areas concerning stochastic optimization. This occurs
because of universal and expressive facilities of this language, as well of a good
possibility to obtain strict mathematical assertions. However, it is not so serene
with MDP applications in real systems requiring efficient and quick operating
algorithms. Difficulties of the implementation have caused certain skepticism
about MDP use advisability (see Howard [1]). The following reasons generate
problems for MDP application: high state space dimensionality, incomplete
state observation and missing of full transition matrix information. All three
factors were in preceding years and are under steadfast attention of researchers
at present. New directions were evolved from MDP theory, such as partially
observed MDP and adaptive MDP. Many theoretical results and construc-
tive algorithms that have found practical application have been obtained and
contained in theoretical kernel of closely related branches (like reinforcement
learning or artificial intelligence). The bibliography in the complete review of
MDP theory is unbounded and the main sources are well known. The history
of the subject is inseparably connected to works of Russian researchers that
are practically unknown today. The most of the ideas and results in adaptive
variant of partially observed MDP obtained up to 1990s (first of all in Rus-
sia but not only) are stated in Sragovich [2]. As to the modern state of the
theory only one line of investigation which is most closely to this work will
be referred here. Namely the case in the point is the gradient approach to the
MDP developed mainly and owing to the author Cao [3]. But our results were
obtained entirely independent from this works (see Konovalov [4]).

The extended intensive development of computer power does not eliminate
the problem of its effective utilization but even aggravates it. One way of
problem solving is creation of multiaccess distributed computing systems, the
most essential example of which is grid. Some of these systems are remarkable
for large number of participants (resource holders, consumers, brokers etc.)
with own aims and own independent behavior. The problem considered in the
wide sense has sufficiently long history and extensive related literature. The
majority of tasks are concentrated in the framework of scheduling. Behavioral

78



XXIX International Seminar on Stability Problems for Stochastic Models

aspects are also intensive investigated recent years, particularly in view of
grid problems. As to concrete review, one could be addressed, for example, to
survey Xhafa and Abraham [5] that contains many references.

This report relates to the workflows planning problems, that are arising
in such systems and that are common for almost all of them regardless of
constructive and technical realization. The attention is focused on two matter
of principal: how should be shared the available computing resources among
consumers presented in the system, and what means should be applied to
force participants to operate for the sake of hole system but not only in the
interests of one’s own. The selected method of attack is mathematical modeling
and simulation. The basic idea lies in presence of the special modification of
adaptive algorithms for partially observed multidimensional Markov decision
process.
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Estimation of the overflow and loss probability in some
Gaussian queues
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Gaussian processes are well-recognized models to describe the traffic dy-
namics of a wide class of modern telecommunication networks [3]. We consider
the so-called fluid queue with a constant service rate and a Gaussian input pro-
cess. The work focuses on the estimation of the overflow probability, that is
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the probability that the workload process exceed a threshold b (in the infinite
buffer case) and the loss probability Ploss, or the buffer overflow probability
(in the finite buffer queue). Such a probability is an important ingredient of
the QoS analysis of telecommunication systems. At the same time, for the
queues with general Gaussian input (in particular, for the most important
models with fractional Brownian input (FBI)) there are no explicit results,
and only some asymptotics for the overflow probability are found [1,2]. Thus,
in general, only simulation remains an available and the most adequate way to
estimate the required probability. It follows from the continuous time Lindley
recursion, that in the infinite buffer queue, the problem is reduced to analysis
of extremes of Gaussian processes.

Finite buffer systems, being more realistic models of real-life networks, are
more difficult to be analyzed, and by this reason explicit (and asymptotic)
expressions for Ploss in such systems are much less available.

In this work, we present a general formula connecting Ploss and the idle
probability P0. The estimate of probability P0 is more available in the queues
with large (finite) buffer under a light traffic, when a loss turns out to be a
rare event. For the Brownian input (BI), we apply a regenerative methodology
to construct confidence interval for Ploss.

Finally, some numerical results for queues with FBI and BI are presented.

Acknowledgements. This work is supported by Russian Foundation for
Basic research, project No 10-07-00017
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On the estimation of the overflow probability in finite
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Finite buffer models play an important role in modeling the modern com-
munication systems. In such system, the stationary loss probability is an im-
portant characteristic of the QoS provided by the system. Moreover, the output
process is often an input to another node of a communication system.

In this work, we focus on the finite buffer systems possessing a regenerative
property, Bratley and Fox [3], Glynn and Iglehart [4]. Regenerative structure
of a wide class of the loss systems is described in detail. In particular, the
embedded k-regenerations related to arrivals in GI/M/m/n system, and to
departures in M/G/1/n system, are defined.

Moreover, we present both known analytical results for finite buffer systems
and less known formula connecting stationary loss probability and stationary
idle probability. The latter result is then used to evaluate stationary loss prob-
ability via estimation the idle probability. This approach is expected to be
effective when a loss is a rare event, for instance, under large buffer and in the
light traffic regime. Moreover, regenerative simulation is used for confidence
estimation the loss probability.

The same methodology is also used to estimate the stationary blocking
probability in a retrial bufferless systems with a constant retrial rate and with
single or two servers. This research is based on the stability analysis presented
in Avrachenkov and Morozov [1] and Avrachenkov, Goricheva and Morozov [2].

Acknowledgements. The research is supported by RFBR, project 10-07-
00017.
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In this work, we discuss a new multiprocessor queueing system describing
dynamics of a high performance cluster with a large number m of processors
serving a flow of tasks arriving to a single queue (with inter-arrival times Ti
being a renewal process). A distinctive feature of the model is that upon the
i-th arrival task requires a random number 1 6 Ni 6 m of processors which
must start to serve the new task simultaneously, with equal times Si needed for
service on each of Ni processors. It is assumed that {Ni} is an i.i.d sequence.

It results in a delay caused a waiting of a task until all required number
of processors become free. In turn, this implies that service discipline in this
model is non work-conserving. While the problem of stability of classical multi-
processor queueing system is well-addressed (see Morozov [4 ,5], Asmussen [1]),
stability analysis of this non work-conserving system is much more difficult
than classical one.

The basic Markov workload process in this model is described by natural
extension of the well-known Kiefer-Wolfowitz representation. Namely, denot-
ing Wi ∈ Rm a workload vector in the system (which shows the amount of
unfinished work on each of m servers, sorted in an ascending order), the re-
cursive equation for Wi evaluation goes as follows

Wi+1 = R


Wi(Ni) + Si − Ti

· · ·
Wi(Ni) + Si − Ti
Wi(Ni + 1)− Ti

· · ·
Wi(m)− Ti



+

.

Here operator R puts the components of a vector in ascending order, and
(·)+ = max(0, ·) is taken componentwise. We note that Ni components of a
vector are identical.

As a result, stability analysis in this contribution is treated in the terms of
positive Harris recurrence of the basic process (cf. Thorrison [7]). However, in
general setting exact stability analysis of such a model implying tight stability
region seems not tractable.
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Instead we construct some minorant and majorant classical systems, which
allow to obtain a tight stability region in several important cases, including a
large number m of processors. Some specific distributions of N (and connection
between N and m) are also considered.

Then we develop regenerative stability analysis of these simpler systems
provided classical regeneration exists. For a more general model, we construct
the so-called one-dependent regeneration structure which indeed is equivalent
to Harris recurrence of the underlying Markov process.

Some numerical results related to stability analysis are presented.
An important ingredient of the work is also a survey of main moment

properties of the workload process for a wide class of queueing systems (see
Scheller-Wolf, Vesilo [6]).

Acknowledgements. This work is partially supported by a grant of Rus-
sian Foundation for Basic Research, project 10-07-00017.
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The use of Chebyshev and Gegenbauer polynomials in
the analysis of finite queue with negative customers and

bunker for ousted customers
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At present queueing systems (QS) and queueing networks with negative
customers remain the subject of extensive research. As the evidence one can
cite many works in this field of study that are being printed in periodicals
each year. For the latest bibliography on the subject see Tien Van Do [1].
Classical negative customer, as opposed to regular, upon entering the system
either removes a regular customer from the system, if there is one, or converts
it into some other customer.

In the present work (as well as in Manzo, Cascone and Razumchik [2],
Pechinkin and Razumchik [3]) a slightly different type of negative customers
is considered. Upon entering the system a negative customer does not remove
a regular customer from the system, but displaces it into another queue. So
the displaced customer stays the same except for the fact that it is served
according to a certain discipline. QS with such negative customers can model,
for example, fault-related processes in distributed computing system and in
databases with two-phase commit strategy.

Consider a single-line queueing system with finite buffer of size r, incoming
Poisson flow of regular customers of intensity λ and Poisson flow of negative
customers of intensity λ−. A negative customer upon arrival pushes a regular
customer out of the queue in buffer (if it is not empty) and moves it to the
queue of finite capacity r in bunker. If upon arrival of a negative customer
the queue in the buffer is empty, it leaves the system having no effect on it.
Customers from both queues are served according to exponential distribution
with parameter µ, FCFS discipline, but customers in bunker are served with
a relative priority (i.e. have lower priority than customers in buffer). At last,
if upon arrival of a regular customer the buffer is full, this claim is lost; if
upon arrival of a negative customer the buffer is not empty and bunker if full,
displaced customer from buffer is lost.

The goal is to find the stationary probabilities of number of customers in
buffer and bunker. The functioning of the system can be described by homoge-
neous Markov process X(t) = {ξ(t), η(t)} (where ξ(t) – number of customers
in buffer, η(t) – number of customers in bunker) with the three-diagonal block
matrix of transition intensities Q of size ((r + 1)2 + 1)× ((r + 1)2 + 1). So, in
order to find stationary probabilities, one may use matrix-geometric method
for generalized birth-and-death processes (see, for example, Latouche and Ra-
maswami [4]) or elimination method (see, for example, Bocharov, D’Apice,
Pechinkin and Salerno [5]). But it was found that there exists another one
way to obtain stationary probabilities for this QS. This way is not new as it
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was already used in Avrachenkov, Vilchevsky and Shevljakov [6], but for the
analysis of another type of QS.

It can be shortly described as follows. Let us denote by pij the stationary
probability of i customers in buffer and j customers in bunker, and let p0

be the stationary probability of the empty system. At first one should find

two-dimensional PGF P (u, v) =
r∑
i=0

r∑
j=0

piju
ivj . Then using properties of PGF

and the form of marginal distributions one obtains two equations that can
be solved using series expansion with the help of Chebyshev and Gegenbauer
polynomials. The solution represents the expressions for the probabilities pir,
p0i and prj that depend only on λ, λ−, µ and p0. Then, using local balance
principle and normalizing condition one can find the expression for p0 and
then compute all pij .

This method shows good speed and accuracy during computational ex-
periments compared to two methods, mentioned above. Moreover, matrix-
geometric and elimination methods need to be adapted to the structure of
matrix Q. Otherwise, in case of large values of r, they work much slower than
the method, based on special functions.

This work was partially supported by Russian Foundation for Basic Re-
search, projects No 11-07-00112.
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Software Tools for Circular Stochastic Systems Analysis
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1. Modern analytical modeling stochastic information technologies for non-
linear stochastic systems (StS) in Euclidean spaces based on quasilinear meth-
ods for solving equations (Eqs) for probability densities. Corresponding meth-
ods and instrumental software are described in [1, 2]. Methods and software
tools for problems of circular mathematical statistics are observed in [3]. The
paper is devoted to instrumental software tools for circular StS (CStS) based
on equivalent statistical linearization [4].

2. Following [4] let us consider scalar circular random variable Y = ϕ(X)
being nonlinear deterministic function of scalar circular random variable
(CRV) X. Using mean square circular criteria for characteristic CRV func-
tions Y and U we approximate ϕ(X) by the following equivalent linear CRV
U = k0µ+ k1(X −µ), µ being circular mean for X; k0 and k1 being statistical
linearization coefficients depending on equivalent probability density.

For ”wrapped” scalar normal density (WN) with parameters µ and σ we
have complex Eq MWN exp[iϕ(X)] = MWN exp

[
ik0(µ, σ)µ+k1(µ, σ)(X−µ)

]
.

For 3 typical nonlinear functions Y = ϕ(X) we get the following expressions
for k0 and k1:

• Example 1.

y = l sgn(x), k0 =
1

µ
arctan

(
2 sin lΦ(µ

σ
)

cos l

)
,

k1 =
1

σ

√
−2 ln

√
cos2 l + 4 sin2 l

(
Φ
( a
σ

))2

.

• Example 2.

y = l 1(x), k0 =
1

µ
arctan

(
sin l

(
1
2

+ Φ
(
µ
σ

))
1
2
− Φ

(
µ
σ

)
+ cos l

(
1
2

+ Φ
(
µ
σ

))) ,
k1 =

1

σ

√
−2 ln

√
1

2
(1 + cos l) + 2(1− cos l)Φ

(µ
σ

)2

.
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• Example 3.

y = l x 1(x), k0 =
1

µ
arctan

 1
2
e−

l2σ2

2 sin lµ

1
2
− Φ

(
µ
σ

)
+ 1

2
e−

l2σ2

2 cos lµ

 ,

k1 =
1

σ

√√√√−2 ln

√(
1

2
− Φ

(µ
σ

))2

+ e−
l2σ2

2 cos lµ

(
1

2
− Φ

(µ
σ

))
+

1

4
e−

l2σ2

2 ,

in the specific case when µ = a = 0

k1 =
1

σ

√
−2 ln

√
1

4
+

3

4
e−

l2σ2

2 .

Using linearized Eqs for CStS we get deterministic Eqs [4] for mathematical
expectations, variances and covariances for times t and t′ (t′ > t).

The original software tools ”CStS-analysis” is instrumented in MATLAB
for nonlinear discrete and continuous CStS. The current experimental version
of ”CStS-analysis” uses functions of MATLAB Symbolic Math toolbox and
presents the set of open program functions with numerical and graphic output.
Applications: precise circular mechanisms, statistical dynamics of the Earth
motion, etc [4, 5].

The work is supported by Russian Foundation for Basic Research (Project
#10-07-00021).
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On a queue length in queueing system with preemptive
loss priority

Andrey Ushakov 1, Vladimir Ushakov 2
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This paper is concerned with one-channel preemptive loss priority queues in
which customers arrive according to a renewal process with hyperexponential
distribution. Entering customers are separated into two priority classes with
probability p1 and p2. Customers of the first class have priority to customers of
the second class. Service times are jointly independent random variables with
distribution function Bi(x), density bi(x) and Laplace-Stieltjes transform βi(s)
for customers of i−th class.

Let a(x) =
N∑
j=1

cjaj exp (−ajx) , x > 0, ai 6= aj , i 6= j, cj > 0,
N∑
i=1

ci = 1,

be the density of interarrival time. We set: Li(t) – the number of customers
of i−th class, i = 1, 2, in the system at the time instant t, p(z1, z2, s) =
∞∫
0

e−stEz
L1(t)
1 z

L2(t)
2 dt, µ1(z1, z2), . . . , µN (z1, z2) be continuous solutions of

the equation
N∏
i=1

(µ + ai) = (p1z1 + p2z2)
N∑
j=1

cjaj
∏
i 6=j

(µ + ai), αk(z1, z2) =∏
i 6=k

(µk(z1, z2)− µi(z1, z2)),

Lemma 1. For each k = 1, . . . , N the functional equation z1 =
β1 (s− µk(z1, z2)) has a unique solution z1 = z

(k)
1 (z2, s), which is analytic

in the region |z2| < 1, Re s > 0.

Let ek(z2, s) =
N∑
l=1

p2z2 −

N∏
j=1

(ψj(z2,s)+al)

clal
∏
i6=l

(al−ai)

 N∏
j 6=l

(µk(0, z2) + aj)clal.

Lemma 2. The functional equation

N∏
l=1

(
1− z−1

2 β2(s− µl(0, z2))
)

+

N∑
j=1

∏
l6=j

(
1− z−1

2 β2(s− µl(0, z2))
)
×

× 1− β2(s− µj(0, z2))

s− µj(0, z2)
· ej(z2, s)

αj(0, z2)
= 0

has N solutions ζ1(s), . . . , ζN (s) which are analytic in the region Re s > 0.

We set: ψk(z2, s) = µk
(
z

(k)
1 (z2, s), z2, s

)
, ψmk(s) = ψm(ζk(s), s), µjk(s) =

µj(0, ζk(s)), ωkl(s) =
N∑
j=1

1−β2(s−µjk(s))

s−µjk(s)
·

∏
f 6=l

(µjk(s)+af )

αj(0,ζk(s))(1−ζ−1
k

(s)β2(s−µjk(s)))
.
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Theorem 1. A function p(z1, z2, s) is determined by the formula

p(z1, z2, s) =

N∑
j=1

(
p0j(s) + cj

N∑
k=1

(
1− β1(s− µk(z1, z2))

s− µk(z1, z2)
×

× γ
(k)
1 (z1, z2, s)

µk(z1, z2) + aj
+

1− β2(s− µk(0, z2))

s− µk(0, z2)

γ
(k)
2 (z2, s)

µk(0, z2) + aj

))
,

where(
1− z−1

1 β1(s− µk(z1, z2))
)
αk(z1, z2)

p1z1 + p2z2
γ

(k)
1 (z1, z2, s) =

=

N∏
j=1

(µk(z1, z2)− ψj(z2, s)) · q(1)(z2, s),

q(1)(z2, s) =

N∑
ν=1

aν

(
p0ν(s) + cν

N∑
k=1

γ
(k)
2 (z2, s)

µk(0, z2) + aν
· 1− β2(s− µk(0, z2))

s− µk(0, z2)

)
,

 N∏
l=1

(
1− z−1

2 β2(s− µl(0, z2))
)

+

N∑
j=1

∏
l 6=j

(
1− z−1

2 β2(s− µl(0, z2))
)
×

× 1− β2(s− µj(0, z2))

s− µj(0, z2)
· ej(z2, s)

αj(0, z2)

)
· αk(0, z2) · γ(k)

2 (z2, s) =

=
∏
l6=k

(
1− z−1

2 β2(s− µl(0, z2))
)rk(z2, s)−

∑
j 6=k

1− β2(s− µj(0, z2))

s− µj(0, z2)
·

· ek(z2, s) · rj(z2, s)− ej(z2, s) · rk(z2, s)

1− z−1
2 β2(s− µj(0, z2))

· 1

αj(0, z2)

)
.

and functions p0j(s) are determined from the systems of linear equations

N∑
l=1

(s+ al) · ωkl(s)−
N∑
ν=1

ωkν(s) ·

N∏
m=1

(ψmk(s) + aν)∏
i 6=ν

(aν − ai)

×
× alp0l(s) =

N∑
l=1

clalωkl(s), k = 1, . . . , N.
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The Analysis of RED-Like Algorithms Characteristics
Based on Queueing Systems with Batch Arrival
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The system description. The queueing system GIB/M/1/Rq1,q2 with
finite queue size R (R <∞) (in packets) and two thresholds q1 q2, 0 6 q1 <
q2 6 R, is discussed. The packets arrive in batches of size l, l = 1, L, L < ∞
(batch size — in packets).

The probability of arrival of the batch of l packets is al,
L∑
l=1

al = 1.

The service time distribution is exponential with parameter µ, arrived pack-
ets are served by one.

This work is the continuation of research presented in [1, 2]. The main
difference from papers [1, 2] is that we consider the queueing system with
batch arrival (so we need to consider batch length probability distribution,
system overflow due batch arrival, introduced thresholds) and don’t use general
renovation [3–5].

Let’s q be the number of packets in our system (with a packet on a server)
and there is an arriving batch of l (l = 1, L) packets, then:

• if q + l > R+ 1, then the all arriving batch is dropped;

• if q + l 6 R+ 1, then:

– 0 6 q 6 q1 — the whole batch is accepted;

– q1 < q 6 q2 — either the arriving batch is accepted with probability
1− p(q), or it is dropped (the whole batch) with probability p(q);

– q2 < q 6 R + 1 — the whole batch is dropped with probability
equal to one.

There are different possibilities of queue size R and maximal batch length
L interaction: 1) R < L <∞, 2) q2 < L 6 R, 3) q1 < L 6 q2, 4) 1 6 L 6 q1.

The analitycal expressions for following probabilistic-time characteristics:
the embedded Markov chain distribution of number of packets in the system,
the probability that the arriving packet will be served, mean waiting time, are
obtained. The results of this article generalize the results of [1, 2].

Probabilistic-time characteristics. The system is investigated with the
help of embedded by moments of batch arrival Markov chain [3–5]. The steady-
state probability distribution p+

k (k = 1, R+ 1) may be found by the following
system solution:

p+
k =

R+1∑
j=1

p+
j

min(j,k−1)∑
i=0

Aj,iak−i

+

R+1∑
j=k

p+
j ȧkAj,k, 1 6 k 6 q1, (1)
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p+
k =

R+1∑
j=1

p+
j

min(j,q1)∑
i=0

Aj,iak−i +

min(j,k−1)∑
i=q1+1

Aj,iak−i(1− p(i))

+

+

R+1∑
j=k

p+
j Aj,k(ȧk + ãk), q1 + 1 6 k 6 q2, (2)

p+
k =

R+1∑
j=1

p+
j

min(j,q1)∑
i=0

Aj,iak−i +

min(j,q2)∑
i=q1+1

Aj,iak−i(1− p(i))

+

+

R+1∑
j=k

p+
j Aj,k, q2 + 1 6 k 6 R+ 1, (3)

with condition
R+1∑
k=1

p+
k = 1. Here Ai,j = (−µ)(i−j)

(i−j)! α(i−j)(µ), i = 1, R+ 1,

j = 0, i, α(s) — Laplace-Stieltjes transformation of probability distribution

function of input flow; ȧ =
L∑

l=R+2−k
al, k = 0, R+ 1; ãk = p(k)(1 − ȧk),

k = 0, R.
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83. Wysoczański Janusz 62
Institute of Mathematics, Wroc law University
Poland
jwys@math.uni.wroc.pl

84. Yanushkevichiene Olga 63

Institute of Mathematics and Informatics
Lithuania

85. Yanushkevichius Romanas 63
Vilnius Pedagogical University
Lithuania
romjan@vpu.lt

86. Yaskov Pavel 63
Steklov Mathematical Institute
Russia
pavel.yaskov@mi.ras.ru

87. Zakharova Tatiyana 17, 35, 64
Moscow State University
Russia
lsa@cs.msu.su

88. Zaryadov Ivan 90

Peoples’ Friendship University of Russia
Russia
izaryadov@sci.pfu.edu.ru

89. Zeifman Alexander 65

Vologda State Pedagogical University
Institute of Informatics Problems RAS and ISEDT RAS
Russia
a zeifman@mail.ru

99



Íàó÷íîå èçäàíèå

XXIX International Seminar on Stability Problems for Stochastic

Models and V International Workshop �Applied Problems in

Theory of Probabilities and Mathematical Statistics related to

modeling of information systems�.

Book of Abstracts

XXIX Ìåæäóíàðîäíûé ñåìèíàð ïî ïðîáëåìàì óñòîé÷èâîñòè

ñòîõàñòè÷åñêèõ ìîäåëåé è Ìåæäóíàðîäíûé ðàáî÷èé ñåìèíàð

�Ïðèêëàäíûå çàäà÷è òåîðèè âåðîÿòíîñòåé è ìàòåìàòè÷åñêîé

ñòàòèñòèêè, ñâÿçàííûå ñ ìîäåëèðîâàíèåì èíôîðìàöèîííûõ

ñèñòåì�.

Ñáîðíèê òåçèñîâ

Ðåöåíçåíò: äîêòîð ôèç.-ìàò. íàóê, ïðîôåññîð Â.Í. Áàñêàêîâ

Òåõíè÷åñêèé ðåäàêòîð: êàíäèäàò ôèç.-ìàò. íàóê È.Ã. Øåâöîâà

Îðèãèíàë-ìàêåò ïîäãîòîâëåí Þ.Ñ. Íåôåäîâîé

Ïîäïèñàíî â ïå÷àòü 28.09.2011

Òèðàæ 100 ýêç.

Çàêàç �11-13

Èçäàòåëüñòâî ÈÏÈ ÐÀÍ

119333, Ìîñêâà, óë. Âàâèëîâà, ä.44, êîðï.2



2

IS
B

N
 9

78
-5

-9
19

93
-0

03
-7


	oblojka_1
	ABSTRACTS_cor100_last
	p1
	p2
	BOOK
	last

	oblojka_2

